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Evaluation Framework for Detecting Manipulated
Smartphone Data

Heloise Pieterse, Martin Olivier, and Renier van Heerden

Abstract—Ever improving technology allows smartphones to
become an integral part of people’s lives. The reliance on
and ubiquitous use of smartphones render these devices rich
sources of data. This data becomes increasingly important when
smartphones are linked to criminal or corporate investigations.
To erase data and mislead digital forensic investigations, end-
users can manipulate the data and change recorded events. This
paper investigates the effects of manipulating smartphone data on
both the Google Android and Apple iOS platforms. The deployed
steps leads to the formulation of a generic process for smartphone
data manipulation. To assist digital forensic professionals with
the detection of such manipulated smartphone data, this paper
introduces an evaluation framework for detecting manipulated
smartphone data. The framework uses key traces left behind as
a result of the manipulation of smartphone data to construct
techniques to detect the changed data. Assessment of the evalua-
tion framework involves three distinct theoretical scenarios that
involve the deletion and modification of existing data, as well as
a failed attempt to insert fabricated data. The results produced
by the evaluation framework suggest the framework can assist
with the detection of manipulated smartphone data. The purpose
of this research study was to demonstrate the manipulation of
smartphone data and present an evaluation framework to detect
such manipulated data.

Index Terms—Digital forensics, mobile forensics, manipulation,
smartphone data, smartphones, Android, iOS.

I. INTRODUCTION

The 21st century is witnessing the rapid development of
smartphone technology. The current technological advance-
ments equip smartphones with improved capabilities and func-
tionality that nowadays closely resemble a personal computer.
Existing smartphone models support different connectivity
options, various communication channels, the installation of
third-party applications, as well as a complete operating sys-
tem. The leading smartphone operating systems of 2018 are
Google Android and Apple iOS. The prominence of both
Android (70.09% market share) and iOS (28.50% market
share) platforms directly relates to their provided capabilities
and popularity among users [1]. Although other smartphone
operating systems do exist, the combined market share of
98.59% guided this study to only focus on these platforms.

From a mobile forensics’ perspective, which forms a sub-
discipline of digital forensics, the data collected by smart-

Manuscript received November 1, 2018.
H. Pieterse is with the Defence, Peace, Safety and Security, Council for

Scientific and Industrial Research and Department of Computer Science,
University of Pretoria, Pretoria, South Africa, e-mail: hpieterse@csir.co.za.

M. Olivier is with the Department of Computer Science, University of
Pretoria, Pretoria, South Africa, e-mail: molivier@cs.up.ac.za.

R. van Heerden is with the National Integrated Cyber Infrastructure System,
Council for Scientific and Industrial Research, Pretoria, South Africa and
the School of Information and Communication Technology, Nelson Mandela
University, Port Elizabeth, South Africa, e-mail: rvheerden@csir.co.za.

phones, called smartphone data, can become important sources
of digital evidence. Smartphone data includes any data of pro-
bative value that is generated by an application or transferred
to the smartphone by the user [2]. The extensive market share
of both Android and iOS smartphones ensures the diverse
usage of the devices, which eventually leads to rich collections
of smartphone data [3]. Smartphone data describe events (for
example sending a text message or browsing a website) that
occurred on the smartphone. Valuable smartphone data, such
as contacts, text messages, call lists, browsing history and e-
mails, provides a well-defined snapshot of user events and
support the chronological ordering of these events [4]. The
exact events recorded by a smartphone depend on several
internal and external factors, such as smartphone settings,
operation by the user and installed applications [5]. Regardless
of the availability, the produced smartphone data can still
offer insight during digital forensic investigations and provide
important digital evidence.

The value of smartphone data as a form of digital evidence
has, however, raised suspicion among users. Data retrieved
from smartphones can offer contextual clues about the end-
user, who the owner and user of the smartphone is, as well
as activities performed involving the smartphone. Such clues
can reveal who the user knows and communicated with,
locations visisted, highlight personality traits and pinpoint
close associates [6]. The presence of such information can
be a cause for concern [7], which can drive end-users to
apply manipulative techniques to the data and eliminate or
remove any potential value. The motivation for manipulat-
ing smartphone data is two-fold. Firstly, benign end-users
can deploy certain techniques to manipulate smartphone data
deemed private or sensitive and minimise the exposure of
such data. Secondly, end-users can use similar techniques
to intentionally make changes to smartphone data to hide
their involvement in criminal activities and erase incriminating
events. These techniques and tools are commonly referred to
as anti-forensics and are primarily used to “compromise the
availability or usefulness of evidence to the forensic process”
[8]. Several recent research studies ([4], [9], [10], [11], [12],
[13]) have investigated the effect and feasible use of anti-
forensics in the smartphone environment. The first study [4]
explored the possibility to create a false digital alibi on a
smartphone and thwart investigations. The remaining studies
focused on introducing new anti-forensic techniques to modify
and erase digital evidence, manipulate existing data or thwart
marking-leading digital forensic tools. More specifically, one
research study investigated the viability of modifying the
operating system (CyanogenMod) in an anti-forensics context
to prevent data extractions, present false data and impede
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digital forensic tools [12]. It is, therefore, possible for end-
users to utilise anti-forensics to erase, manipulate or construct
false data, ultimately misleading digital forensic investigations.

