
Text Normalisation in Text-to-Speech
Synthesis for South African Languages:

Native Number Expansion
Georg I. Schlünz, Nkosikhona Dlamini, Alfred Tshoane and Stan Ramunyisi

Human Language Technology Research Group
CSIR Meraka Institute
Pretoria, South Africa

gschlunz@csir.co.za, ndlamini3@csir.co.za, atshoane@csir.co.za, sramunyisi@csir.co.za

Abstract—Text normalisation in text-to-speech syn-
thesis comprises the segmentation and classification of
the incoming text and the subsequent expansion of
non-standard words into their standard word, spoken
forms. We present a rule-based implementation for the
11 official South African languages that uses native
number expansion. We discuss the architecture and
performance of the implementation based on examples
of cardinal and ordinal numbers, money, dates and
times. Although the implementation scores well, it is
currently limited to handling non-standard words in
isolation. Future work will need to address sentence
context in order to normalise the African languages
correctly.

I. Introduction

The frontend of a text-to-speech (TTS) system pro-
cesses the incoming text in various phases. These include
segmenting the text into tokens, expanding non-standard
words into standard words [1], mapping graphemes to
phonemes and extracting prosodic markers from the text.
Text normalisation encompasses the first two phases,
namely text segmentation and non-standard word expan-
sion. We employ the terminology from [2] and [3] and
refer to and distinguish between them as tokenisation and
classification and verbalisation.
The tokenisation and classification phase splits the text

into tokens mostly delimited by whitespace and punctu-
ation symbols. It simultaneously classifies the tokens as
standard words or non-standard words such as numbers
(123), money (R99), dates (13/03/2012) and times (08:45).
The latter are called semiotic classes. The verbalisation
phase expands the non-standard words into their standard
word, spoken form, shown in Figure 1.

123 → one hundred and twenty three
R99 → ninety nine rand

13/03/2012 → thirteen march twenty twelve
08:45 → eight forty five a_letter m_letter

Fig. 1. Verbalisation of non-standard words

In related work, Google has implemented the Kestrel
TTS text normalisation system [3] in their commercial
TTS offering. They use text-normalization grammars that
are compiled into libraries of weighted finite-state trans-
ducers (WFSTs). Input text is first tokenized and different
tokens classified using WFSTs, where semiotic classes
are parsed into data structures called protocol buffers.
The protocol buffers are then verbalised, with possible
reordering of the elements, again using WFSTs.
Microsoft designed an algorithm, called FlashNormal-

ize [4], that learns programs for text normalization
through examples. A domain-specific programming lan-
guage (DSL) represents the concept space and offers ab-
stractions for expressing such normalisation. The DSL is
structured around four kind of expressions, namely (1) a
parse expression to extract appropriate substrings from
the input string, (2) a process expression to transform the
substrings using table lookups or functions provided by the
language designer, (3) a concat expression to concatenate
various process expressions, and (4) decision lists that
allow for conditional behaviour. A deductive top-down
search algorithm is used to learn both the decision lists
and concat expressions that are consistent with the set of
input-output examples.
Recent research into the application of deep learning

to text normalisation include [5], [6] and [7]. The latter
authors concede that “Though our conclusions are largely
negative on this point, we are actually not arguing that
the text normalisation problem is intractable using a
pure recurrent neural network (RNN) approach, merely
that it is not going to be something that can be solved
merely by having huge amounts of annotated text data
and feeding that to a general RNN model. And when we
open-source our data, we will be providing a novel data
set for sequence-to-sequence modeling in the hopes that
the the community can find better solutions.” [8][9].
In this paper, we present a rule-based implementation

of text normalisation for the Speect TTS system, which
is commercialised under the brand name “Qfrency TTS”
[10]. The rule engine is separated from the rules in a
modular design to allow user-defined extensions and cus-

tomisations to the rules. We cover all 11 official South
African languages, in particular using the native spoken
forms of number-based non-standard words during verbal-
isation. We describe the implementation in Section II, its
evaluation in Section III and conclude in Section IV.

II. Implementation
A. Algorithm Overview

1) Tokenisation and Classification: Firstly, tokens are
segmented and classified by regular expressions in decision
lists. Each semiotic class specifies an unordered inner
list of hand-crafted regular expressions to match against
the incoming text stream. An outer list iterates over the
semiotic classes, in a hand-selected order governed by
their uniquely differentiating contexts. For example in
Figure 2, a (simplified) money class must be placed before
a (simplified) decimal number class that, in turn, must be
placed before a cardinal number class, in order to leverage
the differentiating contexts of the currency symbol “R”
and the decimal point “.”, respectively.

