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Abstract—SEM images are crucial in the characterisation of 

material properties. These images can be very hard to interpret 

without any prior knowledge of the material. This paper 

discusses a pre-processing method for assisting convolutional 

Neural Networks in identifying the presence of nanoparticles in 

composite SEM images. The pre-processing method is developed 

using a synthetic SEM image. 
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I. INTRODUCTION 

Nanomaterials are versatile, when designing new materials 

for specific applications, due to the unique properties that can 

be obtained by mixing different base (e.g. polymer) and filler 

(e.g. nanoparticles and nanofibers) materials [1-2]. Therefore, 

understanding the behaviour, interaction and correlation of the 

resulting composite material properties with the size and 

distribution of the nanoparticles is of interest to material 

scientists, engineers and designers [1-3]. The general practice 

to obtain size distribution of nanoparticles is by manually 

measuring these variables from scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM) images. 

SEM provides information on the material composition and 

surface while TEM provides further insights into the 

morphology and crystal structure [4]. 

Analysing composite nanomaterial images are difficult as 

there are two different materials that should be distinguished 

before any useful information can be extracted. An example of 

such a complex material is shown in Fig. 1 with DHT4A 

nanoclay particles interspersed in a high density polyethylene 

(HDPE) polymer matrix. The challenge with such complex 

material images is that it is often difficult to distinguish 

between the polymer and clay particles as one cannot blindly 

search for any circular object. In this specific case the polymer 

has also formed bubbles at the edges of the polymer chains. 

An example of this phenomenon is highlighted in the green 

rectangle. Nanoclay particles that could be identified visually 

are circled with red circles. Apart from trying to distinguish  

 

between the two materials an added challenge is the 

agglomeration (grouping) of nanoparticles which results in a 

cluster (circled in blue on Fig. 1). In addition to these 

challenges the obtained SEM image itself may be 

compromised or changed during the imaging process due to 

sample preparation, choice of magnification level, differing 

environmental and lighting conditions [2]. These factors add a 

level of complexity to the analysis of SEM images, be it 

manual or automated. There is an obvious requirement to 

automate this tedious process. 

The long term aim of this project is to propose an 

automated approach for the analysis of SEM images of 

composite materials. With the failure of considered 

techniques, a different approach will be developed. 

 

Fig. 1. SEM image of a HDPE-DHT4A nanocomposite material. Green 

rectangle illustrates polymer bubbles formed at the end of polymer 
chains and identified nanoclay particles are encircled with red circles 

with an agglomeration of clay particles shown in blue. 

II. PRELIMINARY STUDY 

Recent studies have started to address the automation of 

image analysis [2,5]. One of the challenges of automated 

digital image analysis is shape detection. The best machine 



learning techniques for object detection are either training a 

classifier with a Convolutional Neural Network (ConvNet) [6-

9] or the You Only Look Once (YOLO) method [10]. These 

techniques were implemented in an attempt to identify the 

presence of nanoparticles in the composite material SEM 

database with little to no success. It can be contributed to the 

small data set and the complexity of the images. These images 

are difficult to analyse manually and as such does not easily 

lend itself to an automated approach. When training the 

classifier on these images it was indifferent, as expected, in 

deciding whether clay was present in an image or not. In 

theory this method would be a good approach should a more 

comprehensive database be available to train a classifier on. 

The failure of the ConvNet and YOLO to identify the presence 

of particles in these SEM images steered the study back to 

exploring more traditional methods of identification which 

should be sufficient to identify particles in an image.  

