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Abstract 
 

The tree A. mearnsii is native to south-eastern Australia but has become an aggressive invader in 

many countries. In South Africa, it is a significant threat to the conservation of biomes. Detecting 

and mapping its early invasion is critical. The current ground based methods to map A. mearnsii are 

accurate but are neither economical nor practical. Remote sensing provides accurate and repeatable 

spatial information on tree species. The potential of remote sensing technology to map A. mearnsii 

distributions remains poorly understood, mainly due to a lack of knowledge on the spectral 

properties of A. mearnsii relative to co-occurring native plants. We investigated the spectral 

uniqueness of A. mearnsii compared to co-occurring native plant species within the South African 

landscape. We explored full-range (400–2,500 nm), leaf and canopy hyperspectral reflectance of the 

species. The spectral reflectance was collected bi-weekly from 23 December 2016 and 31 May 

2017 using the Field Spec® three-field spectroradiometer. We conducted a time series analysis, to 

assess the effect of seasonality on species discrimination. For comparison, two classification models 

were employed: parametric interval extended canonical variate discriminant (iECV-DA) and non-

parametric random forest-discriminant classifiers (DRF). The results of this study suggest that 

phenology plays a crucial role in discriminating between A. mearnsii and native species. The RF 

classifier discriminated A. mearnsii with slightly higher accuracies (from 92% to 100%) when 

compared with the iECV-DA (from 85% to 93%). The study showed the potential of RS to 

discriminate between A. mearnsii and co-occurring plant species. 

Keywords: A. mearnsii extended canonical variates analysis, Random Forest, invasive tree species 

classification, linear discriminant analysis, and leaf and canopy reflectance. 

 

 

 

 

 



2.1 Introduction 
 

Invasive alien plant (IAP) is of concern in ecological studies (Luque et al. 2014). Invasion poses 

significant threats to the ecological integrity of terrestrial and aquatic ecosystems (Pyšek et al. 

2012; Rejmánek and Richardson 2013). The International Union for Conservation of Nature: 

Invasive Species Specialist Group (IUCN-ISSG) (ISSG 2013) classifies Australian Acacia species 

among the world's 100 worst IAP (Luque et al. 2014). A native of south-eastern Australia, Acacia 

mearnsii (black wattle) has become an aggressive invader in many countries (Liu et al. 2016). For 

example, it is a significant invader in the montane rainforest in Rwanda (Seburanga 2015a). 

Moreover, (Boudiaf et al. 2013a) reported it to be the main invader in indigenous cork oak forests 

in Algeria. In South Africa, it is the most significant threat to the conservation of biomes as it has 

aggressively invaded grasslands (Yapi 2013; Yapi et al. 2018), indigenous forests (Richardson and 

Rejmánek 2011), and watercourses (Impson et al. 2008). The main environmental impacts of A. 

mearnsii include biodiversity loss; specifically by modifying the structure and composition of 

terrestrial and riparian inhabitants (Pyšek et al. 2012;Rejmánek and Richardson 2013) reduction of 

catchment and river water flows(Moyo and Fatunbi 2010;Le Maitre et al. 2016a) the functioning of 

ecosystems by changing the nitrogen cycle (Lee et al. 2017) and the intensification of wildfires 

(Impson et al. 2008). Detecting and mapping its early invasion is critical for an effective 

management strategy. 

Early invasion and rapid response require accurate, consistent and timely information on species 

distribution. Information on IAP species distribution has been successfully used to model risks and 

impacts of invasions at landscape (Vila and Ibez 2011; Balch et al. 2013) and regional scales 

(Bradley 2014b). Understanding spatial patterns of A. mearnsii, information of its occurrence is 

required. Currently, A. mearnsii mapping is based on ground survey methods and spatial 

interpolation techniques that approximate its presence at the un-sampled points (Richardson et al. 

2011). The ground-based approach is accurate but is neither cost-effective nor practical. This 

approach also precludes accurate mapping of the species over a vast region (West et al. 2017). In 

recent years, ecologists have embraced RS technology to map invasive species occurrences 

(Boudiaf et al. 2013b; Luque et al. 2014; Weisberg et al. 2017; Lee et al. 2017; de Sa et al. 2017).  

RS provides a non-invasive and non-destructive means of obtaining continuous spatial coverage of 

the target species’ distribution (West et al. 2017). Over the years, RS data have been used to 

discriminate between invasive and native plant species in various ecosystems, for example, river 

Estuary (Müllerová et al. 2017), coastal dune ecosystem (Somers and Asner 2012) and tropical 



rainforest (Andrew and Ustin 2006). However, not all invasive species can be mapped using RS 

[30]. Remote sensing mapping of invasive species depends on their spectral separability from other 

native species in a heterogeneous species environment.  

Previous studies showed that the spectral separability of species depend on the assumption that each 

species has a unique spectral signature, controlled by their distinctive structural and biochemical 

features (Hunt et al. 2005; Asner 2008; Clark and Roberts 2012a). For example, (Asner 2008) 

reported separability between native and exotic trees based on their spectra reflectance differences 

in Hawaiian rainforest. Their study linked spectral separability of the species to variations in leaf 

pigment, nutrient and structural constituents. A study by (Jiménez and Díaz-Delgado 2015a) 

showed that absorption features for distinguishing native Mediterranean dune species correlate with 

the biochemical properties of the species (e.g. pigments, water, lignin and cellulose). According to 

(Hunt et al. 2005), highly pubescent (hairy) plants reflected incident light energy very differently 

from the less hairy surrounding vegetation. Other research reported a spectral distinction between 

nitrogen-fixing and non-fixing trees (Asner 2008; Somers and Asner 2012).  