"money": {
"mask": [

"^R\\d+(\\.\\d\\d)?\\b"] },
"decimal": {

"mask": [
"^\\d+\\.\\d+\\b"] },

"card": {
"mask": [

"^\\d+\\b"] },

Fig. 2. Tokenisation and classification rules for semiotic classes

2) Verbalisation: Secondly, the classified tokens are ver-
balised using hand-crafted regular expressions that break
down the tokens in a particular, mutually exclusive order
of its constituents. The regular expressions form the left-
hand side of rewrite rules that perform substitutions on the
token constituents, in a style similar to the productions of
nonterminals in a context-free grammar, where:

• “<class<” means recurse with the rewrite rule for class
on the first matched substring of the current token
constituent, and substitute with the result

• “>class>” means recurse with the rewrite rule for class
on the rest/remainder of the original string (i.e. the
inverse of the match), and substitute with the result

• “#class#” means recurse with the rewrite rule for class
on a split of the matched substring into its constituent
characters, and substitute with the result

Analogous to the terminals in a context-free grammar,
the right-hand side of the rewrite rules represent standard
word, spoken form expansions of the constituents of the
non-standard words, where:

• “@class@” means execute the number expansion rule
for class on the matched substring

The (simplified) rewrite rules for the semiotic classes
of money, decimal and cardinal numbers in English are
illustrated in Figure 3.

"money": {
"^R\\d+": "<card< rand",
"\\.\\d\\d$": " and <card< cents" },

"decimal": {
"^\\d+": "<card<",
"\\.\\d+$": " point #card#" },

"card": {
"[^\\d]+": ">card>",
"^\\d+$": "@card@" },

Fig. 3. Verbalisation rules for semiotic classes in English

3) Number Expansion: Numbers specifically are ex-
panded by exploiting their inherently recursive verbal
structure, through repeated division and modulo opera-
tions. We drew up a representative list of number-based
non-standard words that fall in the various semiotic classes
of cardinal numbers, ordinal numbers, money, dates and
times. We contracted language practitioners to expand the
list items to their native, standard word, spoken forms. We
used this gold standard list to extract patterns unique to
each class for the development of the number expansion
rules. We implemented the recursive rewrite rule design of
[11] and describe it by way of English in Figure 4.

%card
0: zero;
1: one;
2: two;
3: three;
...
10: ten;
11: eleven;
12: twelve;
13: thirteen;
...
20: twenty; twenty >>;
30: thirty; thirty >>;
40: forty; forty >>;
50: fifty; fifty >>;
...
100: << hundred; << hundred >>;
1000: << thousand; << thousand >>;
1000000: << million; << million >>;
1000000000: << billion; << billion >>;
...

Fig. 4. Cardinal number expansion rules for English

A rewrite rule maps a base value to text representing
the associated standard word, spoken form expansion. A
rule applies to all numbers from its base value to one less
than the next rule’s base value. If a rule does not specify a

base value, its base value is the previous rule’s base value
plus one. The associated text can contain major (“<<”)
and/or minor (“>>”) substitutions.
For numbers greater than the base value in each of the

number ranges of twenties, thirties, up until nineties, we
recurse with the previous rules to expand the digit in the
ones place, denoted by the minor substitution “>>”. The
rules for hundreds follow the same recursive principle to
leverage the existing rules to expand tens and ones digits,
using the additional major substitution “<<”. Whereas the
minor substitution is filled by taking the number being
expanded modulo 10 to the rule’s power of 10, the major
substitution is filled by taking the number being expanded
divided by 10 to the rule’s power of 10 and truncated to
an integer. Thousands, millions, billions and beyond follow
suit.

For the 2 Germanic languages of English and Afrikaans,
morphology does not pose any challenge in the application
of this algorithm. However, when doing native number ex-
pansion for the 9 African languages, certain morphological
constraints need to be considered. Plurality is one such
constraint, for example, the number 200 is plural, since
there are two hundreds present, whereas the number 100 is
singular, since there is just a single hundred in the number.
This distinction is necessary because the prefix used for a
singular number is different from that of a plural number.

