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Abstract 
In [1] the authors introduced a technique for generating 
mismatched pulse compression filters for linear frequency 
chirp signals. The technique minimizes the sum of the pulse 
compression sidelobes in an pL –norm sense. It was shown 
that extremely constant sidelobe levels (better than 60 dB) 
can be achieved for minimal mismatch loss and broadening of 
the compression peak. This paper reports on an investigation 
into the effect of quantization on pulse compression filters 
designed using the abovementioned technique. Simulation 
results for 8-bit and 16-bit implementations of a pulse 
compressor system are presented. 

1 Introduction 

Pulse compression gives radar designers the ability to obtain 
sufficient energy on a target for target detection without 
decreasing the range resolution of the system or resorting to 
the use of very high power transmitters. Pulse compression 
thus permits the use of lower power transmitters with longer 
pulse lengths to maintain the energy content of a pulse. A 
matched filter is used on reception to maximize the signal to 
noise ratio of the received signal [3]. The actual transmitted 
waveforms are chosen so as to have an Autocorrelation 
Function (ACF) with a narrow peak at zero time shift and 
sidelobe values as low as possible at all other times. The 
sidelobes have the undesirable effect of masking smaller 
targets in close proximity to larger targets, such as clutter 
returns.  
No direct design techniques exist for the generation of pulse 
compression waveforms with optimally low sidelobe levels. 
This has resulted in several approaches to the problem of 
designing “good” pulse compression waveforms. Early pulse 
compression systems were based on linear frequency 
modulated waveforms [4], [5] so several techniques have 
been developed to reduce the sidelobe levels of this broad 
class of pulse compression waveforms. These include 
amplitude windowing of the signal and the dual thereof which 
is frequency windowing. Notably De Witte and Griffiths [6] 
achieved sidelobe levels of approximately 70 dB by using 

non-linear frequency chirp waveforms. 
Optimal binary phase shift codes have been found by means 
of exhaustive search techniques [7],[8],[9],[10]. Searches for 
good quadriphase codes have been reported in [11] and [12]. 
Gartz [13] and Nunn [14] have addressed the search for 
polyphase codes. Code searches are constrained by the 
computational complexity of the search process, which limits 
the lengths of codes which can be found using this technique. 
This has lead some authors to develop techniques for 
constructing codes which have close to optimal sidelobe 
levels. The Frank codes [15] and P(n,k) codes developed by 
Felhauer [16] are well known codes in this category. 
Post-processing of the pulse compressor output such as 
sidelobe cancellation [17] and sidelobe smoothing [18] have 
also been reported. 
Alternatively the pulse compression filter can be deliberately 
mismatched to reduce the sidelobe levels, but this implies a 
loss in signal to noise ratio and broadening of the 
compression peak as reported in [1]. An overview of the 
sidelobe reduction technique presented in [1] is given in the 
following section. 

2 Sidelobe level reduction by application of 
norm minimization to the sidelobes 

The mismatched pulse compression filter can be designed by 
minimizing the sum of the magnitudes of the complex 
sidelobe values ( 2L –norm). This leads to the minimization of 
the energy in the sidelobes, whereas minimization of the L∞ –
norm will minimize the peak sidelobe level. The L∞ –norm is 
not a well behaved function, so pL –norms with 2p P=  were 
used in [1] and the solutions were found by means of 
numerical techniques. 
 
Given the discrete time transmit sequence { }na  and filter 

coefficients { }nx , the output of the filter is given by 
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pulse compression filter can be written in matrix form as 
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The above formulation leads to the following convenient 
expression for the sum-of-squares of the convolution 
sequence: 
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The sidelobe measure function can now be formulated by 
defining a new matrix A  which is similar to FA , except that  
the rows in FA  which produce the compression peak are 
removed. 
The method of Lagrange multipliers [2] is used to find a 
solution for x  that will minimize the sidelobe measure cost 
function while satisfying the constraint that a pulse 
compression peak with amplitude peakb  must be produced. 
 
The analytical solution for the 2L  case is given by 
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where  
 H=C A A . (8) 
 
Numerical techniques had to be used to solve the 2PL –norm 
case. The following set of simultaneous equations have to be 
solved together with the constraint given in Equation (10). 
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An example of a solution for a linear frequency chirp transmit 
pulse with a time-bandwidth product (TBWP) of 50 is given 
in Figure 1. 