To counter and thwart the effects of anti-forensics, ex-
isting research presents several solutions. Verma et al. [14]
preserve date and timestamps of Android smartphones by
capturing system generated values and storing these values
in a location beyond the smartphone. Govindaraj et al. [15]
have designed a solution, called iSecureRing, which permits
a jailbroken iPhone to be secure and ready for a digital
forensic investigation by preserving timestamps in a secure
location. Research conducted by Pieterse et al. [16] showcased
the successful manipulation of timestamps stored in SQLite
database on Android smartphones. The research also proposed
the Authenticity Framework for Android Timestamps, which
provides methods to identify manipulation timestamps. These
solutions are, however, either platform-specific, require addi-
tional software to be installed on a smartphone prior to an
investigation or only focus on a specific subset of smartphone
data such as timestamps.

This paper attempts to establish an evaluation framework
that assists with the identification of manipulated smartphone
data on both Android and iOS platforms. To construct such
a framework, it is necessary to determine what manipulative
changes can be applied to smartphone data. This is possible
by conducting exploratory experiments involving the manipu-
lation of data on a Samsung Galaxy S5 Mini (Android version
6.0.1) and iPhone 7 (iOS version 10.0.1) smartphones. The
steps followed to perform the manipulation form a generic
process to generalise the manipulation techniques. Such ma-
nipulation of smartphone data is essentially an attack on the
data’s integrity and is best described using an attack tree. Using
the attack tree, key traces left behind due to the manipulation
of smartphone data leads to the formulation of the evaluation
framework, which provides key indicators for digital forensics
professionals to identify and pinpoint manipulated smartphone
data. Weights assigned to the indicators allow for the detection
of manipulated smartphone data with a certain probability. The
immediate challenges to address in this paper are thus the
following: (a) development of an effective and generic process
to manipulate smartphone data on both Android and iOS
platforms and (b) construct an evaluation framework capable
of detecting manipulated smartphone data.

The remainder of this paper is structured as follows. Section
II presents an overview of the Android and iOS platforms
and discusses the structure of SQLite databases. The generic
process for smartphone data manipulation, constructed using
the results of the exploratory experiments, is discussed in
Section III. Section IV presents an attack tree for smartphone
data manipulation that encapsulates the available manipula-
tion techniques. In Section V the evaluation framework for
detecting manipulated smartphone data is introduced and three
distinct scenarios are evaluated using the framework. Finally,
Section VI discusses the findings while Section VII concludes
the paper.

II. BACKGROUND

With the continuous growth in functions and capabilities
of smartphones supporting the Android and iOS platforms,
valuable sources of smartphone data are collected on these
devices. This section reviews the architecture and file system
structure of the Android and iOS platforms. Attention is
given to the storage location of the smartphone data on these
platforms, as well as the accessibility of the data. Following
the review of smartphone platforms is an overview of SQLite
databases, which are a popular choice for persistent storage
on smartphones.

A. Smartphone Platforms

Operating systems form the foundation of advanced capa-
bilities and improved functionality showcased by smartphones
today. They operate seamlessly and act as the intermediary
layer between the user and the underlying hardware resources.
High performance smartphone operating systems, which in-
clude Google Android and Apple iOS, are the current pace
setters, as reflected by their combined market share of 98.59%
in the 4th quarter of 2017.

The Google Android platform is an open source operating
system provided by the Open Handset Alliance [17] and was
officially announced in November 2007. The architecture of
the platform is divided into six layers: system applications,
Java API framework, native C/C++ libraries, Android run-
time, hardware abstraction layer and Linux kernel [18]. This
architecture ensures the effective operation of applications by
allowing fluent communication between these applications and
the lower layers. Until Android version 2.2 (Froyo), Android
smartphones primarily used Yet Another Flash File System
version 2 (YAFFS2) [19]. Android switched from YAFFS2
to Fourth Extended (EXT4) file system with the release of
version 2.3 (Gingerbread) to more efficiently support multi-
core chip sets [19]. The EXT4 file system also divides the
disk space into logical storage units, which supports reduced
management overhead and improves throughput [20]. With
regards to digital forensic investigations, the logical storage
units containing valuable smartphone data are the /data and
/system partitions [21]. Access to these partitions is not
permitted by default and is only accessible by rooting the
Android smartphone. Rooting gives the user access to the root
directory (/) and permits the execution of superuser privileges
[17].

