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The evolution of classical optical fields propagating through atmospheric turbulence is investigated under
arbitrary conditions. We use the single-phase screen (SPS) method and the infinitesimal propagation equation
(IPE), a multiphase screen (MPS) method, to compute the optical power fractions retained in an input Laguerre-
Gauss (LG) mode or transferred to higher-order LG modes. Although they show the same trend while the
scintillation is weak, the IPE and SPS predictions deviate when the strength of scintillation passes a certain
threshold. These predictions are compared with numerical simulations of optical fields propagating through
turbulence. The simulations are performed using an MPS model, based on the Kolmogorov theory of turbulence,
for different turbulence conditions to allow comparison in both weak and strong scintillation. The numerical
results agree well with the IPE results in all conditions, but they deviate from the SPS results for strong

scintillation.
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I. INTRODUCTION

In paraxial optical fields, the two parts of the total angu-
lar momentum—spin angular momentum (SAM) and orbital
angular momentum (OAM)—can be generated and controlled
independently [1]. SAM, which is associated with the polar-
ization state of the optical field, provides a two-dimensional
configuration space, which is often used in quantum optics to
represent a two-dimensional Hilbert space. OAM, on the other
hand, is associated with the transverse spatial distribution
of the optical field. It was found that certain modal bases
such as the Laguerre-Gauss (LG) modes are OAM eigen-
states carrying fixed quantized amounts of OAM [2]. Thus,
it represents an infinite-dimensional configuration space. The
higher dimensionality of OAM makes it a potentially use-
ful basis for applications in higher-dimensional quantum-
information systems and multimodal communication sys-
tems [3-5]. It is used for secure quantum communication in
quantum cryptography and also for high-capacity free-space
communication [6-8].

Free-space communication entails the propagation of op-
tical fields through the atmosphere. Turbulence in the at-
mosphere induces random fluctuations in the index of re-
fraction, which causes scintillation that distorts these optical
fields [9].

Various studies have been done to understand and clarify
the effect of scintillation on the OAM of optical fields [10-20].
Most of the theoretical studies are based on a single-phase
screen (SPS) approximation [21], which assumes that the
effect of turbulence on a propagating optical field can be
represented by a single random-phase modulation. The SPS
model is valid only under weak scintillation conditions [22].
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Under strong scintillation conditions, the random-phase
modulation of the optical field is converted into intensity
perturbation.

Strong scintillation conditions require a multiphase screen
(MPS) approach. The usefulness of such an MPS approach
in numerical simulations has been shown by various authors
for wave propagation in random media [23-26]. It has also
been used in classical studies of optical communications [27].
Recently, an MPS-based analytical approach has been em-
ployed to formulate the evolution of photonic quantum states
propagating through turbulence in terms of an infinitesimal
propagation equation (IPE) [17-19]. Thanks to the MPS
approach, the IPE is valid in both weak and strong scintil-
lation conditions. Although it was proposed in the context of
quantum optics, we show here that it also works for classical
optical fields propagating through turbulence.

In this paper, we study the evolution of optical fields under
arbitrary scintillation conditions. For this purpose, we con-
sider an input optical field with an amplitude profile given by a
certain OAM mode—an LG mode with azimuthal index ¢ = 1
and radial index p = 0. Then we investigate the effect of the
scintillation on this mode by computing the overlap between
the distorted LG mode and different LG modes to determine
the fraction of optical power in the different modes. Both the
IPE approach and the SPS approach are used to predict these
power fractions as a function of propagation distance. We then
compare these predictions against numerical simulations.

Although there are several numerical and experimental
studies that tested the SPS model [12-15,28], none so far have
provided either experimental or numerical testing of the IPE.
Here we use MPS numerical simulations that are based on the
Kolmogorov theory of turbulence to determine whether the
IPE predictions are better than the SPS predictions. We find
that the numerical results agree well with the IPE predictions
under all scintillation conditions. Since the IPE predictions
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deviate from the SPS predictions under strong scintillation
conditions, the numerical results show that the IPE predictions
are favored over those of the SPS approach.

