Carbohydrate Polymers

Effects of stearic acid and irradiation alone and in combination on properties of amylose-lipid nanomaterial from high amylose maize starch

Fidelis C.K. Oclooa,^c, Suprakas S. Ray^b, Naushad M. Emmambux^{a,*}

^a Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa

^b DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research (CSIR), Meiring Naude Road, Pretoria 0001, South Africa

^c Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana

Abstract

This study determines the effects of stearic acid and gamma irradiation, alone and in combination, on properties of amylose-lipid nanomaterials from pasted high amylose maize starch (HAMS) with and without alpha amylase hydrolysis. HAMS was incorporated with stearic acid (0, 1.5% and 5%, w/w), irradiated at 0, 30 and 60 kGy and pasted under pressure in a rheometer. Isolated materials after thermostable alpha amylase or hot water washing were freeze-dried and characterised using differential scanning calorimetry (DSC), X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). The isolated materials contain amylose-lipid complexes (ALCs) as determined by DSC and XRD. Pasting of gamma irradiated HAMS produced type I ALCs, whereas that for un-irradiated HAMS produced type II ALCs. The ALCs occurred at nanoscale with sizes ranging from 10 to 110 nm as observed with AFM and TEM. Tailor-made ALCs nanomaterials can be produced from HAMS (with and without added stearic acid).