The Apple iOS platform is a proprietary and slimmed
down version of the macOS [22] for Apple’s mobile devices.
The architecture of the iOS platform consists of five layers:
applications, Cocoa touch, media, core services and core
OS/kernel [23]. The iOS platform acts as an intermediary layer
between the underlying hardware components and installed
applications, causing the applications to interact with the
hardware through a set of well-defined system interfaces [24].
A variation of the Hierarchical File System Plus (HFS+),
called HFSX, was selected as the primary file system for iOS
[25]. The single-threaded design and rigid data structures of
HFSX struggled to keep pace with ever-improving technology.
In 2016 Apple announced a new file system, called the Apple
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File System (APFS), for all Apple’s mobile operating systems,
including iOS [25]. Similar to the Android platform, iOS also
divides the logical storage space into partitions. Traditionally,
iOS smartphones are configured with two partitions: system
and data [26]. Access to smartphone data stored on these
partitions is not allowed by default and users must jailbreak
the iOS smartphone. The term jailbreak originates from a Unix
practice of placing services in a restricted set of directories
called a “jail” and breaking free from these restrictions [27].
By jailbreaking an iOS smartphone removes restrictions put
in place by Apple and elevates the privileges to root access
[28].

B. SQLite Databases

SQLite is best described as an efficient software library that
implements a lightweight Structured Query Language (SQL)
database engine [29]. The main database file (.db, .db3 or
.sqlitedb) contains a complete SQL structure that includes
tables, indices, triggers and views [30]. The first page of the
main database file is a 100-byte database header page. The
remaining pages following the header page are structured as
B-trees, where each page contains a B-tree index and B-tree
table that holds the actual data [31].

During transactions, SQLite stores additional information
in a secondary file called either a rollback journal or write-
ahead log (WAL) file [32]. The purpose of this secondary
file is to ensure the integrity of the data in the event of
transaction failure. The WAL approach, which was introduced
with version 3.7.0, preserves the original data in the main
database file and appends changes to a separate WAL (.db-
wal) file. The WAL file also contains a 32-byte file header
and zero or more WAL frames. When a checkpoint occurs
the updated or new records in the WAL file are written to
the main database file. Once completed, the WAL file remains
untouched and can be reused rather than deleted. Traditionally,
SQLite performs an automatic checkpoint when the WAL file
reaches a size of 1000 frames (approximately 4MB in file
size) [33]. The number of WAL frames are calculated using
the WAL file size (minus the WAL header size) divided by
the combined size of the header and frame.

III. GENERIC PROCESS FOR SMARTPHONE DATA
MANIPULATION

The manipulation of smartphone data occurs for differ-
ent reasons by applying various techniques. The available
techniques to manipulate smartphone data are modification,
fabrication or deletion. Modification of the smartphone data
refers to tampering or altering of existing smartphone data.
With modification, the existing data is updated to reflect
changed data. Fabrication describes the creation of new but
false smartphone data. The fabricated or counterfeited data is
inserted to represent actual data. Finally, deletion of smart-
phone data removes the data.

To establish a generic process for smartphone data manip-
ulation, exploratory experiments involving both the Android
and iOS default messaging applications are performed. The

purpose of these experiments is to obtain access to the per-
sistent data of the applications and attempt the manipulation,
which is either the modification, fabrication or deletion, of
the data. While performing the exploratory experiments, the
steps followed to manipulate the smartphone data are carefully
documented. From the observations, similarities are identified
and collected into a generic process.

A. Manipulation of Android Smartphone Data

The first exploratory experiment focuses on the Android
platform and uses a Samsung Galaxy S5 Mini, running An-
droid version 6.0.1 (Marshmallow), as the test smartphone. To
manipulate the smartphone data of Android’s default messag-
ing application, access to the file(s) responsible for storing the
data is required. The Android platform stores all application-
related smartphone data in the /data folder and access is only
possible on a rooted smartphone, as mentioned in Section 2.1.
Root access on the Samsung Galaxy S5 Mini is obtained using
the CF Auto Root and Odin tools.