Acacia mearnsii, like other invasive species, possesses functional traits that may be different from 

those of native species. For example, A. mearnsii has been reported to have powerful competitive 

advantages due to their high efficiency in the acquisition and use of nutrients specifically nitrogen 

(Le Maitre et al. 2011). The species has a rapid growth rate, sizeable aboveground biomass and 

associated leaf area when compared to indigenous vegetation (Morris et al. 2011). Moreover, the 

species has pronounced hairy leaves, which have been found to reflect incident light energy much 

differently from the less hairy surrounding vegetation (Hunt, E. R. et al. 2005). Although spectral 

discernment of  Australian Acacias from native species has been accomplished (Taylor and Kumar 

2013; Lehmann et al. 2015; Jiménez and Díaz-Delgado 2015a; Große-Stoltenberg et al. 2016a), the 

spectral separability between A. mearnsii and co-occurring species has not been meticulously 

investigated. There is thus no comprehensive regional spatial data of the occurrence of the species 

in South Africa, even though A. mearnsii has been rated to be the most aggressive alien species 

(Henderson 2007; Fu and Jones 2013). Therefore, the question is whether A. mearnsii could be 

discriminated from co-occurring native species based on leaf and canopy spectral information like 

other Australian Acacias. 

Hyperspectral data is known to provide detailed spectral information related to species-level 

chemical-structural properties (Asner 2008). The adjacent bands allow the detection of subtle 

spectral differences between species that are otherwise masked by broadband sensors (Clark and 

Roberts 2012a; Somers and Asner 2013b; Ferreira et al. 2016). Hence, hyperspectral data have been 



used as an operational tool for early detection and modelling of future invasion risks (Féret and 

Asner 2013; Baldeck, C. A. et al. 2014). In Hawaii, RS tools have been used to develop invasive 

species monitoring strategies (Asner et al. 2008). Spatially explicit A. mearnsii mapping models are 

hindered by the dearth of information concerning its spectral separability, what constitutes its 

spectral separability relative to adjacent species, and the appropriate spectral resolution required to 

provide accurate distribution maps (Morais and Freitas 2015a; Marchante et al. 2015b; Müllerová et 

al. 2017). Several studies have shown that comprehensive spectral libraries could give insights into 

the separability of target species (Huang and Asner 2009; Große-Stoltenberg et al. 2016). 

Subsequently, spectral libraries could be used for the prediction of future invasions and identifying 

priority areas for conservation (Huang and Asner 2009; Große-Stoltenberg et al. 2016a). This 

highlights the need for understanding the spectral characteristics of A. mearnsii when compared to 

that of co-occurring native species. 

 Although hyperspectral data have the prospects for quantifying spectral properties of plant species, 

its application precludes large area mapping due to a small swath width of the collected data (Huang 

and Asner 2009). Moreover, lower revisit frequencies limit the chance to capture the target species’ 

spatial and phenological changes (Huang and Asner 2009). Due to the rapid growth (Doran and 

Turnbull 1997; Maslin and McDonald 2006; Seburanga 2015a; Yapi et al. 2018) and spread 

(Mukwada et al. 2016) of A. mearnsii, hyperspectral sensors can hinder early detection and timely 

monitoring prospects. However, A. mearnsii tends to form large stands and patches (Strydom et al. 

2017), which makes it possible to detect the species using high spatial and satellite sensors with 

frequent revisiting time such as Multispectral Instrument (MSI) on-board Sentinel-2  (Ng et al. 

2017;Mallinis et al. 2018) and Operational Land Imager (OLI) on-board Landsat-8 satellite (Wang 

2016;Ng et al. 2017). The availability of space-borne sensors such as Sentinel-2 and Landsat-8 

Operational Land Imager (OLI) could provide an opportunity to distinguish A. mearnsii at the 

landscape level. However, only a few studies have investigated the potential to map A. mearnsii 

using multispectral satellite data (Mararakanye et al. 2017). For this reason, we extended the 

research by including the multispectral dimension to the analysis.  

The present study aimed to explore: 

(i) whether A. mearnsii is spectrally separable from the co-existing native species; 

(ii) the best spectral wavelength regions for discriminating A. mearnsii from its co-

occurring native species in South Africa using leaf and canopy spectral reflectance; 



(iii) the optimal phenological period to separate A. mearnsii from its co-occurring 

species; 

(iv) the potential of Landsat-8 OLI and Sentinel-2 spectral band configurations for 

discriminating A. mearnsii from co-occurring plant species 

2.2 Methods and Materials 
 

2.2.1 Experimental setup and sampling 
 

The research method chosen to meet the objectives of the study was an outdoor experiment with 

potted plants. The co-occurring species include Dombeya tileacea, Olea africana, Dombeya 

rotundifolia, Euclea crispa, Vachellia karroo and Vachellia xanthophloea. A. mearnsii and the co-

occurring species show differences in their foliage structures as depicted in Table 2.1. 

Approximately 1-metre tall species were purchased from Nkosi Indigenous Plant Species Nursery 

based in KwaZulu-Natal, South Africa. The potted plants were left to grow outdoors on the campus 

of the Council for Scientific and Industrial Research (CSIR) for three months (1 September 2016 to 

22 December 2016) before the start of the spectral data collection. The trees were randomly placed 

to allow the same distribution of energy and other resources. Due to the limited rainfall during this 

period, we watered the plants once a week from 1 September to 21 December 2016. The experiment 

took into consideration the soil type of study area to be surveyed during data collection.



 

Table 0.1. Plant species used to explore spectral separability of A. mearnsii from native 

species 

 



2.2.2 Canopy level spectra measurements 
 

We conducted a total of nine sets of canopy radiance measurements on a biweekly basis from 

23 December 2016 to 31 May 2017. They match the start and the end of the growing seasons 

in South Africa. The canopy measurements were carried out between 10:00 and 14:00 on 

cloud-free days. During the sampling campaign, we collected both leaf and canopy 

reflectance of the selected species between 350 and 2500 nm using an ASD FieldSpec FR 3 

Spectroradiometer at 1 nm bandwidth (Analytical Spectral Devices Inc., Boulder, USA). We 

positioned the fibre optic (FOV 25°) at nadir and a height of approximately 30 cm above the 

undisturbed individual tree canopy. 