A circle detection technique that is popularly employed in 

image processing is the Hough transform (HT) [11] which is 

nearly 50 years old [12]. It is a robust method that also 

requires a lot of computational effort. The HT relies on 

various image pre-processing methods, including filtering and 

edge detection before identifying circular objects. However, as 

will be shown in Section III, the HT fails to successfully 

identify the nanoclay particles in the available composite 

material SEM image. For the purpose of demonstrating the 

proposed method a synthetic SEM image database [13] was 

used. These images only consisted of white powder particles 

on a black background. These images also mimic some of the 

complex particle behaviour seen in Fig. 1 where there are 

single particles of different sizes as well as agglomerated 

particles of various degrees of complexity. The HT also failed 

to successfully identify the majority of particles in the 

synthetic image and especially struggled to identify individual 

particles in the clusters.  

As both the ConvNet and HT failed to identify particles in 

the composite and synthetic SEM images, the next step was to 

consider a different image processing methodology that will 

highlight (particle agglomeration and varying sizes) or 

suppress (background noise and polymer structure) complex 

features in the images to improve particle identification. It is 

proposed that by highlighting or suppressing key features the 

resulting images will assist the ConvNet in classifying the 

desired nanoclay particles. A combination of smoothing, 

filtering and contour approaches is considered for the 

proposed image processing methodology. For the initial 

development of the pre-processing method a synthetic SEM 

database [16] will be used in this study as the composite SEM 

images are too complex. 

III. CIRCULAR HOUGH TRANSFORMS 

Circular Hough Transforms (CHT) have been applied in 

studies to identify nanoparticles in TEM images [2,5]. To use 

CHT to identify nanoparticles, the methodology proposed by 

[2], was replicated and applied to a gold nanoparticle image 

from their paper. Once the proposed implementation was 

validated the methodology was applied to the more complex 

SEM image shown in Fig. 1 and finally on a synthetic particle 

SEM image.  

[2] proposed an automated algorithm which comprised of a 

number of image pre-processing steps before applying a 

modified CHT to identify the nanoparticles. To replicate their 

approach it was decided to only make use of built-in image 

processing modules available in Python’s OpenCV image 

processing library. The resulting detected circles using their 

approach and the replicated attempt are shown in Fig. 2(a) and 

2(b) respectively, using the gold nanoparticles TEM image 

from [2]. 

 
(a) 

 
(b) 

Fig. 2. Replication of the proposed methodology by [2] to identify 

nanoparticles using CHT. (a) Results from [2] and (b) replication 
attempt in this study on the gold nanoparticle TEM used in their study to 

develop the approach. 

It is evident from Fig. 2 that the replicated attempt and 

proposed methodology is not as accurate as illustrated in [2], 

although it does manage to identify a large portion of the 

particles. The inaccuracy of the replication is likely due to 

differences in the mathematical formulations of the built-in 

Python modules, whereas [2] likely developed an in-house 

algorithm; and manually tuning the parameters for the various 

functions to replicate the visual results from their study as the 

paper did not provide any parameter or threshold values. 



Nevertheless, the attempted replication is deemed suitable for 

the purposes of illustrating the use of CHT on a complex SEM 

image. 

A. Application on composite SEM image 

The results of applying this methodology to the more 

complicated SEM image from Fig. 1 are shown in Fig. 3. In 

Fig. 3(a) the same input parameters to the CHT in Fig. 2 were 

used, as was used for the gold nanoparticle TEM image when 

replicating the approach, whereas in Fig. 3(b) these parameters 

were manually adjusted in an attempt to identify more 

particles. 

 
                         (a)                                                          (b) 

Fig. 3. Applying the CHT methodology to the SEM image of a HDPE-
DHT4A nanocomposite material. (a) using the input parameters for the 

gold nanoparticle image and (b) manually tuning input parameters to 

obtain a better result. 

It is clear from both results that the CHT is dependent on its 

input parameters and will be image specific, not a desirable 

trait when trying to automate a methodology, and is unable to 

identify the nanoclay particles of interest. These results show 

that CHT is not the best methodology for identifying 

nanoparticles in such complex images and that a different 

approach to processing the image is required. In addition, 

these images are too complex when trying to establish a 

methodology to identify particles. 