Android’s default messaging application uses an
SQLite database for data storage and is located in the
/data/data/com.android.providers.telephony
/database/ folder on the Android smartphone. At this
point, manipulation in the form of deletion is possible
by simply removing the SQLite database files (.db and
.db-wal) and rebooting the smartphone. This deletes all of
the smartphone data related to the application. Modification of
existing data or adding newly fabricated data requires direct
access to the SQLite database records. Applying changes
directly to the data in the SQLite database files is not feasible
due to the complex structure of the files and the possibility of
applied changes being overwritten. It is, therefore, necessary
to open and access the data in these file(s). Two approaches
exist to access the SQLite database files: direct or off-device.

The direct approach involves the manipulation of the smart-
phone data by opening the SQLite database on the Android
smartphone. This requires the use of an appropriate tool,
such as the sqlite3 command-line program, to manually
enter and execute SQL statements [34]. This program provides
access to the SQLite database records (using the .open
command) and allows for the manipulation of the smartphone
data using the appropriate SQL statements (INSERT, UPDATE
or DELETE). Android smartphones do not ship with a pre-
installed sqlite3 command-line program. Absence of or
failure to utilise the sqlite3 command-line program neces-
sitates the use of the off-device approach.

The off-device approach requires an established commu-
nication channel between the smartphone and a connected
computer. Establishing such a channel relies on the USB
debugging functionality, which is not visible by default. Al-
though not visible, going to Settings, About phone and tapping
multiple times on the build number will enable Developer
mode. Selecting Developer options and touching the check box
next to “USB debugging” will enable this feature. Following
the enabling of the “USB debugging” feature, it is possible
to create a communication channel using the Android Debug
Bridge (ADB). ADB is a versatile command-line utility that
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communicates with a connected Android smartphone [35]. The
communication channel is established using adb shell, fol-
lowed immediately by the su command. Using the established
communication channel, the SQLite database files are first
transferred to the /sdcard folder before downloading the
files to the connected computer. The /sdcard folder is found
across all Android smartphones, regardless of make or model,
and allows end-users to store additional files and data. Using
an SQLite editor to open the .db file causes an automatic
checkpoint to occur, ensuring all the records in the .db-wal
file are transferred and visible in the editor. It is now possible
to manipulate the smartphone data using the available SQL
statements (INSERT, UPDATE or DELETE). After completing
the manipulation of the smartphone data, the SQLite database
is closed to ensure the changes are captured correctly.

To complete the manipulation of the smartphone data,
the remaining .db file must be returned to the An-
droid smartphone. Before this file can be returned to the
/data/data/com.android.providers.telephony
texttt/databases/ folder, the original SQLite database (.db
and .db-wal files) must be removed using the rm
command. The removal of the original SQLite database
files prevents the manipulated data from being overwrit-
ten. Thereafter, the .db file can be returned to the
/data/data/com.android.providers.telephony
texttt/databases/ folder using the mv command. The only
required file is the .db-wal file, which is generated following
a smartphone reboot. The permission of the .db file must be
changed using the chmod a=rw or chmod 666 command
to create a new .db-wal file. The reboot also ensures the
manipulated data is visible on the Android smartphone.

This concludes the exploratory experiment of manipulating
Android smartphone data. The following section attempts the
manipulation of smartphone data residing on an iPhone 7.

B. Manipulation of iOS Smartphone Data

The second exploratory experiment focuses on the iOS
platform and uses an Apple iPhone 7, running iOS version
10.0.1, to perform the experiments. To manipulate the smart-
phone data that forms part of the default messaging application
on the iPhone 7, access to the file(s) storing the data is
required. The iOS platform stores application smartphone data
in the /private/var/mobile/Library folder. Access
to this folder is only permitted on a jailbroken smartphone,
which is achieved by using the extra_recipe + yaluX
jailbreak application and Impactor to transfer the application
to the iPhone 7. Upon installing the application, the jailbreak
executes and immediately reboots. The jailbreak status is
confirmed by verifying the automatic installation of the Cydia
application, a package manager for jailbroken iPhones.

iPhone’s default messaging application uses a SQLite
database for storing data. The SQLite database is found in
the /private/var/mobile/Library/SMS/ folder on
the iPhone 7. At this point, manipulation in the form of
deletion is possible by removing the SQLite database files
(.db and .db-wal) and performing a smartphone reboot.
Again, this removes all of the smartphone data related to

the application. Modification of existing or the creation of
counterfeited data necessitates access to the SQLite database
records. Access to the records is possible via one of the
following two approaches: direct or off-device.