The paper is organized as follows. In Sec. II, we provide
some theory and a discussion of the theoretical behavior of
OAM modes in atmospheric turbulence. The details of the
numerical simulation are discussed in Sec. III. The results are
compared and discussed in Sec. IV, and in Sec. V we end with
some conclusions.

II. THEORY

A. Atmospheric scintillation

When light propagates through turbulence, the random-
phase modulations, induced by the fluctuating refractive index
of the air, cause a distortion (scintillation) of the beam profile.
Initially, the scintillation is weak, affecting only the phase of
the optical beam. As the beam propagates further, the scintil-
lation becomes progressively more severe and eventually also
affects the intensity profile of the beam.

The statistical properties of a turbulent medium are of-
ten modeled in terms of the Kolmogorov theory [9]. The
Kolmogorov phase structure function, as a function of the
separation distance x, is given by

L\
D(x) = 6.88(—) . (1)
To

It is expressed in terms of the Fried parameter [29], which is

defined as
32\
=0.185( — , 2
ro <C,%z> (2)

where C? is the refractive index structure constant, A is the
wavelength, and z is the propagation distance. The turbulent
medium can also be modeled by the Kolmogorov power
spectral density [9], which is given by

®,(k) = 0.03327)*C? k|3, 3)

Here, we will represent the strength of the turbulence
by a dimensionless quantity that naturally emerges from the
analysis. It is given by [22]

3,2 11/3
> Crw,
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where wy is the Gaussian beam waist. Moreover, the propa-

gation distance is represented as a dimensionless normalized
propagation distance by

K= ; “4)

A
r= = (5)
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The strength of the scintillation is often quantified by the
Rytov variance, which reads

02 =1.23C2k])/°'", (6)

where kg = 27 /A is the wave number. It can also be expressed
in terms of ¢ and C:

op =2.76Kt'/°, (7)

For weak scintillation, it is required that the Rytov variance is
smaller than a constant of order 1 [9].

B. Infinitesimal propagation equation

The effect of a turbulent atmosphere on an optical beam
can be determined with an SPS approximation under weak
scintillation conditions. For strong turbulence, however, an
MPS approach is required. An approach that was recently
introduced to model the evolution of photonic quantum states
propagating through atmospheric turbulence is the infinites-
imal propagation approach [17-19], which leads to the IPE.
It can, however, also be used for classical optical fields
propagating through turbulence. Here, we briefly review the
infinitesimal propagation approach.

The propagation of paraxial optical fields in turbulence is
described by the stochastic parabolic equation

i

9. f(r) = _Z_kOVJ_f(r) — ikodn(r) f(r), ®)

where r is the three-dimensional position vector, én(r) is
the turbulence-induced fluctuations of the refractive index of
the atmosphere, and V, = 8)% + 8}2,. In the transverse Fourier
domain, Eq. (8) becomes

9,F(a,z) = inAlal*F(a, z)

~ik [ NG -a.DF@ P O
where
F(a,z) = / f(x,z)exp(i2nx - a) d*x
SN(a, z)=/3n(x, Dexpi2nx-a)d’x,  (10)

with x = {x, y} and a = {a,, a,} being the two-dimensional
transverse position coordinates and the transverse spatial fre-
quency coordinates, respectively.

The density operator for a single-photon state can be
expressed in the plane-wave basis by

p(2) = f la)p(ar, &y, )| day d?ar. (11)
For a pure state, the density “matrix” is a product

p(a, ay,z) = F(ay, 2)F*(ay, 2), (12)

where F(a,z) = (a|Y(z)) is the angular spectrum or the
Fourier domain wave function.

