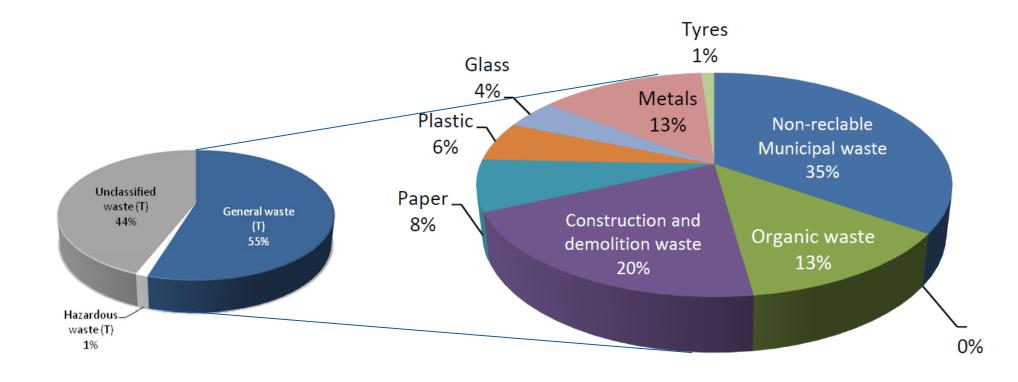
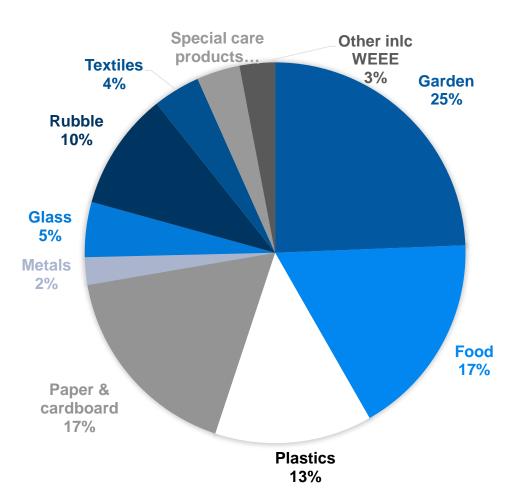
Biogas Potential and Current Reality of Biowaste Management in South Africa

IFAT – 9 July 2019


Presentation by Prof Suzan Oelofse

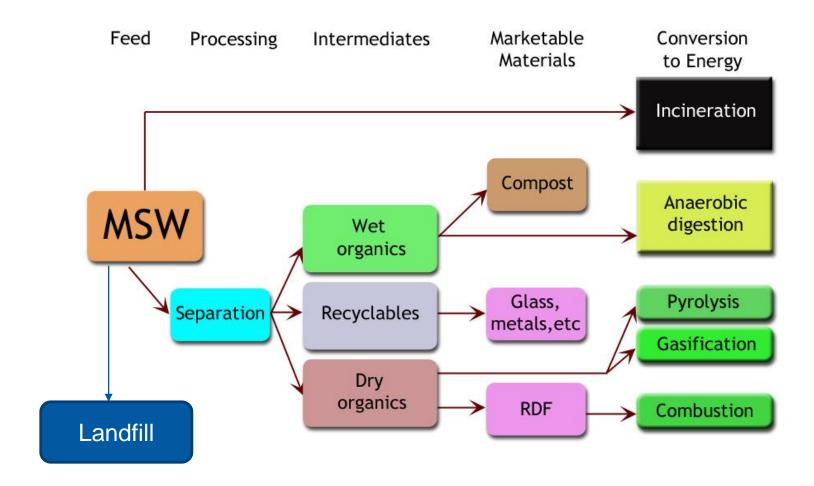
Research Group Leader: Waste for Development Smart Places Cluster, CSIR