The direct approach involves the manipulation of the smart-
phone data by opening the SQLite database on the iPhone 7.
This approach relies on the presence and availability of the
sqlite3 program on the iPhone 7. In contrast to Android,
iOS comes pre-installed with the sqlite3 program. The
program provides direct access to the SQLite database and
permits the modification of existing data, fabrication of new
data, as well as the removal of all or specific data. Should the
sqlite3 program fail to effectively apply the changes to the
smartphone data, it will be necessary to follow the off-device
approach.

The off-device approach requires the transferral of the
SQLite database (both the .db and .db-wal files) to
a connected computer. A communication channel is estab-
lished using the iFunbox and puTTy applications. Obtain-
ing access to the iPhone 7 file system is possible using
the standard iOS credentials, which is root (username) and
alpine (password). Thereafter, the SQLite database files is
first transferred to the /var/mobile/Media folder before
downloading the files unto the connected computer. The
/private/var/mobile/Media folder is similar to An-
droid’s /sdcard folder and allows users to store additional
media and downloaded files. Using a SQLite editor, the .db
file is opened and immediately causes an automatic check-
point (see Section 2.2). It is now possible to manipulate the
smartphone data using the available SQL statements (INSERT,
UPDATE or DELETE). After completing the manipulation, the
SQLite database is closed to ensure the changes are correctly
captured.

For the manipulated data to reflect on the iPhone 7, it is
necessary to return the .db file. Before returning the file to
the /private/var/mobile/Library/ SMS folder, the
existing SQLite database (.db and .db-wal files) must be
removed using the rm command. These files, especially the
.db-wal file, are removed to ensure the manipulated data is
not overwritten. Thereafter, the .db file can be transferred to
the /private/var/mobile/Library/SMS folder using
the mv command. The only required file is the .db-wal file,
which is created following a smartphone reboot. To generate
the new and empty .db-wal file, the current permissions
of the .db file must be changed using the chmod a=rw or
chmod 666 command. This ensures the .db-wal file is
created and the manipulated data is visible on the iPhone 7.

The successful manipulation of iOS smartphone data con-
cludes the exploratory experiment. The following section
consolidates the findings found across both exploratory ex-
periments and formulates a generic process for smartphone
data manipulation.

C. Generic Process

The exploratory experiments performed in the previous
sections confirm that it is indeed possible to manipulate smart-
phone data on both the Android and iOS platforms. Although
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the focus was on the manipulation of text messages of the
default messaging applications, the same steps can be followed
to manipulate any other smartphone data stored within SQLite
structures. From these experiments, it is now possible to
pinpoint various similarities among the steps followed to
manipulate smartphone data. Using the collected similarities, a
generic process is formulated that generalises the manipulation
of smartphone data. The generic process consists of four
distinct stages. Each individual stage describes the progression
of the generic process to manipulate the smartphone data
along with the requirements that must be met to successfully
complete each stage, as well as the actual manipulation.

• Phase 1: ensures the selected smartphone is accessible
by confirming the smartphone is either rooted (Android)
or jailbroken (iOS).

• Phase 2: requires the selection of the application and
identifying the location of the file(s), such as a SQLite
database, storing the smartphone data. The data of the
selected smartphone application must reside on the smart-
phone.

• Phase 3: identify the most appropriate approach to access
the smartphone data: Direct or Off-device.

• Phase 3.1: the direct approach performs the manipulation
of the smartphone data directly on the smartphone and
relies on the presence of a program or utility to access
the file(s).

• Phase 3.2: the off-device approach requires the transferral
of the file(s) to the connected computer. Using the most
appropriate program or utility, the contents of the file(s) is
accessed and manipulated accordingly. Once completed,
the file(s) is closed and returned to the smartphone to
overwrite previous smartphone data. The returned file(s)
is also assigned the necessary read/write permissions to
ensure the smartphone application can interact with the
manipulated smartphone data.

• Phase 4: requires a manual reboot of the smartphone.

This proposed generic process for smartphone data manipu-
lation captures the steps to follow to modify, fabricate or delete
smartphone data. The following section further investigates the
manipulation of smartphone data by introducing an attack tree
that encapsulates the various manipulation scenarios.

IV. ATTACK TREE FOR SMARTPHONE DATA
MANIPULATION

The established generic process for smartphone data ma-
nipulation provides the steps to affect changes to data. Such
changes are essentially an attack on the integrity, availability
and authenticity of smartphone data and is best described
using an attack tree. An attack tree provides a formal and
methodical way to describe various attacks against a system
[36]. The attacks are represented using a conceptual tree
structure with the main goal of these attacks listed as the
root node. The nodes following the root describes the different
avenues of achieving the goal, constructed using OR (choice
between alternative steps) and AND (represents different steps
to achieve the same goal) nodes.