It is also important to consider the semiotic class of
the number, whether it is cardinal, ordinal, money, date,
time, et cetera. The prefix needed for either singular or
plural depends on the class of the number in question.
Numbers can be realised in general as ones, tens, hundreds,
thousands, et cetera. We can refer to these as the root of
the number. All ones have unique roots, all tens share a
root and all hundreds share a root, et cetera. A root does
not change when the number is expanded; what changes
is the prefix.

The next subsections elaborate on the algorithm with
selected examples for the cardinal number, money and
date semiotic classes in the various languages.

B. Cardinal Numbers

Tokenisation and classification:

"card": {
"mask": [

"^\\d+((\\s+|,)\\d\\d\\d)*\\b"] },

Verbalisation:

"card": {
"[^\\d]+": ">card>",
"^\\d+$": "@card@" },

Fig. 5. Cardinal number semiotic class

Figure 5 shows the tokenisation and classification, and
verbalisation rules for the cardinal number semiotic class.

English and Afrikaans follow the same patterns of cardinal
number expansion. It is also consistent within the African
languages. We define a rule set for numbers between zero
and ten, and then start making use of the previously
defined rule sets, as well as other rules to define rule sets
for numbers 11 and higher. This procedure works until
we get to 20, where a new rule comes into play; however,
the previously defined rules for numbers less than 11 are
reused whenever applicable. The rule for 20 can then be
used until we get to 99, and the same pattern follows for
thousands, millions and billions.
As an example, the cardinal number 123 is broken down

into hundreds, tens and ones. The rule for 100 will be
applied first, followed by that for 20 and then that for 3.
Table I compares the roots used for these numbers across
a subset of the African languages.

TABLE I
Root usage in the cardinal number expansion rules

Base Root in expansions
nso tsn zul ssw ven tso

100 kgolo kgolo khulu khulu ḓana dzana
20 some some shumi shumi fumi khume
3 tharo tharo ntathu tsatfu tharu nharhu
2 pedi pedi bili bili mbili mbirhi

For Sepedi and Setswana, we consider how many hun-
dreds and tens the number 123 has, so that we can identify
whether they are singular or plural and select the corre-
sponding prefix. For 100, we obtain “le (singular prefix)
+ kgolo (hundreds root) + le (conjunction) = lekgolo le”.
Then 23 is looked up again and the rule with a base value
of 20 is applied. For 20, we obtain “ma (plural prefix)
+ some (tens root) + pedi (two root) = masomepedi”.
This is then appended to “lekgolo le” to form “lekgolo le
masomepedi”. Finally, we look up 3 as “tharo (three root)”
and append it again to produce “lekgolo le masomepedi
tharo”. Table II shows the cardinal number 123 expanded
in all 11 languages.

TABLE II
Cardinal number expansion

Lang Expansion
eng one hundred and twenty three
afr een honderd drie en twintig
nso lekgolo le masomepedi tharo
tsn lekgolo le masomepedi tharo
sot lekgolo mashome mabedi metso meraro
zul ikhulu namashumi amabili nantathu
xho ikhulu elinamashumi amabini anantathu
ssw likhulu nemashumi lamabili nakutsatfu
nbl likhulu namasumi amabili nantathu
ven ḓanafumbiliraru
tso dzana na khumembirhinharhu

C. Money
Figure 6 shows the tokenisation and classification, and

verbalisation rules for the money semiotic class in En-
glish. The African languages historically used to employ a

Tokenisation and classification:

"money": {
"mask": [

"^(R|r|\\$|£|€)\\s*\\d+((\\s+|,)\\d\\d\\d)*(\\.\\d\\d)?\\b",
"^\\d+((\\s+|,)\\d\\d\\d)*(\\.\\d+((\\s+|,)\\d\\d\\d)*)?\\s*c\\b"] },

Verbalisation:

"money": {
"[Rr]\\s*\\d+((\\s+|,)\\d\\d\\d)*": "<card< rand",
"\\$\\s*\\d+((\\s+|,)\\d\\d\\d)*": "<card< dollars",
"£\\s*\\d+((\\s+|,)\\d\\d\\d)*": "<card< pounds",
"€\\s*\\d+((\\s+|,)\\d\\d\\d)*": "<card< euros",
"\\.01": " and one cent",
"\\.((0[2-9])|([1-9][0-9]))": " and <card< cents",
"^\\d+((\\s+|,)\\d\\d\\d)*(\\.\\d+((\\s+|,)\\d\\d\\d)*)?\\s*c$": "<decimal< cents" },

Fig. 6. Money semiotic class for English

different way of handling number expansion in monetary
context, where money was counted in R2 rather than R1,
in contrast to English and Afrikaans. An amount such as
R20 would be expanded as “ten two rands”. In Tshivenda,
R30 would be expanded as “fumi ḽa bonndo na nṱhanu”,
which translates to “ten two rands and five two rands”.
However, this procedure has become almost obsolete and
the new generation has adopted a procedure similar to that
of English and Afrikaans.