B. Application on synthetic SEM image 

A synthetic database of 2048 powder material SEM images 

was constructed by [13]. The images were generated using 

open source rendering software and used eight particle size 

distributions that are similar to one another. This allows the 

images to be used as a benchmark when comparing, testing or 

developing image processing techniques. For this paper one 

image from this dataset will be used during the development 

of the proposed image processing technique. The image was 

randomly chosen and used a Weibull probability distribution 

(�=0.1, σ=0.5) when generating the particles. The synthetic 

SEM image is shown in Fig. 4(a) and the detected particles 

when applying the CHT methodology from [2], with input 

parameter tuning, is shown in Fig. 4(b). This result reiterates 

the need for a different image processing technique to identify 

the particles due to the complex nature of the particle 

interactions, e.g. agglomerated particles and particles 

shadowing neighbouring particles. This synthetic SEM image 

will be used for this preliminary study.  

Using Hough Transforms to identify circular shapes can be 

very complicated, as illustrated in this section. It is concluded 

that this method would not be able to clearly identify particles 

in a synthetic or complicated SEM image. Whether a different 

pre-processing method will improve object recognition 

methods of particles in an image is yet to be determined. 

 
(a) 

 
(b) 

Fig. 4. (a) Synthetic SEM image of a powder material using a Weibull 

probability distribution for the particles and (b) CHT methodology 

applied to the synthetic SEM image with 30 particles identified. 

Due to the large quantity of synthetic particles in the images it 

is too complicated and labour intensive to count the number of 

particles in each image, which is used to quantify the method 

performance. The solution is to use a randomly selected region 

in a randomly selected image to validate the proposed method. 

IV. IMAGE PROCESSING OF SYNTHETIC SEM IMAGES 

A method of pre-processing on an image in order to 

identify object shapes that has not been considered in previous 

literature is to create a contour of the original image in order to 

identify circular objects. This could also deal with occluded 

and partially visible particles. In an image with complicated 

structures, contours can be used to highlight circular shapes 

which should make it easier for a ConvNet algorithm to 

identify the particles. This method can enable a user to select 



and display certain sized contours, which represents the 

radiuses of typical particles in the image. The method for 

highlighting particles using the contours is developed and 

tested using the synthetic SEM image database. 

A. Contours and Bounding Boxes 

Using Fig. 4(a) for the development of this method, the 

contours were extracted using a Python contour plot function 

and the results are shown in Fig. 5. The contour plot function 

uses the coordinates of the height values (particle boundary 

intensity) and the height values as input to represent the 3-

dimensional surface in 2-dimensions. The contours, when 

extracted, are sorted into layers/levels. 

 

Fig. 5. Contour plot of the synthetic image. 

The efficiency of simplifying an image using contours is 

determined by utilising the contours to count the amount of 

particles in the image. Each particle is identified by using 

bounding boxes on the contours. The highest layer of 

contours, which corresponds to the highest peaks in the image, 

are selected and the center point for each is calculated by 

taking the average of the horizontal and vertical coordinates of 

the respective contours. The second highest contour layer is 

selected and compared with the identified center points (from 

the highest layer) to determine if any of these points fall 

within the contours. In the case where contours are not 

associated with any points, the center point is calculated and 

added to the existing array of center points. This is repeated 

for each of the layers. This point array is considered the 

highest intensity in each particle; including individual particles 

clustered together, see Fig. 6, where the highest intensity is 

denoted with a red ‘x’. 

The original image is digitised and the true center position 

of each particle is manually determined. These coordinates are 

indicated with a blue ‘x’. It is clear from Fig. 5 and 6 that there 

are local maxima and minima in the intensity, resulting in 

more than one maximum on the particles. These local maxima 

and minima add unwanted complexity to the image and to 

minimise this, image filtering and smoothing techniques was 

applied. 

 

Fig. 6. Zoomed contour plot of the synthetic image with a red ‘x’ identifying 

the highest points of particles and blue ‘x’ identifying the true position 
of the particles. 