In the infinitesimal propagation approach, the evolution
of the density matrix is described by a differential equation,
which is called the IPE [17], [19],

3.0, a2, z) = imi(la)* — |az)*)p(ay, a2, 2)
+k5 / Do(q)[p(a; —q, a2 — q, 2)

— p(ay, az, 2)] d*q, (13)
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where ®((q) = ©,(27q, 0). Under the quadratic structure
function approximation [30], the solution is [19]

2
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P= T po(ay 2 —b)
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X ex — T wy| —la; —ay|”" + —

p{ 0[3“ 2

—it(ja)|* — |az]?) —it(a; — ap) - b“ d*b, (14)

where pg is the initial density matrix and « = 1.457K. The
quadratic structure function approximation is valid provided
that the separation distance in Eq. (1) is not too large com-
pared to the Fried parameter.

One can use the single-photon expressions for classical
optical beams. To consider scenarios in which the photon
state is entangled, one needs to generalize the single-photon
expressions for two or more photons [19,31].

C. Generating function

The input optical field is an LG mode with p = 0. We
are interested in the turbulence-induced coupling of this LG
mode into the same or other LG modes with p = 0. For the
calculations, it is convenient to represent such LG modes by a
generating function, given by

Ga; ) = Nmwoexp [imwo(a, +ia,)u
—rwj(a; +a;)(1 —in)], (15)

where u is the generating parameter for ¢, the sign in the first
term in the exponent is given by the sign of the azimuthal
index, and the normalization constant is

g+l 172
M= (nwu) ' 1o
An LG mode is obtained from the generating function by
Myo(a) = 3)1G(@; 1) = 17

D. Overlap calculation

For the calculation of the IPE solution, we substitute py —
G(ay; u1)G*(az; ) into Eq. (14) and evaluate the integrals
over b. The result represents a generating function for the
output density matrix.

For the case of an input LG mode with azimuthal index

£ = 1, the output density matrix is
n*wi

3A;
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where
Ay = 8kt + 1,
Ay = 2ikt? — dic’t* — 16xc%1? — 4k,

As = 821t + 3221 + 8kt + 1,
Ay = 82t + dict? + 12kt — 12ikct? — 3it + 3,
As = 16x%t* + 8kt® + 24«1,

32242 + dict
Ag= ———5—

19
" (19)

The expression in Eq. (18) represents the state of the optical
beam after the LG mode propagated through atmospheric
turbulence.

The scintillation of the initial LG mode causes the optical
field to contain a spectrum of LG modes that were not present
in the initial optical field. In a free-space optical communica-
tion system in which the different LG modes represent differ-
ent channels, such a process would cause crosstalk among the
different channels. One can quantify the amount of crosstalk
with the aid of Eq. (18).

To calculate the crosstalk, we evaluate the overlap between
the output density matrix, given in Eq. (18), and the generating
function for LG modes, given in Eq. (15). The overlap is
expressed by

n =f,O(al,az,z)g*(al;us)g(az;m)dzal d’a;.  (20)

The result is a generating function for the fraction of the
input optical power that resides in the LG modes. To obtain
the power fraction for a particular combination of input and
output modes, one needs to apply the procedure given in
Eq. (17) four times, once for each of the four generating
parameters. (Since we are dealing with the density matrix,
both the input mode and the output mode appear twice in the
expression.)

In Appendix, we provide the detailed expressions for the
power fractions obtained in the LG modes with £ = 1,2, 3
for an input LG mode with £ = 1. All these expressions
depend only on the normalized propagation distance ¢ and the
normalized turbulence strength K.

E. Weak scintillation limit

The expression of the output state that is obtained from the
IPE analysis is valid under all scintillation conditions. Hence,
one can reproduce the results under the SPS approximation
from the IPE results in the limit of weak scintillation. The
SPS results depend only on the dimensionless parameter VW =
wo/ro, which can be expressed in terms of C and 7 by

W = 1.37(K1)*/>. (21)