To handle number expansion of money, the algorithm
uses the cardinal number rules to expand the number
part of the amount, and then prefix the expanded number
with a monetary unit specifying the quantity of this
monetary value. However, for some languages like isiZulu
and siSwati, the cardinal number rule set does not ap-
ply correctly all the time. A new rule had to be added
specifically dealing with money expansion. The following
examples illustrate the difference when expanding the
cardinal number 2 versus the amount R2.

For isiZulu, the expansion of the cardinal number 2 is
“kubili” and that of the amount R2 is “amarandi amabili”.
If cardinal number rules were to be used, then the amount
would be incorrectly expanded as “amarandi amakubili”.
For siSwati, the expansion of the cardinal number 2 is
“kubili” and that of the amount R2 is “emarandi lamabili”.
If cardinal number rules were to be used, then the amount
would be incorrectly expanded as “emarandi lamakubili”.
Table III outlines the expansion and added prefixes of the
example amount R123 in all 11 languages.

D. Dates
Figure 7 shows the tokenisation and classification, and

verbalisation rules for the date semiotic class. The indige-
nous languages share commonalities when expanding the
date and time. In order to expand dates, the algorithm
splits a date into day, month and year, and applies sep-
arate rules for day, month and year. To handle months,

TABLE III
Money expansion

Lang Expansion
eng one hundred and twenty three rand
afr een honderd drie en twintig rand
nso diranta tše lekgolo le masomepedi tharo
tsn diranta tse lekgolo le masomepedi tharo
sot diranta tse lekgolo mashome mabedi metso meraro
zul amarandi ayikhulu namashumi amabili nantathu
xho iirandi ikhulu elinamashumi amabini anantathu
ssw emarandi lalikhulu nemashumi lamabili nakutsatfu
nbl amaranda eziyikhulu namasumi amabili nantathu
ven rannda dza ḓanafumbiliraru
tso dzana na khumenharhu wa tirhandi

the algorithm looks up how the months are written in
the different languages. The way the day and the year
are expanded differs. Some of the languages will reuse
rules from cardinals and ordinals, other languages like
isiZulu and siSwati again require that a new rule set be
defined specifically for the date. This difference entails
which prefix needs to be added to the root of the number.
For isiZulu, the prefix “wezi” is added to the root in the

thousands rules and the prefix “ezi” is added to the root
in the tens rules. For siSwati, the prefix “weti” is added to
the root in the thousands rules and the prefix “leti” to the
root in the tens rules. Table IV illustrates the expansions
for the date 13/03/2012.

III. Evaluation
A. Methodology
To evaluate the accuracy of our implementation, we

compared the generated output to the gold standard pro-
duced by the language practitioners. We used the python
“difflib” module [12] to calculate string similarity ratios
on the character level rather than the word level, in order
to normalise very loosely over the morphology of the
languages on the disjunctive to conjunctive spectrum.

Tokenisation and classification:

"date": {
"mask": [
"^((\\d?\\d[.\\-/]\\d?\\d[.\\-/]\\d\\d\\d\\d)|(\\d\\d\\d\\d[.\\-/]\\d?\\d[.\\-/]\\d?\\d))\\b"] },

Verbalisation:

"date": {
"(^(([0-2]?[0-9])|(3[0-1]))[.\\-/])|([.\\-/](([0-2]?[0-9])|(3[0-1]))$)": "<day<",
"[.\\-/]((0?[1-9])|(1[0-2]))[.\\-/]": " <month<",
"[0-9][0-9][0-9][0-9]": " <year<" },

"day": {
"\\d+": "<card<" },

"month": {
"[^\\d]+": ">month>",
"^0?1$": "january",
"^0?2$": "february",
"^0?3$": "march",
...
"^12$": "december" },