Consequently, the field of view at the canopy level was circular, with a radius of 13.3 cm, 

and the field of view area was covered entirely by leaves to ensure standardised 

measurements. Furthermore, we eliminated the interference of the background (grass and 

bare ground) reflectance by placing the pot on a black sheet (board) [49]. We used a ladder 

for the canopy measurements to ensure that the entire canopy was covered to account for the 

canopy spectral variability. In order to get the canopy spectral data of each plant, we 

randomly took six radiance readings and calculated the average to get one canopy reflectance. 

Overall we collected 80 x 6 measurements per survey.  To reduce the effects of changing 

atmospheric and solar conditions, the reflectance of a Spectralon white reference panel was 

recorded every 10-15 measurements. The reflectance of the individual tree was converted 

using a reference measurement for each sample by dividing the reflected target radiance by 

the irradiance of the white Spectralon® panel. 

2.2.3 Leaf level spectra measurement 
 

After every canopy measurement, ten leaves per tree were randomly harvested and taken to a 

dark laboratory room with the walls and the ceiling coated with the black material. The dark 

room was used to ensure stable atmospheric and uniform illumination conditions [50-52]. We 

placed the leaves on a non-reflective black background surface to avoid the impact of 

external illumination. However, the leaflets of the pinnate leaves of A. mearnsii, V. Karroo 

and V. Xanthophloea (refer to Fig. 1) were smaller than the sensor FOV, and their reflectance 

measurements would therefore not be truly representative of the leaf morphology and 

biochemistry because the leaf area per unit surface would also impact the measured 

reflectance.  



Consequently, we counteracted this effect by stacking the leaflets to simulate a continuous 

layer of leaves (Clark et al. 2005b). The fibre optic with a FOV of 25° was attached to the 

leaf clip and placed in a nadir position from approximately 4 cm above the leaves. However, 

in case of bigger leaves, no stacking of the leaves was done during spectra data collection. 

Capturing leaf spectral properties of the species, five measurements were collected per leaf 

by repositioning the leaf clip at five different positions for each scan. The reflectance of the 

individual plant was obtained by averaging the collected spectra reflectance per plant. The 

resultant spectral database included that of A. mearnsii and seven grown native tree species. 

2.2.4 Spectral reflectance pre-processing 
 

The pre-processing of spectral reflectance was conducted using the Field Spectroscopy 

Facility (FSF) Post-Processing Toolbox (MATLAB toolbox) (Robinson and Mac Arthur 

2012).  

(i) the toolbox allowed for the exclusion of outliers caused by measurement errors and 

atmospheric interference;  

(ii) the 350–399 nm bands were not included in the analysis, thus limiting the spectral 

range to the traditional visible (VIS) to shortwave infrared (SWIR) (400 nm to 2500 

nm);  

(iii) in the case of canopy spectra reflectance, we removed SWIR ranges with high 

noise that were identified through literature and visual inspection, that is, 1350–1460 

nm and 1790–1960 nm (Große-Stoltenberg et al. 2016b).  

After applying the pre-processing, 1759 canopy bands were left for analysis. Lastly, we 

eliminated sensor noise by using a moving Savitzky-Golay filter (Savitzky and Golay 1964a) 

with nine-point window size and second polynomial order. Furthermore, we explored various 

spectral transformation algorithms to evaluate the impact of spectral transformation on 

species discrimination. We considered the following methods: multiplicative scatter 

correction (MSC) (Naes et al. 1990), standard normal variation (SNV) (Barnes, R. J. et al. 

1993) and first derivatives. The performance of the transformed data was then compared with 

that of the untransformed spectral dataset. 

 

 



 

2.2.5 Simulation of Landsat-8 OLI and Sentinel-2 wavelengths 
 

To investigate the potential of mapping A. mearnsii at the regional level using spaceborne 

sensors, we simulated Landsat-8 OLI and Sentinel-2 MSI data based on canopy spectral 

measurements using the respective pre-defined spectral response functions provided by the 

package ' hsdar '- CRAN.R-project.org (Lehnert et al. 2018) of Rattle statistical software (R 

Core Team 2018). The resultant centre wavelengths were: Landsat 8 OLI (442.96 nm; 482.04 

nm; 561.41 nm; 654.59 nm; 864 nm; 1609 nm and 2201 nm) and Sentinel-2 (490 nm; 

560 nm; 665 nm; 705 nm; 740 nm; 785 nm; 842 nm, 1601 nm and 2190 nm). 

2.3 Classification of plant species samples from leaf and 

canopy spectra Data 
 

The classification between A. mearnsii and sampled native species was based on multivariate 

Interval Extended Canonical Variable Analysis (iECVA) (Nørgaard et al. 2006a) and tree-

based Random Forest discriminant analysis (RF-DA) (Lemmond et al. 2008; Jones 2015) 

methods. Fig. 2 summarises the methodology applied in this work. The analysis was carried 

out in Matlab using the ECVA toolbox available at http://www.models.life.ku.dk/source/. On 

the other hand, RF-DA applied for the classification between A. mearnsii and sampled native 

species were carried out using Matlab Fathom Toolbox by (Jones 2015). The toolbox is 

available at http://www.marine.usf.edu/user/djones/. 

http://www.marine.usf.edu/user/djones/


 

Figure 0.1 The proposed method for distinguishing between A. mearnsii and sampled native 

species using leaf and canopy spectral reflectance. 

 

2.3.1 Interval Extended canonical variate analysis-discriminant analysis 
 

The iECVA method (Nørgaard et al. 2006) is a modified classical canonical variates analysis 

(CVA). The modification was done to mitigate the shortcomings of standard CVA 

discriminant analysis methods. Unlike standard CVA, iECVA (Nørgaard et al. 2006) can 

handle high dimensional dataset (Nørgaard et al. 2006a). The iECVA is a supervised method 

that finds multivariate directions that separate species classes, and, subsequently, reduces the 

dimensionality of the predictors. The iECVA (Nørgaard et al. 2006) reduce data 

dimensionality using embedded interval partial least square (iPLS) (Norgaard et al. 2000) 

concepts. The concept of iPLS is used to select critical spectral regions to separate the 



species. Briefly, the iECVA technique focuses on the absorption area that contains the critical 

information that discriminates between species classes. The iECVA uses the mathematical 

foundation of CVA explained below. 