B. Filtering and smoothing 

The initial filtering of the image is done by calculating the 

average intensity over the whole image and setting all pixels, 

with intensity values below the calculated average threshold, 

to zero. Before any smoothing is done the contours are sorted 

so that all the contours falling in the same coordinate range are 

grouped to represent the contents of each particle and cluster. 

The contour groups that have only 1 contour for every 

layer/level are identified and saved. This is done so that the 

coordinates of very small particles, which could vanish during 

more intensive image processing such as filtering and 

smoothing, are identified. 

Two methods are considered for image smoothing, namely 

a convolution and LULU [14,15] smoothing, which will be 

discussed in the following paragraphs. Finally after smoothing 

a multidimensional median filter is used, using a Python 

function called scipy.ndimage.filters.median_filter with a 

footprint or filter of 5. This function denoises the smoothed 

image a final time. Finally the smoothed contours of each 

particle are extracted from the image. The bounding boxes 

method (described in Section IV.A.) is used, combined with  

the list of single particles identified before smoothing, to 

identify the number and position of the particles using the 

contours and function as a accuracy metric. 

The convolutional smoothing was done over the horizontal 

and vertical axis of the image. The horizontal axis smoothing 

was performed by iterating over the vertical axis of the image, 

effectively taking 2 dimensional slices over the horizontal 

axis. Each peak intensity or cluster of peaks, in each slice, are 

smoothed separately and then stitched into the image. This 

iterative procedure is repeated for the vertical axis by using the 

horizontal axis smoothed image as input. For the smoothing 

the Python function numpy.convolve was used which returns a 

linear convolution of two one-dimensional arrays. By setting 

one array as the data slice to smooth and the second as an 

array with a length of the number of pixels to smooth over; 

and an intensity of 1/length, the result is a smoothed output. 

The length is chosen as 5. If the length of the particle or 



agglomerated structures is less than 5 the length is set as two 

less than the length. Setting the mode to ‘same’ ensures that 

the boundary effect is still visible and important information is 

not lost. The contour plot of the image with convolutional 

smoothing and a median filter is displayed in Fig. 7, with the 

particles identified with red crosses using bounding boxes and 

the blue ‘x’ the particle’s true center coordinates. 

 

Fig. 7. Contour of image with convolutional smoothing over the horizontal 

and vertical axis and median filter, with the red ‘x’ indicating the 
particle position identified using bounding boxes and blue ‘x’ show the 

true center position of each particle. 

The second method considered for image smoothing is LULU 

smoothing [14]. LULU smoothers operate on the repeat 

application of minimum and maximum operators on a moving 

window on the data. The two base operators are the L 

(“lower”) and U (“upper”) operators. 

Consider a 1 dimensional series X where an operator with a 

window size n will be applied to element xj∈X:  

1. Create n+1 sequences, each containing xj. 

S0 = (xj-n, …, xj),  

S1 = (xj-n+1, …, xj, xj+1),                                            (1) 

     ⋮ 

Sn-1 = (xj-1, xj, …, xj+n-1),  

Sn   = (xj, xj+1, …, xj+n). 

2. L(xj) = max( min(S0), ⋯ , min(Sn-1), min(Sn) )      (2) 

U(xj) = min( max(S0), ⋯ , max(Sn-1), max(Sn) )    (3) 

 

For example: The L and U operator for a 1 dimensional series 

with n = 1 will be: 

S0 = (xj-1, xj), S1 = (xj, xj+1),               (4) 

L(xj) = max(min(S0), min(S1)), U(xj) = min(max(S0), max(S1)). 

These operators can be applied in a variety of different 

configurations and sequences, depending on the data that 

requires smoothing. The name of the smoother is an example 

of how the operators can be applied. LULU implies L was first 

applied, followed by U, L and U.  