Using Eq. (21), one can replace ¢ in the IPE results in terms
of K and W. In the weak scintillation limit, it should then
depend only on W. To find out what happens to /C, one can
express the Rytov variance in terms of /C and WV with the aid
of Eq. (21). It then reads
55/18

of = 1.055%. (22)
Since the Rytov variance represents the scintillation strength,
it follows that the weak scintillation limit is obtain when
K — oo. When we apply this limit to the IPE results, they
reproduce the SPS results. The SPS expressions for the power
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FIG. 1. Comparison of the predicted power fractions from the
SPS approach (dashed lines) and the IPE approach (solid lines)
as a function of ¢ for (a) X =10, (b) L =1, (¢c) £ =0.1, and
(d) £ = 0.01. Each graph shows the curves for the power fraction
in output LG modes with £ = 1, 2, 3, respectively, for an input LG
mode with £ = 1. The Rytov variance is provided in each graph (gray
dashed line) with a separate vertical axis.

fractions in the weak scintillation limit that correspond to
those obtained from the IPE calculation are provided in
Appendix.

F. Comparing weak and strong scintillation

In Fig. 1, we provide curves of the power fractions as a
function of normalized propagation distance. The graphs for
four different values of the normalized turbulence strength
K =10, 1, 0.1, and 0.01 are shown. Each of these graphs
shows the curves for power fractions obtained in the output
LG modes with £ = 1, 2, 3 for an input LG mode with £ = 1
as a function of 7. The gray dashed line with the positive
slope represents the Rytov variance o2 as it increases with
propagation distance, labeled by the vertical axis on the left-
hand side. All graphs in Fig. 1 are shown as logarithmic plots.

There are various interesting observations that can be made
from the graphs in Fig. 1. Focusing on the SPS curves (the
dashed lines), we see that these curves are all governed by a
single scale, which can be determined from the location of the

region where the curves change their slopes. Away from these
transition regions, the SPS curves are scale-invariant thanks
to their power-law behavior (straight lines of a logarithmic
plot). An expression for this scale can be obtained by noticing
that when the SPS curves are plotted as a function of W,
the transition region is always located close to W ~ /€. By
solving this equation for the propagation distance, one finds
that the distance scale is

0.0622¢%/%

Tws ~ TZ (23)

Wy Cn

We will refer to it as the weak scintillation scale. Previously,
it was identified as the scale at which quantum entanglement
decays to zero [15,16,20]. However, such an observation
was based on the fact that all those analyses were done for
quantum entanglement within the SPS approximation. When
we consider the situation for classical OAM coupling under
strong scintillation conditions, we find that the situation is
more complicated.

We also see from Fig. 1 that by varying X, one simply
causes a horizontal shift of the SPS curves. The shapes of
the SPS curves remain the same regardless of the value of
KC. A shift on a logarithmic axis implies a scaling on a linear
axis t — ot for some scale factor «. Hence, smaller values of
KC simply mean that the curves are stretched out over larger
propagation distances.

The IPE curves in Fig. 1 (solid lines) start out following the
SPS curves, but then at a certain point, when the scintillation
strength crosses some threshold, they start to deviate from
the SPS curves. Beyond these points, the IPE curves become
horizontally squashed versions of the remainder of the SPS
curves. A scaling on a logarithmic axis represents a change
in the power of the independent variable t — ¥, with y > 1.
We can see that those parts of the SPS curves that represent
power laws again correspond to power laws for the IPE curves.
Hence, we conclude that the squashing is done uniformly
beyond the transition region. In other words, y does not
depend on ¢ beyond the transition region.

The points where the IPE curves start to deviate from their
SPS counterparts represent an additional scale that differs
from the weak scintillation scale. We call the new scale the
deviation scale. We see that when the turbulence is strong
(K is large), the deviation scale is larger than the weak
scintillation scale; it lies at a larger propagation distance. On
the other hand, when the turbulence is weak, as indicated by
a smaller value for /C, the deviation scale is found at shorter
propagation distances than the weak scintillation scale. As a
result, one finds (somewhat counterintuitively) that weak tur-
bulence causes the IPE curves to deviate from the SPS curves
at an earlier stage relative to the shape of the SPS curves. This
behavior can be seen more clearly when the curves are plotted
as a function of W instead of ¢. In such a case, all the SPS
curves for a given overlap lie on top of each other regardless
of the value of K, and the IPE curve for the weakest turbulence
(smallest ) deviates more quickly (at a smaller value of W)
than the others.