A. Construction of the Attack Tree

The goal of this attack tree is the “manipulation of smart-
phone data” and is denoted by G. The intermediate goals
are: deletion (I1), modification (I2) or fabrication (I3). Fol-
lowing the intermediate goals are the sub-goals that describes
the required steps to accomplish each intermediate goal and
ultimately complete the set goal. There are two options for
deletion: removal of the files holding the data which deletes
all of the data (S1) or removing specific data such as individual
records (S2). Removal of the file(s) requires physical access to
the smartphone(S5) by either rooting (Android) or jailbreaking
(iOS) the smartphone. Once access is acquired, it is necessary
to locate and remove the file(s) (S6). This is followed by a
reboot of the smartphone (S7) and ensures the deletion of all
the smartphone data related to the smartphone application. The
removal of individual records also requires physical access
to the smartphone and locating the file(s) holding the data.
Since this attack focuses on the manipulation of specific data,
it is necessary to access and open the file(s) containing the
data (S8). Options to open the file(s) are either directly on
the smartphone (S9) or off-device on a connected computer
(S10). To open and view the data requires the use of an
appropriate utility or program to access the data (S11). Should
such utility or program be unavailable or the approach not be
feasible, access to the file(s) holding the data must occur off-
device on a computer connected to the smartphone. Off-device
manipulation requires the transferral of the file(s) (S12), which
relies on an established connection between the smartphone
and the connected computer (S14). After performing the
manipulating, the file(s) are returned to the smartphone via
the established connection (S13). This is again followed by a
smartphone reboot (S7) to ensure the removed data reflects on
the smartphone.

The remaining manipulation techniques, modification (I2)
and fabrication (I3), follows similar attack paths. To either
change existing data (S3) or insert fabricated data (S4), it is
necessary to open and access the data in the file(s). Therefore,
these manipulation techniques follows a path identical to the
removal of individual records. According to the descriptions
above, the attack tree is constructed and presented in Fig. 1.
This attack tree forms the basis for deriving attack scenarios
to manipulate smartphone data.

B. Derived Attack Scenarios

The presented attack tree provides four distinct techniques
to manipulate smartphone data (deletion of all data, deletion
of specific data, modification of data or fabricating data). The
focus of this section is on three theoretical attack scenarios
that involve the deletion and modification of existing data, as
well as a failed attempt to insert fabricated data.

The first attack scenario illustrates the deletion of specific
data stored by a smartphone application. For this attack
scenario, the iOS operating system is identified as the target
platform and involves a previously jailbroken iPhone 7. The
availability of the sqlite3 command-line program permits
manipulation of the smartphone data directly on the smart-
phone by following the direct approach (see Section III-C).
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Fig. 1. Attack tree that illustrates the steps for smartphone data manipulation

Using the provided attack tree, the described attack scenario
is denoted as follows: I1, S2, S5, S6, S8, S9, S11, S7.

The second attack scenario demonstrates the modification
of existing data present on an Android smartphone. Access
to the data necessitates rooting the Android smartphone. Due
to the unavailability of the sqlite3 command-line program
on the Android platform, the modification of the data must
occur using the off-device approach (see Section III-C). Again
using the provided attack tree, the described attack scenario is
denoted as follows: I2, S3, S5, S6, S8, S10, S12, S14, S13, S7.

Th final attack scenario attempts to insert newly fabricated
data. For this attack scenario, the Android operating system
is again selected as the target platform and rooted. Following
the off-device approach, the SQLite database of the application
selected to hold the fabricated smartphone data is transferred
to the connected computer. However, failure to retrieve the
SQLite database from the Android smartphone ultimately
terminates the attack scenario.

The presented attack scenarios will have inherent side-
effects that leaves various traces on the smartphones. Traces
specific to each sub-goal are listed in Table I. Collectively,
the traces provides evidence that can assist with the identifi-
cation of manipulated smartphone data. The following section
further explores these traces by extracting key indicators and
using the indicators to construct an evaluation framework for
smartphone data.