The advantage of LULU smoothing is the ability to maintain 

the features of the dataset while filtering out the noise. 

Consider Fig. 8 where the L, U and LU operators as well as a 

Moving Average trendline is applied to the data (denoted by 

blue x). Applying LU to the dataset removes all the outliers 

and/or noise, while the moving average adds features that do 

not exist in the original dataset. Visible in Fig. 8 is that L(X) 

produce a series that includes any outliers that tend to fall 

below the dataset’s trend of the data immediately surrounding 

the outlier. The opposite is true for U(X). LU(X) combines the 

best of both L(X) and L(Y) and results in a series that excludes 

all the outliers introduced in X. It should be noted that the LU 

operator was specifically chosen to remove the noise from this 

dataset and might not work on another set. 

 

Fig. 8. L, U and LU operators applied to a generated data set, compared 
with a moving average trendline with a width of period of 2. 

To apply LULU operators to a 2 dimensional image will only 

require adjustment of the window design [15]. 

For example: L and U operators for a 2 dimensional series Z 

with n=1. 

 

S0 = (zi-1, j-1, zi-1, j,      zi, j-1,     zi, j         ), 

S1 = (zi, j-1,   zi, j,        zi+1, j-1,  zi+1, j     ), 

S2 = (zi-1, j,   zi-1, j+1,  zi, j,        zi, j+1     ), 

S3 = (zi, j,     zi, j+1,    zi+1, j,     zi+1, j+1 ).                                      (5) 

L(zij) = max( min(S0), min(S1), min(S2), min(S3) )                  (6) 

U(zij) = min( max(S0), max(S1), max(S2), max(S3) )              (7) 

 

The effectivity of a specific operator combination is 

determined by counting the number of identified particles (’x’) 

and calculating the percentage with respect to the number of 

actual particles in the image. This is an approximate metric to 

narrow a large search space and does not address mislabeled 

or missed particles. Examples of combinations with the 

z zzz
zij zij zij zij 



accuracy metric are listed in Table I. For this metric, lower 

percentages indicate better correlation between the true 

number of particles and the estimated number. A large number 

of operator combinations were tested of which only the 

combinations considered are displayed in Table I. 

TABLE I.  DIFFERENT SMOOTHING LU OPERATORS AND COMBINATIONS 

Operator combinations 

Total number of true 

particles counted 489 

Number of 

particles 

identified 

Accuracy 

metric 

LU2 in column (no median filter) 570 16.6% 

LU2 with median filter 465 4.9% 

ULUL2 in row and column (no median filter) 460 5.9% 

L with median filter 429 12.3% 

UL2 in row and column (no median filter) 460 5.9% 

U2 with median filter 449 8.2% 

 

The operator combinations considered for smoothing are U2 

with the median filter, UL2 and ULUL2 in the row and 

column with no median filter. These operator combinations 

are selected by consulting the metrics displayed in Table I as 

well as visual inspection. LU2 is not considered a suitable 

method even though it has the best accuracy, with an accuracy 

of 4.9%. The method is eliminated due to a boundary effect, 

distorting one edge of the image, which skews the result. The 

contour plot of an image with U2 smoothing and a median 

filter is displayed in Fig. 9; with the particles identified by red 

a ‘x’ using the bounding boxes method.  

 

Fig. 9. Contour of image with U2 smoothing, ‘x’ indicates the position of 

each identified particle. 

