
The use of P4 for 5G networks

MC Nkosi, AA Lysko

Meraka Institute, Council for Scientific and Industrial Research (CSIR),

Advanced Networks and Architecture systems Research group,

Meiring Naude Road, Lynnwood,

0001, Pretoria, South Africa

E-mail: {mnkosi2, alysko}@csir.co.za

Abstract—5G networks are not only the next mobile

generational networks but, the future networks of “everything”

which are expected to offer new services and business

opportunities on universal level through improved performance,

and flexibility. These networks will combine various access

technologies such as wireless, mobile, satellite, and fixed optical

access networks to offer reliable performance and improve

network coverage. SDN and NFV are the key enabling

technologies for 5G networks. This paper describes use

Programmable Protocol-independence Processors (P4) as the

main language for programming the forwarding plane in SDN

and NFV.

Keywords—SDN;NFV;P4;OpenFlow;5G.

I. INTRODUCTION

Fifth Generation (5G) is the next mobile generation
network that enables innovation and evolution just beyond
mobile internet. 5G promises to integrate telecom and
information technology into a universal infrastructure by
connecting mobile and fixed access networks [1]. 5G combines
networking, computing and storage resources into a flexible
programmable joined infrastructure. The 5G networking is
based on Software Defined Networking (SDN) and Network
Function Virtualisation (NFV) technologies.

SDN is about separating the control plane from the data
plane and making the control plane open and programmable.
SDN is largely based on the OpenFlow protocol which is a
standard for remotely programming the forwarding plane of the
network devices. The OpenFlow protocol overtly specifies
protocol headers on which it operates and these headers have
been growing to account for new functionality, with each new
version of OpenFlow [2]-[3]. The increase of headers has
endorsed the complexity of the OpenFlow specification
without offering flexibility to add new headers.

NFV is about moving the data plane from physical
hardware to virtual machines. NFV is based on the use of
hypervisors which employ virtual switches to sends packets
between virtual machines [4]. The virtual switch is usually
thousands or more lines of code and thus, changing the switch
may require network protocol design, developing, testing and
maintaining a large code. This complexity may ultimately
reduce the efficiency of new feature implementation and
increase cost of performance of software switches [5].

This work analyses the Programming Protocol-Independent
Packet Processor (P4) with regards to:

 Use of P4 alongside OpenFlow to enable flexibility
and protocol-independence without being tied to any
specific network protocol in SDN. Most importantly,
the use of P4 alongside OpenFlow for SDN in 5G
networks is highlighted.

 The use of P4 as a domain-specific language for
protocol independent software switches in NFV to
enable the separation of custom protocol
implementations from switch code in order to avoid
the complexity that comes with protocol “tied”
software switches. In particular, Open virtual Switch
(OvS), which is based on OpenFlow and is widely
used in NFV, is compared to P4 based software
switches.

The rest of this paper is organized as follows: section two
provides an overview on OpenFlow, section three describes P4
as used in SDN, and section four compares the OpenFlow OvS
switch to P4 switch for NFV. Section five concludes the paper.

II. OPENFLOW IN SDN

OpenFlow (OF) is a widely adopted and standardized
protocol used in SDN to enable the programming capability of
the forwarding devices in SDN’s data plane. As depicted in
Fig.1, the OF based SDN network is made up of an OF SDN
controller, which controls the forwarding devices through OF
protocol. OF was introduced to disaggregate firmware from
hardware, so as to use open source firmware which promotes
more control over features and innovation. OF was founded by
Open Networking Foundation (ONF) which is a non-profit
consortium that promotes the adoption of SDN.

OF is based on match and action dataflow concept which, is
implemented and fixed into OF switches. Using the
match/action structure, as summarized in Fig 2, each incoming
packet in the ingress port is matched against a set of group
tables. Each flow entry in a group table consists of a match
field, priority, counters, instruction, timeouts, cookies, and
flags. When a match is found, associated actions are executed.
Otherwise a packet may be dropped. The matching is based on
the OF header fields such as, to mention a few, MAC address,
TCP/UDP port number, IP address and etc. [6].

OpenFlow Application

SDN Controller

OpenFlow

 Forwarding
 devices

Figure 1: OpenFlow components

Figure 2: OF packet process pipeline [6]

Introduction of new features (for example, support for MPLS,
IPv6) in OF brought about a dramatic increase of header
fields in later versions, for example, from just 12 header fields
in OF 1.0 to 41 header fields in OF 1.4. The increase in header
fields complicated the OF specification [3].

Although OF has introduced programmability of the data
plane, it does not support custom protocols , the data plane is
limited to OF existing header fields, and Switches are tied to
protocol headers. Therefore, OF SDN networks cannot adapt to
network demands as required. With 5G networks expected to
be a mix of everything, it is necessary for SDN to be flexible
enough to succumb to user demands and support the expected
evolution of the data plane. The next section describes P4 as an
alternative to OF for SDN.