Extraordinary Professor, Unit for Environmental Sciences and Management, NWU


Waste Profile for South Africa

DEA, 2012

Municipal Solid Waste in South Africa


Organic Fraction = 42%

Slide 3 © CSIR 2019 www.csir.co.za

MSW Pathways

SA's Management Options for Organic Waste

Openwindrow composting

In-vessel composting

Nutrient upcycling

Containerised composting

Anaerobic digestion

- Potential to divert 3.1 million tonnes of organic waste per year
- Reducing GHG emissions by 4 million tCO₂e per year
- ~20% reduction in GHG emission from waste
- Potential to generate biogas

Slide 5 © CSIR 2019 www.csir.co.za

Mitigation achieved by major response measures since 2000

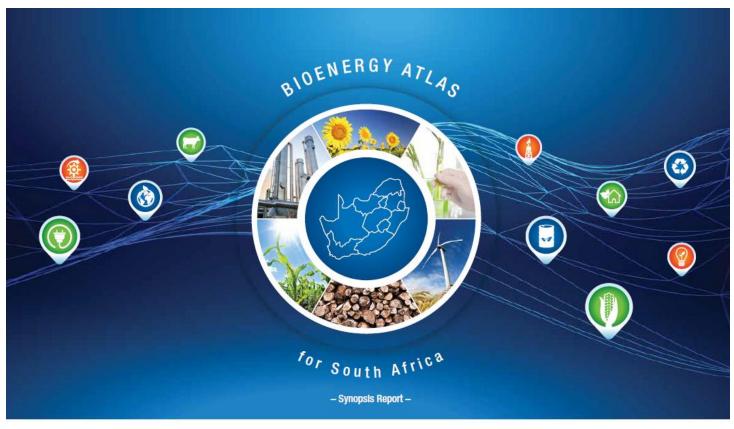
Sector	Response measure	Cumulative mitigation in MtCO ₂ e from 2000				
		To 2012	To 2014			
Waste	Biogas (AD)	0.4	0.5			
	Composting	0.5	0.9			
	Landfill gas extraction	2.1	3.4			
	Materials recovery for recycling	0.02	0.04			

Source: DEA, 2017

Sustainable Development Benefits Achieved

Response measure	No of Jobs	Electricity generated (GWh)	SMME projects initiated	Waste diverted from landfill (t)	Coal saved (kt)
		Socio-econom	Environmental	Resource savings	
Biogas (AD)	409	46	N/E	4 380	7
Composting	N/E	N/A	N/E	506 668	N/A
Landfill gas extraction	48	285	N/E	N/A	41
MRF	337	N/A	3	35 403	N/A
Total	794	331	3	546 451	48