CVA is a supervised classification method that maximises the ratio of the within-group and 

the between-group covariance using the defined optimisation criterion (4). The method 

assumes that the matrix, X (n, m) represents the spectral reflectance to be categorised into the 

samples to target species, where n (samples from different species) and m (number of 

wavelengths) per species. The standard CVA finds the within (1) and between (2) covariate 

matrices on the assumption that all species are subject to the same variability. 

     

Equation 0.1

 

 

As mentioned in [49] xij is the jth sample in the ith group in the column format. 

       Equation 0.2 

In the case where CVwithin is non-singular, the eigenvalue problem is possible and is 

calculated as shown in (5). However, for a singular CVwithin, left multiplication by the inverse 

of CVwithin is impossible, and this becomes problematic when CVA is used for calibration of 

multi-collinearity data as it tends to break down. 

       Equation 0.3  

1

within between
k kCV CV 


       Equation 0.4 

The breakdown problem of CVA in multi-collinearly data has been elucidated by the 

formulation of iECVA (Nørgaard et al. 2006). The iECVA assumes that the two species 

showed in (1) and (2) can be rewritten according to (Duda et al. 1973) in which the directions 

of the multi-group analysis are expressed as in (5) and then transformed into multivariate 

regression problem as in Equation (6). 

    Equation 0.5 

       Equation 0.6 

Where Ycv represents the columns of the differences between each group mean and the overall 

mean, Xmc, is between species covariance, W is the weights, while e is the residual matrix. 
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Subsequently, an iPLS was implemented between covariance matrices and the species class 

relationship. iPLS (Norgaard et al. 2000) is a recursive algorithm that builds partial least-

squares (PLS) models using user-defined intervals. The resultant accuracy of the interval 

models then compared with that of the global model (in this study using the full spectral 

range). The iPLS method identifies features within the spectral regions that intensity 

variations between species class and assign weights. The weights are sorted in descending 

order and introduced into (3) for an optimisation process. During optimisation, the weight 

with the lowest value is left out before the application of the classifier. The iPLS (Norgaard et 

al. 2000) is utilised to ensure that the space covered by the retained k-1 weights cover the full 

space of the solution (Nørgaard et al. 2006a). The canonical variates are obtained by 

multiplying the mean-centred data matrix with the canonical weights matrix. The resulting 

canonical variates were therefore used as an input for an LDA  (Nørgaard et al. 2006b) to 

distinguish between A. mearnsii sampled native species. The discriminant function for the 

canonical variates is shown in (8). 

     '

,

1 1
( ) log log

,2
i within CVi i

t t t S Y
within YCV

t tsL 


        Equation 0.7 

According to (Nørgaard et al. 2006a) i represent a class index (1;. .. ;g), t is a column vector 

with canonical variates, for the sampled species to be categorised, ti is the mean vector of the 

canonical variates for species class i, Swithin is within-group covariance matrix and YCV 

represent the canonical variates obtained through multiplication of the mean-centred data 

matrix (1) with the canonical weights matrix. The detailed description of this method is 

described in (Nørgaard et al. 2006a). 

2.3.2. Random forest-discriminant analysis 
 

In this work, iECVA has been compared to the tree-based RF-DA. RF is the most used 

technique for tree discrimination. It is used for feature selection, thus providing a better 

understanding of the spectral information variation among species. In contrast to parametric 

iECVA, the RF is a non-parametric decision tree based technique. The technique uses the 

majority vote of the ensemble of trees to identify the species class. The values of the number 

of variables that are randomly sampled as candidates at each split (mtry) and the number of 

trees to grow (ntree) were identified based on algorithm tuning strategy. We searched for the 

optimal mtry band the ntree values using random search and grid search strategies. 

Subsequently, the most accurate value for mtry was ten. These parameters were tuned 



because of their importance in RF. The rest of the RF parameters were based on default 

values used by (Jones 2015).  

We trained the RF model using bootstrapped leaf and canopy reflectance corresponding to 

the species. To avoid the influence of both between-class and within-class disparities during 

classification, we iterated the model 100 times during fitting as recommended by (Li et al. 

2016). During training, the feature selection and removal of the most correlated spectral 

wavebands were based on embedded feature section techniques within RF. According to Saw 

et al. (2015), the selection of the features is based on the variables (wavebands) importance 

yielded by random forest. This approach identifies essential variables based on randomisation 

(Saw et al. 2015) and estimations of out-of-bag error (Saw et al. 2015). The detailed 

description of the method can be found in (Saw et al. 2015).  

Similar to iECVA, the selected variables were then used as an input to the DA classification 

model also found in Fathom Toolbox for Matlab (Jones 2015). In classification problems, an 

imbalanced dataset may lead to the inadequate identification of the minority class. To avoid 

the problems related to the majority class on the classifier we used an equal number of 

samples per species. Moreover, we examined the relative importance of different parts of the 

spectrum for distinguishing between A. mearnsii and native species. Both leaf and canopy 

spectral reflectance were divided into visible (VIS, 400-650nm), Red-edge (RE,651-750 nm), 

near-infrared (NIR, 751-1300nm), early-shortwave-infrared (ESWIR, 1301-1460 nm), mid-

shortwave-infrared (MSWIR, 1451-1789 nm) and far shortwave-infrared (FSWIR, 1901-

2449 nm) sub-regions. 

2.4. Evaluation of Classifiers Performance 
 

Performances of these spectral regions were then assessed and compared to each other and 

with that of the model built using the full spectra data also known as a global model using a 

multi-class confusion matrix (MCCM). The MCCM evaluates the model based on per species 

accuracy (Acc) in percentage as shown in (8), classification error, true positive rate, 

sensitivity, specificity, positive predictive value (PPV) (9), false positive rate, true negative 

rate, false negative rate (FNR), F-Score and Kappa statistics (10). As explained in (Zhu et al. 

2010), sensitivity represents the proportion of actual positives that are correctly identified by 

a classification model, whereas specificity is the percentage of the true negatives correctly 

identified by an iECVA-LDA model. The numerical values of sensitivity represent the 



probability that iECVA-LDA (Nørgaard et al. 2006a)model could identify individual species. 