V. EVALUATION FRAMEWORK

The collection of traces deduced from the various ma-
nipulation techniques encapsulated in the attack tree equips

TABLE I
TRACES CREATED DUE TO THE MANIPULATION OF SMARTPHONE DATA

Sub-Goal Trace Created
S1, S2, S3, S4 The presence of a new and clean WAL file
S5 Automatic installation of a root application
S5 Unavailability of over-the-air (OTA) updates
S7 Creation of a new entry in the reboot log
S8 Discrepancy between WAL and application timestamp
S9, S11 Use of the sqlite3 command-line program
S10, S12 Change in ownership of the .db file
S10, S12 Change in permissions for the .db file
S10, S13 The .db file size larger than .db-wal file
S14 Enabled settings (USB debugging)

digital forensic professionals with the necessary information
to evaluate smartphone data. There is, however, no structure
or order to these traces, which can impact the effective use
of the traces to detect manipulated smartphone data. To assist
digital forensic professionals, key indicators are extracted from
these traces and captured in an evaluation framework. Fig. 2
presents the evaluation framework for detecting manipulated
smartphone data.

From the collected traces 10 distinct indicators are iden-
tified, which are listed in the above evaluation framework.
Each indicator is a possible side-effect that occurs due to the
manipulation of the smartphone data. Certain indicators, such
as the root status and OTA updates, are not a direct indication
of the intentional manipulation of smartphone data. However,
the manipulation necessitates the need for rooting/jailbreaking
the smartphone, which also impacts the availability of OTA
updates. Therefore, a larger collection of present indicators is
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Fig. 2. Evaluation framework to identify manipulated smartphone data

a better reflection of the manipulation of smartphone data.
To pinpoint these indicators, specific measurements are pre-

sented to assist digital forensic professional. Where necessary,
explicit measures are specified for the different smartphone
platforms. Each evaluated indicator produces a binary result
that reflects either a positive [true] or negative [false] result.
A positive result indicates the evaluated measurement(s) are
met while a negative result contradicts the indicator.

The presented indicators only stipulates how to evaluate
smartphone data without providing an outcome regarding
the potential manipulation of the data. The impact of each
indicator on the evaluation of the smartphone data is, however,
not equal since each indicator evaluates different aspects
regarding the manipulation of smartphone data. Stemming
from the provided descriptions are two distinct groups of
indicators. The first group (1) contains indicators that merely
confirms an opportunity existed for the smartphone data to
be manipulated. Belonging to group 1 are the following indi-
cators: Root Application, OTA Updates, SQLite3 Usage and
Additional Settings. The second group (2) collects indicators
that specifically focus on affirming changes to the smartphone
and the application responsible for creating the smartphone
data. The remaining indicators, namely WAL File, Reboot,
Application Usage, DB Ownership, DB Permissions and Main
Database File, pertain to group 2. The categorisation of the
indicators according to these groups allows for a weighted
calculation of a manipulation score.

Following a weighted approach to calculate a manipulation
score (Ms) allows for better communication of the potential
manipulation of the smartphone data. The weight assigned
to each group reflects the impact the evaluated indicator will
have on the final score. Two distinct groups for the available

Fig. 3. Probability scale to measure manipulation of smartphone data

indicators have been identified. Since group 1 contains 40%
of the available indicators, a weight of 0.4 is assigned to the
group. The weight assigned to group 2 is the remainder, which
is 0.6. The manipulation score (Ms) is then calculated using
equation (1) by accumulating all of the positive results per
group (posg) and then dividing by the number of indicators
available per group (ng). The result is then weighed using the
assigned weight as specified above.

Ms =

2∑
g=1

(wg)(
posg
ng

) (1)

Using the probability scale shown in Fig. 3, the calculated
manipulation score can be plotted to reflect the potential
manipulation of the evaluated smartphone data. Confirming
the effectiveness of the evaluation framework to identify
manipulated smartphone data, necessitates the assessment of
the derived attack scenarios introduced in Section IV-B using
the framework.
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Fig. 4. Collection of positive results per group for each attack scenario

A. Evaluation of Attack Scenarios

The manipulation of smartphone data impacts and neg-
atively influences the conclusion drawn from the analysed
smartphone data. The constructed evaluation framework pro-
vides a suitable methodology to assess smartphone data and
identify the manipulation of such data. Applying the attack
scenarios (see Section IV-B) at a theoretical level and assessing
the outcomes using the evaluation framework, which permits
digital forensic professionals to pinpoint manipulated data.

The first attack scenario illustrated the deletion of specific
data stored on an iPhone 7. Completion of the attack scenario
caused the following indicators to present on the iPhone
7: WAL File, Root Application, OTA Updates, Application
Usage, SQLite program and Reboot. Since the manipulation
of the smartphone data occurred on the iPhone 7, fewer
indicators are available and, therefore, the manipulation score
is expected to be approximately 0.5. All of the indicators
meet the provided measurements and using equation 1, the
calculated manipulation score is 0.6.