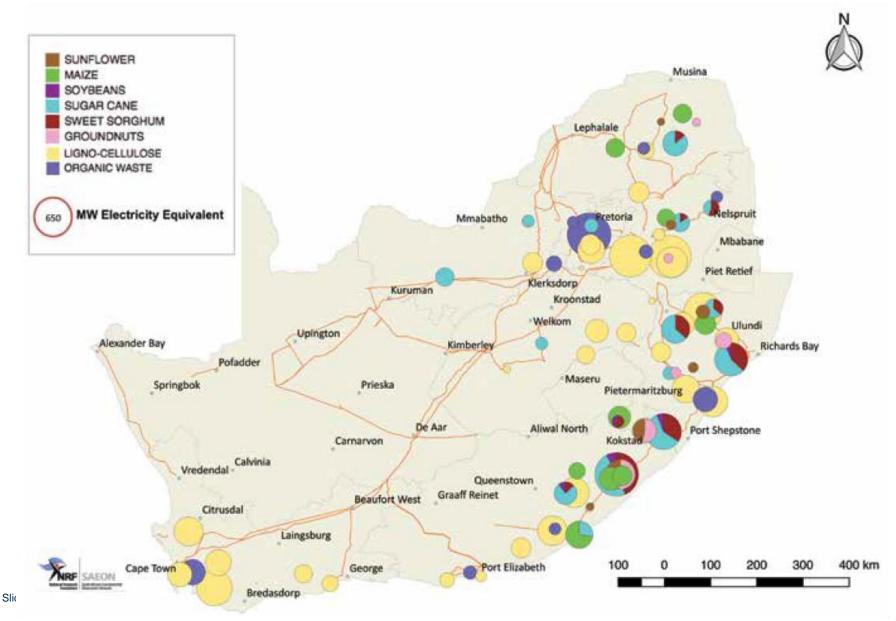
Source: DEA, 2017


Biogas potential of different waste streams

Biowaste	Biogas yield/tonne fresh matter (m³)
Cattle dung	55-68
Chicken litter	126
Fat	826-1200
Food waste (disinfected)	110
Fruit waste	74
Horse manure	56
Maize silage	200/220
Municipal solid waste	101.5
Pig slurry	11-25
Sewage sludge	47

Source: Achinas et al, 2017.

Bioenergy atlas for SA


Slide 9 © CSIR 2019 www.csir.co.za

Biowaste sources in South Africa

	Estimates of availability or potential										
		Allocated already (dry mass)				Potential					
Source	Potential (dry mass) Tg/a	Re-use (Tg/a)	Unavailable (Tg/a)	Energy use (Tg/a)	Not available (dry mass) Tg/a	Available now (dry mass) Tg/a	additional availability (dry mass) Tg/a		Energy density (PJ/Tg) (10)	Moisture content estimate (%) (11)	Energy equivalent available now (PJ/a)
Agricultural residues	36.22		30.42		30.42	5.80	2.90	1	10.00	42%	57.95
Sugar cane field residues	5.06		5.06		5.06	0.00	2.53	2	10.00	42%	0.00
Sugar cane bagasse	5.35	0.2		4.54	4.74	0.60	2.34	3	10.00	42%	6.02
Plantation residue	6.70		5.20		5.20	1.50	0.00	4	12.50	30%	18.75
Pulp and paper mill residues	0.69			0.69	0.69	0.01	0.35	5	12.50	30%	0.09
Black liquor	1.50			1.49	1.49	0.00	0.77	6	6.30	59%	0.00
Sawmill waste (bark included)	3.10	0.15		2.00	2.15	0.95	1.03	7	10.40	40%	9.88
Invasive species	11.30		3.23		3.23	8.07	1.16	8	14.70	20%	118.63
Fuelwood	14.00			10.00	10.00	4.00	12.00	9	14.70	20%	58.80
Organic solid waste component	6.47			0.65	0.65	5.82	0.00	12	10.00	20%	58.23
Organic sewage sludge	2.53			0.25	0.25	2.28	0.00	13	10.00	20%	22.77
Purposely cultivated crops	9.26				0.00	9.26	0.00	14	14.70	42%	136.12
Total	83.91	0.35	43.91	18.72	62.97	20.92	23.08				487.24

Options and opportunities

Potential for household and communal digesters

Province	District	Organic waste used (t/a)	Aggregate project size (MW)	Number of digesters	Low-income households	Households using cattle dung	Potential users	Percent satisfied
		[A]	[B]	[C]	[D]	(E)	[F]	[G]
Limpopo	Vhembe	58 695	4.22	11 739	125 531	66%	82 606	14%
Limpopo	Greater Sekhukhune (1)	84 125	6.05	16 825	95 186	43%	40 994	41%
Limpopo	Greater Sekhukhune (2)	30 536	2.19	6 107	62 313	62%	38 635	16%
Limpopo	Mopani	74 043	5.32	14 808	72 658	34%	24 844	60%
KwaZulu-Natal	Uthukela	33 085	2.38	6 617	64 810	34%	22 019	30%
KwaZulu-Natal	Zululand	19 121	1.37	3 824	27 663	77%	21 423	18%
Limpopo	Mopani	18 881	1.36	3 776	30 977	68%	21 063	18%
Mpumalanga	Gert Sibande	26 560	1.91	5 312	41 795	49%	20 451	26%
Limpopo	Ehlanzeni	25 725	1.85	5 145	55 095	33%	18 166	28%
Eastern Cape	Amathole	48 632	3.50	9 726	95 219	19%	17 832	55%
Total		419 403	30.14	83 879	671 247	46%	308 032	27%