The notion that the deviation of the IPE curves from
their SPS counterparts is an indication of the onset of strong
scintillation does not always seem to agree with the value of
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the corresponding Rytov variance at these points. One can use
the Rytov curves in Fig. 1 to determine the value of the Rytov
variance at the point where the IPE curves start to deviate from
the SPS curves: draw an imaginary vertical line through the
points on the three curves where they start to deviate. The
crossing point of this vertical line and the Rytov curve then
indicates at what value of the Rytov variance the deviation
occurs. We find that when the turbulence is strong, the Rytov
variance at the point of deviation is about equal to 1, which
is what one would expect if the deviation is an indication of
the onset of strong scintillation. However, for weak turbulence
the deviation seems to occur at a much smaller value of the
Rytov variance. The value can be as much as an order of
magnitude smaller. Therefore, it is questionable whether the
deviation would indicate the onset of strong scintillation in
such weak turbulence conditions. A better explanation may
be that the deviation simply indicates the point where the SPS
approximation breaks down, for whatever reason. The nature
of the deviation scale is therefore a matter to be investigated
further.

III. NUMERICAL SIMULATION

To simulate the propagation of an optical field through a
turbulent atmosphere, one needs to incorporate two different
aspects of the process: refraction and diffraction, which are,
respectively, represented by the two terms on the right-hand
side of the stochastic parabolic equation in Eq. (8). For this
reason, we employ a split-step method [27,32,33] to perform
the numerical simulations. In one step, the optical field is
modulated by a random-phase screen, taking into account
the refractive part of the process. In the subsequent step, the
modulated field is propagated for a short distance through free
space, representing the diffractive part of the process. It is
then followed by another modulation with a different random-
phase screen, then by another free-space propagation, and so
forth. By repeating these two steps (the bistep) several times,
one can obtain the optical field after a significant distance of
propagation through a turbulent atmosphere. As such, it is
an implementation of a MPS approach. One such sequence
of repeated bisteps, consecutively applied to a particular
input field, represents one single realization of a turbulent
medium. In the numerical simulations, several realizations are
performed for the same conditions and the same input field. It
allows one to build up statistics from which the observables
can be calculated as average values, together with standard
errors.

If the bistep is performed only once, the second step
becomes superfluous because it is compensated by the same
free-space propagation of the overlapping modes. As a re-
sult, a single iteration of the bistep is equivalent to the SPS
approach. Therefore, each bistep in the MPS approach must
obey the requirements for weak scintillation. So, to implement
the split-step process, one needs to divide the propagation
distance z into a series of slices Az in such a way that
each slice represents a weakly scattering medium. Each phase
screen is designed to represent the random-phase modulation
caused by the turbulent medium in one such slice.

Note that the phase modulations do not affect the intensity
profile of the optical field directly. The scintillation of the

intensity is caused by the combined effect of the random-
phase modulations and the free-space propagations. It appears
only after the beam has propagated some distance, involving
several bisteps.

Each random-phase screen is computed as the inverse
Fourier transform of a spectral representation of the random
medium in term of filtering Gaussian noise. The spectral
representation is composed of a two-dimensional (2D) array
of normally distributed random complex numbers, with a zero
mean and a unit variance, multiplied by the square root of the
Kolmogorov power spectral density as an envelope function.
It is given by [32,34]

1/2
9:(2nk§Az)1/2}'1{)((3)[—(1)2(23 )] } (24)

k

where Az is the partitioned propagation distance between two
phase screens, JF —1 denotes the inverse Fourier transform,
dp(a) is the Kolmogorov power spectral density, as defined
below Eq. (13), Ay is the grid size in the spatial frequency
domain, and x(a) is a normally distributed complex random
function. The latter has zero mean and is §-correlated,

(x@anx*(a)) = Ajs(a; — ay), (25)

where (-) denotes an ensemble average. The procedure in
Eq. (24) produces a random-phase function that is complex-
valued. As a result, each calculation produces two indepen-
dent phase screens: the real and the imaginary parts of the
resulting complex array.