"year": {
"0[0-9][0-9][0-9]": " the year <card<",
"[1-9]00[0-9]": " <card<",
"[1-9][1-9]00": " <year_cent<",
"[1-9](([0-9][1-9][0-9])|([1-9][0-9][1-9])|([1-9][1-9][0-9]))": " <year_other<" },

"year_cent": {
"^\\d\\d": "<card< hundred" },

"year_other": {
"^\\d\\d": "<card<",
"\\d\\d$": " <card<" },

Fig. 7. Date semiotic class for English

TABLE IV
Date expansion

Lang Expansion
eng thirteen march twenty twelve
afr dertien maart twintig twaalf
nso la lesome tharo matšhe ngwaga wa ketepedi le lesome pedi
tsn la lesome tharo mopitlwe ngwaga wa kete pedi le

lesome pedi
sot la leshome le metso e meraro hlakubele selemo sa

dikete tse pedi le leshome le metso e mmedi
zul ziyishumi nantathu kundasa unyaka wezinkulungwane

ezimbili neshumi nambili
xho umhla weshumi elinantathu kumatshi ngowamawaka

amabini aneshumi elinesibini
ssw tilishumi nakutsatfu indlovu lenkhulu umnyaka

wetinkhulungwane letimbili nelishumi nakubili
nbl ilanga lesumi nakuthathu enyangeni yesithathu ngom-

nyaka weenkulungwana ezimatjhumi amabili ne-
minyaka elisumi nambili

ven ḽa vhufumiraru ḽa ṱhafamuhwe ṅwaha wa gidimbilifumimbili
tso khumenharhu nyenyankulu hi lembe ra gidimbirhi

khumembirhi

From the python documentation, “The basic algorithm
predates, and is a little fancier than, an algorithm pub-
lished in the late 1980’s by Ratcliff and Obershelp under

the hyperbolic name ‘gestalt pattern matching.’ The idea is
to find the longest contiguous matching subsequence that
contains no ‘junk’ elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then
applied recursively to the pieces of the sequences to the
left and to the right of the matching subsequence. This
does not yield minimal edit sequences, but does tend to
yield matches that ‘look right’ to people.”
The module calculates a sequence ratio between 0.0

and 1.0. From the documentation, “Where T is the total
number of elements in both sequences, and M is the
number of matches, this is 2.0*M / T. Note that this is 1.0
if the sequences are identical, and 0.0 if they have nothing
in common”.
We utilised 66 test cases each for the cardinal and

ordinal number classes across all 11 languages. For the
money, date and time classes, we used 51 test cases in total
(spread evenly) for all languages except Sesotho, isiXhosa
and isiNdebele, which employed 34 test cases each. The
resources that had worked on the latter three languages
became unavailable during the course of development,
limiting our capability to address these languages fully.

B. Results
In the continuous process of evaluating our implemen-

tation, we discovered discrepancies in the expansions that
we resolved using third party input. Furthermore, the
evaluation helped to fix errors in the number expansion
rules iteratively. This enabled us eventually to obtain 1.0
scores for all the test cases in all the languages, except
for Sesotho, isiXhosa and isiNdebele. We suspect that 1.0
scores will also be possible when we do future iterations
on the languages. For the record, the scores are stated in
Table V.

TABLE V
String similarity scores of the implementation against the

gold standard

Lang Class scores
Card Ord Money Date Time

eng 1.0 1.0 1.0 1.0 1.0
afr 1.0 1.0 1.0 1.0 1.0
nso 1.0 1.0 1.0 1.0 1.0
tsn 1.0 1.0 1.0 1.0 1.0
sot 0.96 0.96 1.0 0.97 1.0
zul 1.0 1.0 1.0 1.0 1.0
xho 0.95 0.95 0.86 0.95 0.84
ssw 1.0 1.0 1.0 1.0 1.0
nbl 0.96 0.94 0.98 0.91 1.0
ven 1.0 1.0 1.0 1.0 1.0
tso 1.0 1.0 1.0 1.0 1.0

IV. Conclusion
The rule-based text normalisation implementation per-

forms well for all the South African languages. Even
though the rules are more complex to construct for the
morphologically rich African languages than the Germanic
languages, it was nonetheless possible to re-use them
among the semiotic classes. For example, rules for expand-
ing cardinal numbers were used for ordinal numbers, with
minor changes to the prefixes only. Rules defined for a
particular class can be applied successfully to possibly
all numbers belonging to that class, and the resulting
expansion will be correct. This is reflected in the high
string similarity scores.