Slide 12 © CSIR 2019 www.csir.co.za

Household Biogas Feasibility - 2008

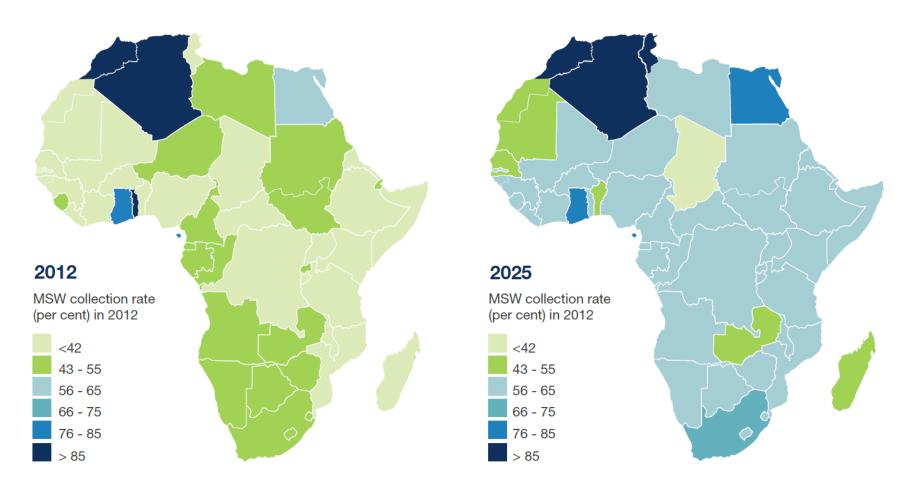
- 310 000 households (9.5% of SA's rural households) showing technical viability fro rural biogas programmes
 - 4 cows or more
 - No access to grid electricity
 - Within 1km radius of water
- Capital subsidy of 30%
- 5 year programme
 - 12 000 households
 - Households pay 10% of monthly income during the 5 years + 10% upfront payment
 - KZN and Eastern Cape

Slide 13 © CSIR 2019 www.csir.co.za

Biogas utilisation South Africa

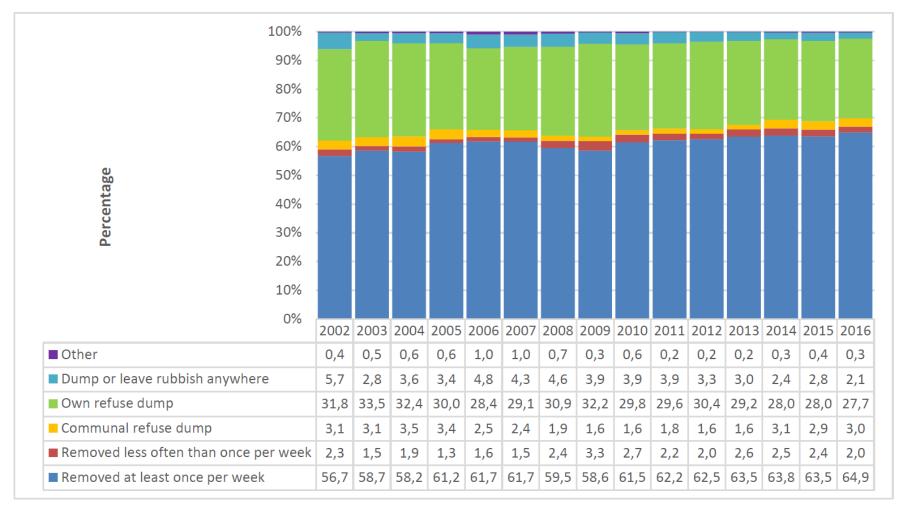
- 31 installations covering
 - Landfill gas to electricity
 - Digesters generating cooking fuel in rural areas
 - Commercial scale digesters
- Ranging in size from:
 - small scale (manure from 2 cows, school organic waste and sewage waste
 - 19 MW electricity generation