An important issue with the above-described method of
generating the phase screens is that it does not consider the
effect of large eddies; the discrete Fourier transform excludes
the contributions of the lower spatial frequencies smaller
than the grid size on the frequency domain. Due to the
shape of the Kolmogorov power spectral density, these lower
frequency components dominate. Their exclusion results in
an inaccurate representation of the statistical nature of the
scintillation process. To improve the accuracy, one can add
more of the lower-frequency components to the resulting
phase function. The method of subharmonics [35] produces an
additional phase function that is added to the one generated by
the Fourier calculation in Eq. (24). The resulting phase screen
becomes 0 — 6 + Osy, where

Ny 1
Osu(mA,, I’lA‘) = Z Z (/-'Lp,q,r + in,q,r)
r=1 p,g=—1

x expli2m (pA,mA; +qAnAy)]. (26)
The variances of the randomly generated  and v are
(1) = Vhgr) = Dl ®a(PAL qA), 2T

where A, = A;/3", and N; is the number of subharmonics.

IV. RESULTS

We performed numerical simulations for the evolution of
an input LG mode with £ =1 under two different turbu-
lence conditions: weak turbulence with IC = 0.07 and stronger
turbulence with IC = 0.7. The resulting power fractions for
K = 0.07 are shown in Fig. 2 and those for K = 0.7 are
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FIG. 2. Power fraction as a function of W for an input LG mode
with ¢ = 1 propagating through weak turbulence with a normalized
turbulence strength of K = 0.07. The graphs show the fractions of
optical power obtained in the LG modes with (a) £ =1, (b) £ =2,
and (c) £ = 3, respectively. The markers represent the average power
fraction, and the error bars indicate the standard error (standard
deviation of the mean). The solid lines (dashed lines) represent the
theoretical IPE (SPS) predictions.

shown in Fig. 3. All curves are plotted as functions of W.
In each of the two cases, we plot separate graphs for the
output LG modes with £ = 1, 2, 3, respectively. In each graph,
we show the IPE predictions as solid lines and the SPS
predictions as dashed lines. The numerical simulation results
are shown by discrete markers. They represent the average
power fractions, obtained from a thousand runs for each of
the two turbulence conditions. The error bars represent the
standard error (standard deviation of the mean).

The range of values of V' are chosen to show a region
where the IPE curves and the SPS curves deviate from each
other. In all the graphs in Figs. 2 and 3, the numerical results
follow the IPE curves. This agreement indicates that the IPE
predictions are more reliable than the SPS predictions under
strong scintillation conditions.
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FIG. 3. Power fraction as a function of W for an input LG
mode with £ = 1 propagating through stronger turbulence with a
normalized turbulence strength of K = 0.7. The graphs show the
fractions of optical power obtained in the LG modes with (a) £ = 1,
(b) £ =2, and (c) ¢ = 3, respectively. The markers represent the
average power fraction, and the error bars indicate the standard
error (standard deviation of the mean). The solid lines (dashed lines)
represent the theoretical IPE (SPS) predictions.

The first graphs for both conditions [Figs. 2(a) and 3(a)]
represent the fraction of optical power that remains in the
input mode (LG mode with £ = 1) during propagation through
turbulence. Although the initial trend is the same for both the
IPE and the SPS curves, a point is reached where these two
curves start to deviate. The IPE curves start to decay more
quickly than the SPS curves. In both cases, the numerical
results follow the IPE predictions more closely. However, in
Fig. 3(a) the IPE prediction seems to be slightly higher than
the trend of the numerical results. The reason may be found
in the fact that the IPE prediction incorporates the quadratic
structure function approximation for the sake of tractability,
whereas the numerical simulations do not incorporate this
approximation.