The higher the values of sensitivity, the higher the chance that the model will discriminate 

that particular species from others. On the other hand, the specificity represents the 

probability of the iECVA-LDA to distinguish a specific species without giving false positive 

results. Also, the model calculates per species accuracy from the proportion of both true 

positive and true negative in the selected population. The maximum numerical values of 1.0 

or 100% demonstrate that the species is strongly separable from other species (Zhu et al. 

2010). It is noteworthy that high sensitivity or specificity does not necessarily imply that the 

accuracy of the classification is high as well (Zhu et al. 2010). As a result, we also used the 

coefficient statistic to measure if there is an actual agreement between predicted and observed 

species (Zhu et al. 2010). According to Cohen, we can interpret kappa statistics as follows: 

values ≤ 0% are an indication of no agreement, 20–40% is considered fair, while values 

between 41–60% are moderate, 61–80% is substantial, and values between 81 and 100 

indicate perfect agreement (Landis and Koch 1977). The probability that the classifiers 

discriminated the A. mearnsii better than the random chance has been demonstrated with the 

Z-score and associated P-value. 

     Equation 0.8 

Where %Accuracy, is the percentage of correctly classified species class out of all classes. 

    Equation 0.9 

According to (Fielding and Bell 1997; Lurz et al. 2001), sensitivity is conceptually identical 

to the Producer’s Accuracy. Moreover, assesses the probability that the species will be 

classified an A. mearnsii if it is A. mearnsii. Whereas, Specificity is a measure of the 

probability that a species class will not be predicted as A. mearnsii if it is not A. mearnsii. 

        Equation 0.10   

where,  and  represent the probability of species classification success and the 

probability of classification success due to chance, respectively. 
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2.5 Results 
 

2.5.1 The spectral separability between Acacia mearnsii and co-occurring native 

species at the leaf level 
 

The various spectral transformations explored yielded comparable results for distinguishing 

between A. mearnsii and native species. Therefore, only the results observed from SNV 

transformed spectra are presented. Generally, A. mearnsii exhibited increased separability 

compared to sampled native species. Figure 3 and Table I, indicate that the difference 

between these species was during the transition from peak productivity to senescence in 

South Africa (Table 2.1, March and April). The distribution patterns of the tree species in the 

two-dimensional canonical variate space of their leaf spectra reflectance displayed a tight 

grouping of A. mearnsii and a rather substantial overlap among native species. 

 

The iECVA-DA and RF-DA classification for the species produced the best result in the VIS, 

RE, NIR and ESWIR spectral regions (Table 2.1). From Table 2.1, iECVA-DA and RF-DA 

yielded accuracies and kappa coefficient that ranged from 85–100% and 93-to100 percentage, 

respectively (Table 2.1). In comparison, RF-DA classifier yielded somewhat slightly higher 

accuracies and kappa coefficient that ranged from 93-to 100%. Surprisingly we observed a 

significant separation between A. mearnsii and native species in May with RF-DA (Table 

2.1). Analysis of the full spectra data showed a significant (p=0.0002) difference between A. 

mearnsii and the native species. The full spectra distinguished between A. mearnsii and 

native species with slightly higher accuracies than that produced with MSWIR and FSWIR 

spectral bands (Table 2.1). The strong performance of full spectra data implies that both 

classifiers can deal with high spectral variability and multi-collinearity that comes with 

hyperspectral data. Overall, there was great spectral confusion among the native species. 

Hence, iECV-DA and RF-DA classifiers produced significantly lower overall accuracies and 

kappa statistics that ranged from 31–52% and 20–51%, respectively (Table 2.1). A statistical 

comparison of the classifiers suggests that there is no significant difference between the 

iECVA-DA and RF-DA tree-based models (Z=0.335, p = 0.369).  



 

Figure 0.2 Leaf scale distribution pattern of the studied plant species in Extended Canonical 

Variable (ECV#1) versus (ECV#2) two-dimensional space of their leaf narrowband spectral 

regions during the optimal separability period of A. mearnsii. The markers are DT= Dombeya 

tileacea, OA=Olea africana, DR=Dombeya rotundifolia, EC=Euclea crispa, VK=Vachellia 

karroo and VX=Vachellia xanthophloea. ECV#1 ECV#1 and ECV#2 = first and second 

extended canonical variates, respectively. 

 

 

 

Table 0.2 Leaf scale statistical metrics in percentage, for each sampled species class, yielded 

by each explored spectral range using iECVA-LDA models. The bold results represent the 

period where A. mearnsii is highly discriminated. 



 

1 AM = A. mearnsii, CA=Celtis Africana, DT=Dombeya tileacea, OA=Olea Africana, 

DR=Dombeya rotundifolia, EC=Euclea crispa, VK=Vachellia karroo and VX=Vachellia 

xanthophloea. Where Acc=accuacy, Kc=Kappa coefficient, OAcc=Overall accuracy, 

Okc=Overall kappa coefficient, PPV=Positive predictive value. 

 

2.5.2 Canopy level spectral separability of Acacia mearnsii among co-occurring 

native species 
 

                                                             
 

 



At canopy level, similar spectral dissimilarities as that of leaf spectral data were observed 

between A. mearnsii and native species with an overall best discrimination accuracy between 

March and April (Table 2.2). The ECV plots (Fig. 2.4) showed a clear separation between A. 

mearnsii and native species. Interestingly, upscaling from leaf to canopy level slightly 

increased the spectral variation between A. mearnsii and native species in the VIS, RE, NIR 

and ESWIR reflectance bands (Table II), irrespective of the classifier used. 

The iECVA-DA and RF-DA accuracies and Kappa statistics ranged from ranged from 92–

100% and 93–100%, respectively (Table 2.2). Contrary to iECVA-DA, RF-DA produced 

slightly higher accuracies in RE, NIR and ESWIR reflectance during the senescence-winter 

transition period, April-May (Acc (AM) = 83-95%, Kcc (AM)=0.75 -0.83). 