To quantify the most efficient smoothing method, which 

minimise the local minima and maxima on a particle while not 

suppressing important features, the true particle positions are 

compared, in Table II, to the position and number of particles 

in the smoothed images which were identified using the 

contour and bounding boxes method. Due to the size and 

complexity of the images only pixel 0 - 220 is looked at in the 

horizontal and vertical axis. In Table II the column named 

‘Number of ‘x’’ is the number of coordinates identified using 

smoothing, contours and bounding boxes. The second column 

‘Number correct ‘x’’ lists the number of particles, correctly 

identified, while ‘Number wrong ‘x’’ is the number of ‘x’es 

that misses a particle or when more than one ‘x’ appear on a 

particle. ‘Number particles missed’ is the number of particles 

not identified using the proposed method, while the final 

column ‘Accuracy metric’ is calculated by: 

(‘Number correct ‘x’’ - (‘Number wrong ‘x’ particles’  

+ ‘Number particles missed’))/Total true particles,                (8)  

(75 - (7+16))/92 = 0.565.                                                         (9) 

TABLE II.   PARTICLE IDENTIFICATION WITH DIFFERENT SMOOTHING 

METHODS 

Smoothing 

Method 

Total number of true particles counted = 92 

Number 

of ‘x’ 

Number 

correct 

‘x’ 

Number 

wrong  

‘x’ 

Number 

particles 

missed 

Accuracy 

metric 

No smoothing 243 92 151 0 -0.641 

Convolution 75 71 4 21 0.5 

U2 76 71 5 21 0.489 

UL2 83 75 7 16 0.565 

ULUL2 83 75 7 16 0.565 

 

From Table II, the UL2 and ULUL2 smoothing performs the 

best, with the most correctly identified particles and the least 

number of particles missed. While the number of wrong ‘x’es 

are higher compared to the other methods, the performance for 

the number of correctly identified particles and missed 

particles outweigh this, as can be seen from the accuracy 

metric in the last column. It was found that these methods 

remove the most local minima and maxima in the intensity 

while preserving the important features for particle 

identification. The UL2 and ULUL2 results are identical since 

the ULUL2 smoothing is the result of applying UL2 twice. 

Because the second round of smoothing has very little effect, 

the results are almost identical. The UL2 is selected as the 

optimal smoothing method for the proposed technique. 

C. Results 

The method developed in Section IV, using UL2 smoothing, 

was then applied on a previously unseen image shown in Fig. 

10(a) and the actual figure with ‘x’ indicating particle centers 

is shown in Fig. 10(b). The total number of particles manually 

counted is 91. The total number of ‘x’es obtained from the 

smoothing and contours are 77, while 70 are correctly labeled. 

7 ‘x’es are incorrect and 21 particles were missed. The 

accuracy is calculated as 0.462. This score is not as good as 

the score for the image discussed in Section IV.B, which is not 

surprising due to the complexity in the randomly selected 



image, shown in Fig 10(b), with many particles only partially 

visible. 

 
(a)  

           

(b) 

Fig. 10. (a) Smoothed contour plot with each particle identified with a red ‘x’ 

and (b) the original SEM image with each particle identified by a red ‘x’. 

V. CONCLUSION 

The UL2 and ULUL2 smoothing methods gave the best 

result, but all methods listed in Table II performed relatively 

well on the first image. The proposed method performs 

reasonably well on a previously unseen complex image 

compared to the image on which the method was developed. 

This implies that this technique is suitable for automation and 

can therefore be used on a large dataset. The extent of filtering 

and smoothing as well as types of smoothing have to be 

customised for different types of images, but the technique is 

very simple to implement and mostly uses built-in Python 

functions. In addition, the method used to quantify the 

smoothing efficiency, employing contours in conjunction with 

the bounding boxes, succeeded in identifying more particles 

than the Python built-in Hough transform. The proposed pre-

processing technique was able to largely highlight the features 

of interest and make it possible to identify single particles as 

well as individual particles in agglomerated structures. It is 

concluded that this technique, with some tailoring, may be 

suitable for highlighting the needed features to assist a 

ConvNet in the identification of particles. 

In future studies the proposed technique will be applied to 

the larger synthetic SEM database to add another feature or 

dimension for use in an automated ConvNet approach for 

particle identification. Once the automated algorithm has been 

developed and tested on the synthetic database, this approach 

will be extended to the composite SEM image of interest. 
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