 
Figure 1: Pulse compression response for a linear frequency 

chirp transmit pulse with a TBWP of 50. 

2.1 Additional non-zero coefficients 

To reduce the sidelobe level further, the pulse compression 
filter was symmetrically extended in time to be longer than 
the transmitted pulse. The extra coefficients are referred to as 
additional non-zero coefficients (ANZC). An example of the 
result achieved using 100 ANZC (i.e. 50 before and 50 after 
the standard matched filter length) is shown in Figure 2. By 
comparing Figure 1 and Figure 2 it can be seen that the 
ANZC’s have allowed the sidelobe level to be significantly 
reduced. 

 
Figure 2: Pulse compression response for a linear frequency 

chirp transmit pulse with a TBWP of 50 and 100 ANZC’s. 

3 Effect of coefficient quantization 
Most radar systems utilise fixed point arithmetic in the 
implementation of signal processing algorithms due to real-
time processing constraints. This prompted the authors to 
investigate the effect of coefficient quantization on the 



extremely low sidelobe levels obtained in [1], an example of 
which is shown in Figure 2. The transmit and receive 
waveforms were quantized to 8 and 16 bits and the pulse 
compressor outputs were simulated with the assumption that 
all bit growth was retained in the FIR filter implementation. 
Some example results are depicted in the figures that follow. 
For all the figures the transmit waveform was a linear 
frequency chirp with a TBWP of 50. 

3.1 Results with no additional non-zero coefficients 

In this subsection three figures are presented showing the 
output of the optimized pulse compression filter as well as 
that of the matched filter for reference. No ANZC’s were 
used and P was set to 1, 2 and 40. 

 
Figure 3: Comparison of sidelobe responses for receive filters 

with P = 1 and ANZC = 0. 
 

 
Figure 4: Comparison of sidelobe responses for receive filters 

with P = 2 and ANZC = 0. 
 

 
Figure 5: Comparison of sidelobe responses for receive filters 

with P = 40 and ANZC = 0. 
 
The results presented in this subsection show that 16-bit 
quantization has a negligible effect on the resulting sidelobe 
response as compared to the floating point version of the filter 
(the two traces are indistinguishable). The 8-bit quantization 
adds a small amount of high frequency noise to the sidelobe 
response, approximately 45 dB below the pulse compression 
peak. This degradation in achievable sidelobe level should be 
tolerable for many applications. 

3.1 Results using additional non-zero coefficients 

In this subsection three more figures are presented showing 
the output of the optimized pulse compression filter as well as 
that of the matched filter for reference. For these figures 100 
ANZC’s were used and P was set to 1, 2 and 40. 
 

 
Figure 6: Comparison of sidelobe responses for receive filters 

with P = 1 and ANZC = 100. 
 



 
Figure 7: Comparison of sidelobe responses for receive filters 

with P = 2 and ANZC = 100. 
 

 
Figure 8: Comparison of sidelobe responses for receive filters 

with P = 40 and ANZC = 100. 
 
The results presented in this subsection show that 16-bit 
quantization has negligible effect on the resulting sidelobe 
response as compared to the floating point version of the 
filter. The only exception to this is the sidelobe levels in 
Figure 6 which are below -100 dB, which would be 
inconsequential given the -60 dB peak sidelobe level. 

4 Discussion 
This paper has shown that the achievable sidelobe level for 
mismatched pulse compression filters designed using the 
minimization of pL -norms is relatively insensitive to 
quantization of the filter coefficients and transmit 
coefficients. It was shown that 16-bit quantized filters 
produce sidelobe levels which match the floating point 
versions very well. Filters with no ANZC’s are relatively 
insensitive to 8-bit quantization. 
The use of 8-bit quantization for filters with 100 ANZC’s 
however limits the achievable sidelobe level to approximately 
-55 dB. This represents an increase of at least 7 dB in 

sidelobe level for the floating point case. It might be possible 
to improve this figure if use is made of optimization 
algorithms which have been designed to search discrete 
spaces. This is a topic for further research. 
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