Overall accuracies were significantly low which could be attributed to the strong spectral 

reflectance confusion between native species as demonstrated in Fig. 2.4. The use of the 

whole wavelength range (400–2,500 nm) yielded significant (p=0.0001) high accuracy for A. 

mearnsii, regardless of classifier employed. The consistency of the results from iECVA-DA 

and RF-DA strongly suggests that leaf biochemical properties are essential traits for the 

separability of A. mearnsii. As opposed to iECV-DA, the spectral separability between A. 

mearnsii and native species was also clearly expressed in May (Table 2.1 and Table 2.2) with 

RF-DA at both leaf and canopy level. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 0.3 Canopy scale statistical metrics for each sampled species class yielded by each 

explored canopy spectral range using iECVA-LDA models. The bold results represent the 

period where A. mearnsii is highly discriminated. 



 

 

AM = A. mearnsii, CA=Celtis Africana, DT=Dombeya tileacea, OA=Olea Africana, 

DR=Dombeya rotundifolia, EC=Euclea crispa, VK=Vachellia karroo and VX=Vachellia 

xanthophloea. Where Acc=accuacy, Kc=Kappa coefficient, OAcc=Overall accuracy, 

Okc=Overall kappa coefficient, PPV=Positive predictive value. 

 

 

 

 

 

2.5.3 Up-scaling in situ canopies spectral to Sentinel-2 and Landsat-8 OLI 

bands 
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Accuracy metrics RF iECVA RF iECVA RF iECVA RF iECVA RF iECVA RF iECVA RF iECVA RF iECVA RF iECVA

Visible spectral region (VIS = 400-650 nm)

Acc (AM) 55% 53% 68% 67% 78% 60% 89% 83% 93% 91% 96% 95% 82% 74% 83% 67% 57% 27%

PPV (AM) 94% 68% 90% 71% 100% 68% 97% 78% 100% 98% 100% 100% 99% 69% 100% 72% 97% 60%

Kc (AM) 0.51 0.38 0.56 0.47 0.70 0.50 0.82 0.48 0.90 0.87 0.92 0.90 0.82 0.48 0.80 0.36 0.52 0.32

OAcc 36% 38% 34% 42% 39% 46% 59% 52% 51% 49% 50% 35% 60% 29% 40% 26% 24% 0%

Okc 0.31 0.29 0.39 0.34 0.32 0.27 0.53 0.34 0.43 0.37 0.43 0.42 0.54 0.27 0.29 0.22 0.24 0.17

Red edge spectral region (RE = 650-750 nm)

Acc (AM) 63% 39% 73% 44% 67% 58% 67% 67% 91% 90% 93% 91% 91% 77% 81% 67% 64% 0%

PPV (AM) 56% 46% 97% 60% 97% 66% 94% 58% 97% 96% 95% 99% 95% 55% 91% 76% 67% 25%

Kc (AM) 0.50 0.33 0.73 0.40 0.69 0.44 0.58 0.57 0.86 0.87 0.90 0.89 0.85 0.32 0.70 0.27 0.62 0.10

OAcc 39% 57% 45% 47% 35% 42% 44% 48% 45% 31% 39% 52% 66% 46% 32% 43% 19% 41%

Okc 0.29 0.37 0.37 0.42 0.30 0.42 0.34 0.28 0.37 0.35 0.37 0.46 0.58 0.33 0.25 0.39 0.24 0.22

Near Infrared spectral region (NIR = 751-1300 nm)

Acc (AM) 27% 83% 33% 76% 46% 75% 60% 85% 97% 96% 100% 98% 83% 71% 89% 63% 46% 78%

PPV (AM) 90% 52% 90% 51% 94% 69% 40% 79% 90% 98% 96% 100% 100% 88% 100% 55% 94% 66%

Kc (AM) 0.18 0.66 0.22 0.65 0.45 0.70 0.30 0.73 0.92 0.85 0.96 0.92 0.90 0.53 0.85 0.48 0.45 0.37

OAcc 24% 26% 25% 36% 31% 38% 25% 33% 25% 33% 24% 42% 45% 23% 28% 38% 28% 31%

Okc 0.24 0.18 0.20 0.27 0.25 0.22 0.25 0.13 0.20 0.27 0.20 0.36 0.37 0.27 0.21 0.23 0.16 0.17

Early short-wave infrared (ESWIR = 1301-1460 nm)

Acc (AM) 0.33 0.51 0.54 0.67 0.64 0.60 0.44 0.79 0.93 0.91 0.95 0.98 0.62 0.83 0.77 0.71 0.60 0.13

PPV (AM) 0.90 0.65 0.96 0.56 0.96 0.68 0.92 0.82 0.96 1.00 0.94 1.00 0.97 0.90 1.00 0.65 0.94 0.48

Kc (AM) 0.22 0.57 0.55 0.62 0.62 0.68 0.34 0.68 0.90 0.90 0.91 0.90 0.56 0.63 0.71 0.57 0.54 0.45

OAcc 0.29 0.38 0.31 0.27 0.28 0.43 0.29 0.25 0.31 0.33 0.28 0.42 0.43 0.26 0.26 0.48 0.23 0.44

Okc 0.23 0.25 0.24 0.19 0.25 0.30 0.18 0.24 0.24 0.27 0.24 0.28 0.35 0.12 0.22 0.33 0.25 0.29

Mid shortwave Infrared region (MSWIR = 1461- 1900 nm)

Acc (AM) 56% 30% 90% 67% 62% 50% 86% 75% 94% 92% 94% 93% 69% 49% 89% 40% 64% 30%

PPV(AM) 93% 65% 99% 69% 97% 72% 95% 77% 99% 99% 96% 99% 99% 65% 100% 44% 96% 36%

Kc (AM) 0.46 0.74 0.89 0.89 0.65 0.80 0.69 0.84 0.89 0.84 0.90 0.88 0.66 0.53 0.82 0.31 0.62 0.29