Source: Mutungwasi et al, 2018


Current reality of waste management in SA

Slide 15 © CSIR 2019 www.csir.co.za

Collection rate


Average 44% ranging between 18-80% SA: 66.9% in 2016

Average 69%

Slide 16 © CSIR 2019 www.csir.co.za

South African household waste disposal

In 2016 nearly 30% (5 million) households did not have access to waste collection services

Stats SA 2018

© CSIR 2019 www.csir.co.za

our future through science

Illegal dumping and uncontrolled burning of waste

Slide 18 © CSIR 2019 www.csir.co.za

Barriers to waste diversion from landfill – Business

- Interpretation of the law by officials at all three spheres of government;
- Cost and time of the bureaucratic processes associated with
 - Environment authorisations,
 - Municipal financial management
- Ownership of waste impacts on feedstock agreements between business and municipalities;
- Zoning and rezoning of land is a barrier, especially where an activity is not listed in the regulations; and
- Inconsistencies between differing regulations

Slide 19 © CSIR 2019 www.csir.co.za

Barriers to waste diversion from landfill – households

- Perceived low cost of landfilling
- Perceived inconvenience for generators
- Lack of awareness
 - Impacts of waste on society
 - Impacts of waste on environment
 - Value of waste as resources
 - Entrepreneurial opportunities
- Low levels of trust communities don't trust municipalities/service providers
- Waste collection service failures services not being responsive to the needs of the communities
- Lack of markets for secondary resources
- Lack of law enforcement

Slide 20 © CSIR 2019 www.csir.co.za

Challenges in the waste sector

- Lack of accurate data collection and record keeping
- High frequency of illegal dumping
- Landfill is cheapest management option
- Resistance to change
- Onerous regulatory environment
 - Waste management
 - Energy generation and distribution

Slide 21 © CSIR 2019 www.csir.co.za

Opportunities in the waste sector

- Enforcement of information regulations will increase data
- Cost reflective charges
- Awareness raising about value of waste
 - Economic opportunities
 - Social opportunities
 - Poverty alleviation
 - Business opportunities
 - Job creation
- Building partnerships with NGO's, CBO's and communities

Slide 22 © CSIR 2019 www.csir.co.za

Conclusions

- Waste management in Africa and SA is characterised by backlogs in waste collection coverage, open dumps and unsanitary landfills
 - 5 million households in SA do not have access to waste collection services
- Biogas potential from biowaste is estimated at 487.24 PJ/a
 - Better management of organic waste has the potential to reduce GHG emissions from waste by 20%
 - Developing a secondary resources economy has the potential to introduce R17 million worth of resources back into the SA economy through recycling, reuse and energy recovery
- To tap into the biogas potential of organic waste
 - Separation of waste at source
 - Partnerships

Slide 23 © CSIR 2019 www.csir.co.za

Important considerations

- Full life cycle Cradle to cradle
- Scarcity of water
- Education and skills level available for plant operations
- Composition of waste material
- Technical and financial constraints
- Maintenance problems with complex and expensive systems
- Particular needs of urban centres , i.e. additional energy
- Municipal solid waste generation rates
- Infrastructure requirements and waste management strategy
- Heat generated vs heat used for AD (economics)
- Long term foresight
- Digester design

Slide 24 © CSIR 2019 www.csir.co.za

Thank You

E-mail: soelofse@csir.co.za

www.csir.co.za