The second attack scenario demonstrated the modifica-
tion of existing data available on an Android smartphone.
Completion of the attack scenario caused the following in-
dicators to present on the Android smartphone: WAL File,
Root Application, OTA Updates, Reboot, Application Usage,
DB Ownership, DB Permissions, Main Database File and
Additional Settings. Since the manipulation of the smartphone
data followed the off-device approach (see Section III-C),
more indicators are present on the Android smartphone. The
manipulation score is, therefore, expected to be above 0.5. All
of the indicators meet the provided measurements and using
equation 1, the calculated manipulation score is 0.9.

The final attack scenario attempted the insertion of newly
fabricated smartphone data on an Android smartphone. The
attack scenario was, however, unsuccessful but still caused
the following indicators to present: Root Application, OTA
Updates and Additional Settings. The present indicators con-
firm that an opportunity existed for the smartphone data
to be manipulated but since no manipulation occurred, the
manipulation score is expected to be below 0.5. All of the
indicators meet the provided measurements and using equation
1, the calculated manipulation score is 0.3.

Fig. 4 summarises the collection of positive results per
group for each attack scenario. The results show that each
attack scenario had equal opportunity to manipulate the smart-
phone data but only attack scenarios 1 and 2 successfully
manipulated the data. Fig. 5 maps the final calculated ma-
nipulation scores on the probability scale. The results confirm
that the evaluation framework along with the calculated ma-
nipulation score can assist digital forensic professionals with

the identification of manipulated data.

VI. DISCUSSION AND FUTURE WORK

The purpose of the evaluation framework is to assist digital
forensic professionals with the assessment of smartphone data
and allow for the identification of possibly manipulated data.
The evaluation framework consist of ten indicators and associ-
ated measurements to assess smartphone data. These indicators
are divided into two distinct groups to better reflect both the
opportunity to manipulate the smartphone data, as well as
the actual manipulation of the data. Depending on the data
collected from the smartphone, digital forensic professionals
can either evaluate all or a subset of the indicators. The
adjustable structure of the framework easily supports different
collections of smartphone data. The easy to follow structure
provides a step-by-step guide for evaluating the smartphone
data, thus quickening the assessment of smartphone data
while saving digital forensic professionals valuable time dur-
ing examinations. The evaluation framework is simplistic yet
comprehensive, providing digital forensic professionals with
an easy to understand methodological approach to evaluate
smartphone data.

The result(s) produced by the evaluation framework allows
digital forensic professionals to make informed decisions
regarding the inclusion or exclusion of smartphone data.
Evaluation of the attack scenarios in Section V-A showed
the evaluation framework can identify manipulated smartphone
data. Furthermore, the grouping and subsequent weighing of
the indicators describe the certainty of the manipulation of
the smartphone data using the probability scale. Using the
produced result(s), digital forensic professionals can eliminate
unreliable smartphone data from being submitted as potential
digital evidence and only use reliable data to formulate and
draw accurate conclusions.

Future work can build on this research by expanding the ex-
isting evaluation framework and establishing other approaches
to identify manipulated smartphone data. Firstly, the existing
collection of indicators can be extended by reviewing other
smartphone platforms and identifying additional indicators that
can pinpoint the manipulation of smartphone data. Secondly,
the current focus of the evaluation framework is only on de-
termining the manipulation of smartphone data. Adapting the

Fig. 5. Manipulation scores mapped on the probability scale
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framework to also evaluate the accuracy and authenticity of the
smartphone data provides a more comprehensive assessment
of the data. Lastly, the provided evaluation framework must
be continuously reviewed to ensure framework aligns with the
technological improvements of smartphone platforms.

VII. CONCLUSION

Smartphone data found on both Android and iOS devices
can form an important component of digital forensic inves-
tigations. Available smartphone data provides a well-defined
snapshot of user events. To protect their privacy or hide incrim-
inating events, users can deploy anti-forensics to manipulate
smartphone data. To assist digital forensic professionals with
the detection of such manipulated smartphone data, this paper
introduces an evaluation framework for detecting manipulated
smartphone data. The framework uses key traces left behind
as a result of the manipulation of smartphone data to con-
struct techniques to detect the changed data. The challenges
addressed in this paper were to show (a) that smartphone data
can be manipulated and (b) construct an evaluation framework
to detect such manipulated data. Challenge (a) was addressed
by formulating the generic process to manipulate smartphone
data on both the Android and iOS platforms. Challenge (b)
was concluded by introducing the evaluation framework for
smartphone data and confirming the framework can assist
with the identification of manipulated data. The current paper
provides preliminary evidence that the suggested evaluation
framework shows potential and future work will focus on
expanding this research.
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