OAcc 34% 37% 48% 32% 26% 35% 28% 43% 48% 52% 26% 46% 36% 44% 36% 45% 33% 25%

Okc 0.28 0.39 0.43 0.64 0.21 0.48 0.26 0.61 0.43 0.53 0.21 0.58 0.29 0.59 0.32 0.59 0.28 0.45

Far short-wave infrared (FSWIR = 1901-2500 nm)

Acc (AM) 64% 50% 73% 44% 69% 33% 73% 53% 83% 88% 94% 91% 82% 43% 82% 25% 44% 17%

PPV (AM) 96% 57% 97% 51% 99% 48% 97% 68% 97% 88% 96% 95% 99% 57% 99% 35% 92% 19%

Kc (AM) 0.62 0.39 0.73 0.40 0.76 0.28 0.73 0.51 0.77 0.87 0.88 0.89 0.78 0.34 0.84 0.23 0.34 0.12

OA 44% 26% 41% 32% 31% 35% 40% 42% 41% 51% 26% 46% 43% 42% 41% 40% 30% 39%

OKc 0.36 0.34 0.32 0.16 0.24 0.13 0.30 0.19 0.32 0.34 0.21 0.33 0.34 0.25 0.33 0.17 0.20 0.23

Full spectral (400nm-2500nm)

Acc (AM) 67% 66% 67% 63% 69% 77% 86% 84% 95% 90% 100% 99% 90% 77% 80% 62% 69% 26%

PPV (AM) 90% 99% 97% 58% 99% 64% 95% 78% 100% 95% 100% 90% 99% 68% 97% 72% 93% 89%

Kc (AM) 0.58 0.48 0.54 0.57 0.66 0.62 0.79 0.64 0.86 0.87 0.95 0.94 0.85 0.40 0.76 0.31 0.58 0.29

OAcc 28% 35% 24% 45% 28% 36% 38% 25% 47% 35% 20% 45% 42% 25% 36% 37% 31% 32%

Okc 0.34 0.34 0.36 0.16 0.27 0.13 0.23 0.19 0.33 0.34 0.24 0.33 0.33 0.25 0.24 0.17 0.26 0.23



Table III shows results from using simulated Landsat 8 OLI and Sentinel-2 MSI data. The 

results of Sentinel-2 MSI show comparable results with that of Landsat 8 OLI regarding 

discriminating between A. mearnsii and sampled native species.  Both spectral datasets 

indicated high discrimination of the A. mearnsii.  Sentinel-2 MSI yielded a percentage Acc 

(AM) of 95.52 and Kcc (AM) of 0.90, whereas Landsat-8 OLI spectral data achieved % Acc 

= 93.38 and Kcc of 0.88. Although both classifiers selected the same variables, RF 

discriminated A. mearnsii with slightly lower Acc and Kcc (AM) values (Table 2.3). Both 

classifiers selected the same best predictor variables (Table 2.3), where SWIR and NIR 

showed to be important for Sentinel-2 MSI and Landsat 8 OLI (Table 2.3). Furthermore, red-

edge (783 nm) and red-edge (707 nm) bands were selected as best the predictor variables for 

Sentinel-2 MSI. Furthermore, Red (654 nm) was selected for Landsat 8 OLI.  

 

Table 0.4 Statistical metrics in percentage for each sampled species class yielded by Sentinel 

2 MSI and Landsat-8 OLI spectral bands using iECVA-LDA models. All selected bands are 

significant at p-value < 0.05. Acc= accuracy, Kc=Kappa coefficient, OAcc=Overall accuracy, 

Okc= Overall kappa coefficient, PPV= Positive predictive value and AM=A. mearnsii, 

RF=Random forest-discriminant analysis and iECV-DA= interval extended canonical 

variates -discriminant analysis. 

 
RE=Red-edge, NIR=near-infrared, SWIR=Shortwave-infrared, S2-MSI= Sentinel-2 Multi-

spectral Imager and L8-OLI=Landsat-8 Operational Land Imager 

 

 

 

 

 

2.6 Discussion 
 



This study investigated the separability of A. mearnsii from co-occurring native species using 

both leaf and canopy hyperspectral reflectance. This study demonstrated for the first time the 

utility of the iECVA-LDA classifier for classification of vegetation species. We also 

compared the ability of the iECVA-LDA classifier to discern species with that of RF-DA 

classifier. The results from our study suggest that A. mearnsii is distinguishable from native 

species. However, seasonal shifts played an important part in separating between species. Our 

results corroborate those from (Asner 2008) and (Somers and Asner 2012) studies that have 

found the high spectral separation between invasive and native species during certain 

phenological periods. 

In this study, the most significant spectral differences between A. mearnsii and other species 

was observed for the March and April reflectance data at both leaf and canopy levels. In 

Southern Africa, March to April is the transition period from vegetation peak productivity to 

senescence (Madonsela et al. 2017) and (Cho et al. 2010). The high separability of A. 

mearnsii during the summer-autumn transition period could be attributed to the fact that the 

species is an evergreen leguminous species (Somers and Asner 2012; Tomlinson et al. 2013) 

and (Madonsela et al. 2017). According to (Tomlinson et al. 2013), the canopy of evergreen 

species remains relatively stable throughout the growing cycle. Thus during leaf fall and 

senescence evergreen species tends to exhibit a more traditional leaf strategy with higher leaf 

biomass and longer leaf lifespan when compared to deciduous plants. 

Consequently, high biomass enhances the spectral separability between evergreen and 

deciduous tree, particularly during leaf senescence period (Bai et al. 2015). As reported by 

(Tomlinson et al. 2013), tree species that vary in leaf habit (deciduous and evergreen) have 

different leaf chemical and physiological leaf traits. Likewise (Somers and Asner 2012) and 

(Madonsela et al. 2017) point spectral disparities between deciduous and native species to 

variations in structural and biochemical constituents during the transition period from March 

to April (peak productivity to senescence).  