The advantage of a rule-based approach is the trans-
parency in the implementation when a violation of the lan-
guage is observed during testing against a gold standard.
It allows for rapid fixes to existing rules and extensions to
new rules to improve the coverage. A rule-based approach
has conditions that must be met, though. The developer
must have one foot in computer science to understand
and use constructs like regular expressions and rewrite
rules, and the other foot in (written and spoken) language
practice to understand and create rules for the language
in question, otherwise the performance of the algorithm
will be compromised.

In the development of rules for the African languages,
the main challenges surrounded the native constructs of
the languages. Although the indigenous languages are

widely spoken throughout the country, people often use
English to express the number-based semiotic classes.
Consequently, people seldom know how to express these
properly in their own languages, which leads to difficulty
in sourcing the correct standard of verbalisations when
developing the rules.
Despite the good performance of this initial version of

the text normalisation component in the Speect/Qfrency
TTS system, it still has a big limitation. We do not yet
account for the context around the non-standard words
when they are verbalised. This has a detrimental effect on
the resulting meaning in the African languages when the
expansion is substituted back into the original sentence.
To illustrate in Xitsonga, the year 1652 will be expanded
as “hi lembe ra gidi dzanatsevu na khumentlhanumbirhi”.
However, suppose it were used in a proper Xitsonga
sentence, “Ndzi khandziyile xihahampfuka hi lembe ra
1652”. If we substitute the expansion above, we obtain the
following boundary problem, “Ndzi khandziyile xihahamp-
fuka hi lembe ra hi lembe ra gidi dzanatsevu na khumentl-
hanumbirhi”. Future work will investigate Grammatical
Framework (GF) [13] as a mechanism that can model the
morphological and contextual behaviour successfully.

References
[1] R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and

C. Richards, “Normalization of non-standard words,” Computer
Speech and Language, vol. 15, no. 3, pp. 287–333, Jul. 2001.
[Online]. Available: http://dx.doi.org/10.1006/csla.2001.0169

[2] P. Taylor, Text-to-Speech Synthesis, 1st ed. Cambridge Uni-
versity Press, 2009.

[3] P. Ebden and R. Sproat, “The kestrel tts text
normalization system,” Natural Language Engineering,
vol. 21, no. 03, pp. 333–353, 2015. [Online]. Available:
https://github.com/google/sparrowhawk/tree/master/src

[4] D. Kini and S. Gulwani, “Flashnormalize: Programming by
examples for text normalization,” in Proceedings of the 24th
International Conference on Artificial Intelligence, 2015.

[5] K. Gorman and R. Sproat, “Minimally supervised number
normalization,” Transactions of the Association for Computa-
tional Linguistics, vol. 4, pp. 507–519, 2016. [Online]. Available:
https://www.transacl.org/ojs/index.php/tacl/article/view/897/213

[6] K. Wu, K. Gorman, and R. Sproat, “Mini-
mally supervised written-to-spoken text normalization,”
CoRR, vol. abs/1609.06649, 2016. [Online]. Available:
http://arxiv.org/abs/1609.06649

[7] R. Sproat and N. Jaitly, “RNN approaches to text
normalization: A challenge,” CoRR, vol. abs/1611.00068,
2016. [Online]. Available: http://arxiv.org/abs/1611.00068

[8] Google, “Text normalisation challenge on Kaggle,” 2016.
[Online]. Available: https://www.kaggle.com/google-nlu/text-
normalization

[9] ——, “Text normalisation challenge on Kaggle,” 2017. [On-
line]. Available: https://www.kaggle.com/c/text-normalization-
challenge-english-language

[10] J. A. Louw, A. Moodley, and A. Govender, “The speect text-to-
speech entry for the blizzard challenge 2016,” in Proceedings of
The Blizzard Challenge 2016 Workshop, 2016.

[11] R. Gillam, “A rule-based approach to number spellout,”
Unicode Consortium, 1998. [Online]. Available: http://site.icu-
project.org/

[12] Python, “Difflib module,” 2017. [Online]. Available:
https://docs.python.org/2/library/difflib.html

[13] A. Ranta, Grammatical Framework: Programming with Multi-
lingual Grammars. Stanford: CSLI Publications, 2011, iSBN-
10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