As expected, predictions based on the quadratic structure
function approximation start to deviate from results obtained
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with the Kolmogorov structure function under strong scintil-
lation conditions. However, if the difference seen in Figs. 2 is
any indication, this deviation is not severe.

The other two graphs for both conditions
[Figs. 2(b), 2(c), 3(b), and 3(c)] represent the fraction of
optical power that is transferred from the input mode (LG
mode with £ = 1) to higher-order modes (LG modes with
£ =2 and 3). Again, the initial trends in all these graphs are
the same for both the IPE and the SPS curves. They show
how the power fraction increases from zero as more and
more optical power is transferred from the input mode into
these higher-order modes. Then at some point, the IPE curves
start to deviate from the SPS curves. In Figs. 3(b) and 3(c),
the deviation starts after the curves have passed their peaks.
Optical power is now lost to other modes of even higher
order. The IPE curves in Figs. 3(b) and 3(c) drop below the
SPS curves as they start to experience an accelerated decay.
In Figs. 2(b) and 2(c), the deviations between the IPE and
the SPS curves start before the curves reach their peaks. As
a result, the IPE curves at first rise above the SPS curves and
cross the SPS curves to drop below them in an accelerated
decay. In all these graphs, the numerical results follow the IPE
predictions. However, due to the fluctuations in the numerical
data, one cannot make a clear distinction between the two
predictions when they are still close together. It is only when
the IPE curves have dropped significantly below the SPS
curves that one can see that the numerical data follow the IPE
trend. In Figs. 3(b) and 3(c), we again see a slightly lower
trend in the numerical data than what the IPE trend seems to
predict, which is again believed to be due to the difference
in the way the turbulence is modeled (quadratic structure
function approximation in the IPE versus Kolmogorov power
spectral density in the numerical simulations).

Based on these results, we consider what would happen
in a typical scenario where a laser beam with a waist radius
of 1 cm and a wavelength of 532 nm propagates over a
distance of 1 km through moderate turbulence with C2 =
0.733 x 10~'* m~%/3. (These parameters give K = 0.07.) If
the laser beam profile is an LG mode with £ = 1 and p = 0,
our results indicate that only about 28% of the power in the
beam would be retained in this mode.

V. CONCLUSIONS

The coupling of optical power from one OAM mode to
different OAM modes due to scintillation is investigated with
the aid of the IPE approach, the SPS approach, and numerical
simulations. We contrast the predictions of the IPE, which
is valid under all scintillation conditions, with those of the

SPS approach, which is valid only under weak scintillation
conditions. It allows us to identify and describe the qualitative
behavior of the coupling under various conditions. Using
independent MPS numerical simulations, we show that the
IPE predictions are favored above the SPS predictions.
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APPENDIX: POWER FRACTION EXPRESSIONS

The IPE expressions for the power fraction in the LG
modes with £ = 1, 2, 3 when the input LG mode is £ = 1 are
as follows:

Mot = [W? 4 2u + 2)v> + 2(u + 2)%u’v?
1

F,

Moo = [Bu? + 8u + 8)v* + 4(u + 2)(u + 4)u’v?
A

Wa

M3 = [@® +3u+3)0° + (u +2)(u + 6)u’v?

A2

2 6
4 16 —,
+ @ +4u+ 16)u 1)]41_‘5

+ 2(u2 + 4du + 8)u6v]

+4u? + 4u + 12)ubv]

(AL)

where

I =u*+4u’ + uv +v,
A = Qud + 4u* + v,

v =407.7K% u=3.455W"". (A2)

The subscript 1 — n indicates that the input mode has az-
imuthal index ¢ =1 and the overlap mode has azimuthal
index £ = n.

In the weak scintillation limit, the expressions simplify to

. w?+2u+2
Ni—»1 = 2(1/[—}—1)3
. Bu? + 8u + 8)u
Ni—2 = 8(M+1)4 s
W? + 3u + 3)u?
3= A3
M3 PR (A3)

These results are the same as those that can be obtained in
direct SPS calculations.
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