 

 

 

2.6.1. Optimal spectral regions for species differences 
 



The full spectrum (400–2500 nm) has been widely used for discriminating vegetation species 

(Jiménez and Díaz-Delgado 2015b). Among explored hyperspectral regions, VIS, RE, NIR 

and ESWIR from both leaf and canopy levels were significant in this study. The performance 

observed from the regions above confirmed the results of (Somers and Asner 2012) and 

(Ferreira et al. 2016) in which infrared region (680-1080 nm), VIS (400-650nm) and SWIR 

(1300-2500 nm) was the best regions for discriminating between native and invasive Hawaii 

tree species. At the leaf level, the RE spectral range did not contribute as much as VIS, NIR 

and ESWIR to distinguish between A. mearnsii from the native species. However, the RE 

extracted from canopy spectra performed better than the MSWIR (1461-1789 nm) and 

FSWIR (1952-2449 nm). Substantial differences in the VIS, NIR and ESWIR point to high 

disparities in biochemical and other properties that control spectral signature in these regions 

between A. mearnsii and the native species. A. mearnsii is known to be a nitrogen-fixing 

plant that is often manifested by higher leaf nitrogen content as compared to non-fixing 

species. 

 

Strong dissimilarities between the species in the SWIR spectral regions could suggest high 

nitrogen variations between species because it is highly correlated with N-H and C-H 

vibrations of proteins. Moreover, SWIR was found to be necessary for the discrimination of 

species based on leaf tannin content, which has been shown to vary between invasive 

Australian acacias and non-invasive species. For example, (Lehmann et al. 2015) 

discriminated Acacia longifolia using four SWIR wavelength regions (1360–1450 nm and 

1630–1740 nm) due to their high correlation with tannin concentration. According to 

(Ferwerda and Jones 2006; Blackburn 2007) the dissimilarities at the SWIR could be 

attributed to the fact that wavelengths related to tannin are linked to the molecular vibration 

such as bending and broadening of C-H, C-O and O-H bonds and their overtones. 

Substantiating the studies by (Cho et al. 2007; Somers and Asner 2012; Ferreira et al. 2016), 

we observed disparities in discrimination abilities between leaf and canopy spectral. As in 

(Somers and Asner 2012)) the canopy level spectra showed a higher discrimination 

performance compared to leaf spectra. The difference in discrimination abilities among 

spectral regions, notably VIS and RE at leaf and canopy levels, highlights the significance of 

scaling up the leaf level spectral to the canopy level for species discrimination, as emphasised 

by (Cho et al. 2008), (Clark et al. 2005a), (Kalacska et al. 2007; Lehmann et al. 2015). Also, 

(Clark and Roberts 2012b) showed improvement in differentiating species from canopy 

spectra, as compared to the leaf level. Moreover, (Cho et al. 2008) linked the disparities 



between leaf and canopy RE spectra in discriminating species to the fact that canopy 

reflectance affords extra information, such as leaf orientation, leaf clumping and colour of 

twigs. On the other hand low separability in MSWIR and FSWIR spectral domains could be 

suggesting that the differences in leaf and canopy water content not contribute significantly to 

spectral separability. 

 

The identified spectral regions from this study could be useful in providing scientific 

guidance for the development of tailor-made species mapping platforms like UAV 

(Müllerová et al. 2017; Weil et al. 2017). These platforms have been shown to offer a cost-

effective solution to address and monitor an invasion challenge (Niphadkar and Nagendra 

2016). 

 

2.6.2 Species discrimination based on simulated Sentinel-2 MSI and Landsat-8 

OLI 
 

In general, A. mearnsii is separable from sampled native species with both Landsat 8 OLI and 

Sentinel-2 MSI. Both Landsat-8 OLI and Sentinel-2 simulated data could discriminate over 

90% of A. mearnsii among co-occurring species. This could provide an opportunity to locate 

the species regularly at the regional scale. However, Sentinel-2 MSI seems to offer more 

information for discrimination of A. mearnsii as compared to Landsat-8. Our results 

substantiate those of (Sothe et al. 2017) in which Sentinel-2 classified sub-tropical forest 

better than Landsat-8 OLI. Similar to studies by (Ramoelo et al. 2015; Ramoelo and Cho 

2018) and (Adelabu et al. 2014), the current study found critical spectral regions for optimal 

discrimination of A. mearnsii in the RE, NIR and SWIR for Sentinel-2 and NIR and SWIR 

for Landsat-8 OLI. Likewise, (Adelabu et al. 2014) demonstrated improved species 

discrimination accuracy because of the inclusion of RE and SWIR for Sentinel-2 data. 

However, numerous studies have noted that the spatial resolution of these sensors might 

complicate species mapping application, among other things due to spatial variability in the 

canopy. 

 

 

 



2.6.3 Comparison of iECVA-DA and RF-DA models 
 

Both models were able to reduce the redundancy of the hyperspectral data while retaining the 

most useful information to carry out the discrimination classification. However, the results 

are shown in this study indicate that the classification results obtained from the RF-DA are 

slightly better than those obtained from the iECVA-DA classifier. The performance of RF-

DA (both scales) corroborates with other studies of plant species discrimination (Prospere et 

al. 2014). 

2.7 Conclusion 
 

The results of the study highlighted the following about the discrimination of A. mearnsii. 

i. Invasive A. mearnsii can be distinguished from other species at leaf and canopy level 

using spectral reflectance 

ii. Spectral differences related to senescence phenology had a stronger effect on the 

separability between A. mearnsii and native species. 

iii. Spectral regions associated with biochemical properties are essential in discriminating 

the species. For instance, there was high spectral separability in RE and visible 

spectral regions at leaf and the canopy scales. 

iv. A high spectral separability was yielded by using non-parametric RF-DA classifiers. 

The classifier was able to distinguish between A. mearnsii and sampled species even 

during the Southern Africa senescence-winter transition period (April-May). 

v. Sentinel-2 has advantages compared to Landsat 8- OLI for discriminating between A. 

mearnsii and sampled species. 

This study can contribute to initiatives aimed at managing and monitoring invasive A. 

mearnsii. This research provides critical information towards an understanding of the spectral 

differences between A. mearnsii and co-occurring native species. The findings could be 

useful for understanding vital spectral bands required to delineate and monitor A. mearnsii in 

a mixed species environment effectively. 

 