III. P4 IN SDN

P4 is a domain specific programming language designed
for the data plane [7]. With P4, the SDN controller is given full
capability to tell a switch how to process packets instead of
being limited to a fixed switch design. P4 is designed with the
objective to support reconfigurability, protocol and target
independence. With reconfigurability, the controller is able to
re-define packet processing in the fields. Protocol
independence ensures that the switch is not tied to any
protocol. With target independence, the controller does not

need to know the details and specification of the switches in the
data plane.

Work that proposes protocol independence in SDN exists
[8] – [11]. Cohn et al [8] introduced abstract forwarding for OF
but did not include compiler processing. Protocol –oblivious
forwarding was introduced by Song [9] but was focused on
network processors rather than data plane. Raju et al [10]
introduced NOSIX which, defines the flexibility of
match/action packet processing but does not include protocol
independence. Barbette et al [11] focused on the click modular
router which also defines the flexibility of match/action packet
processing. However, the click modular router does not support
different hardware switches. This paper, recommends P4
because it supports both protocol independence and flexibility
of packet processing for the SDN data plane.

A. P4: Abstract Forwarding Model

P4 provides a joined way to build networks using a mixture
of programmable and fixed-function switches in SDN and
allows for easier introduction of new features and protocols in
software than new hardware. P4 is a program that configures
the forwarding behavior of the data plane. As compared to OF
switches, which are hard wired protocol header switches that
assume packets in a specific format, P4 switches come with a
compiler installed. The compiler translates programs into
target-specific representation. As in fig.3, P4 abstract
forwarding model employs configure and populate operations.
The configuration operation determines the processing of
packets and protocols supported in a switch. P4 is used to
dynamically program a parser graph whose state may be stored
in Ternary Content address memory (TCAM).

SDN Control Plane

 Compiler

Parser and table
configuration Rule translator

P4 Configuration
 Populate (using

OF)

Target Switch

Figure 3: P4 abstraction model

P4 also configure the match/action instructions together with
header fields to be processed. The populate operation adds and
deletes entries of the match/action tables that were configured
during the configuration operation. The populate operation can
be performed using the normal OF. The P4 abstract model
separates populate and configuration operations to support the
reconfiguration of a switch without any disruption in the data
plane.

As compared to OF, P4 offers flexible data plane which
makes it easier to support introduction of new protocols and
features with ease. Table 1 summarizes the main differences
between OF and P4 in SDN. The next section describes the
use of P4 in Network Function Virtualization (NFV).

IV. P4 IN NFV

As one of the key enabling technologies for 5G, NFV
enables the implementation of software-based network
functions on commodity hardware by using softwarization
techniques. NFV relies heavily on hypervisors which, use
software switches to move packets to and from virtual
machines. To support new protocol headers and to improve
debugging features, the software switches require continuous
upgrading and customization [12]. Since software switches are
based on large code, changing the code requires an extensive
understanding of network protocol design which may be
complex. In this section, we look at Open virtual Switch (OvS)
as an OF-based virtual switch in NFV and describe benefits of
using P4 in software switches.

A. Open vSwitch

 OvS is an OF-based software switch widely used in virtual
environments. It employs necessary protocols such as, just to
mention few, Ethernet, VXLAN, and NVGRE for virtual
platforms [12]. As an SDN and OF switch, OvS relies on the
controller to define its behavior. As described above, OF
defines behavior of a switch based on a series of match/action
rules. However, the behavior defined based on OF
match/action rules tends to limit the performance of the switch
because, each packet that enters the switch has to go through a
couple of match/action tables which needs a general packet
classification. Therefore, OvS relies on cache to achieve better
forwarding performance [13].

B. Use of P4 in Software switches

 To define a new approach to perform software upgrade and
customization with great ease and flexibility, P4 program
specifies packet headers to parse and the structure of
match/action. The underlying software substrate is a generic
engine augmented to parse, match and executes instructions as
the program specifies. The P4 Protocol independence offers the
following benefits [7]: (1) ease of adding new features: new
standard or private protocols can be easily added to a P4
program, compiled and deployed quickly; (2) removing a
standard protocol header: removing an unused protocol is as
simple as removing unused portion of program code; (3)
addition of visibility: addition of new protocols and actions to
collect the state of the switch so as to understand network
behavior and operation conditions.

Table 1: OF vs. P4

Choi et al [14] developed a software switch which was
derived from OvS. In their work, they compared P4 based
software switch with an OF-based OvS in terms of complexity,
forwarding performance. Their P4 based switch performed
better in performance and the code is 40 times shorter as
compared to that OF OvS.

V. CONCLUSION

 SDN and NFV are the key enabling technologies for
development of 5G networks. SDN is based on OpenFlow as
the standard protocol for defining the behavior of the
underlying forwarding devices. However, the standard protocol
brings about limitation, such as protocol-dependence,
inflexibility in introducing new features, to forwarding devices.
In this paper, the use of P4 as a high level programming
language for SDN forwarding plane and Software switches for
NFV platforms was described. The benefits of using P4 were
also highlighted, so as to ensure that flexibility in SDN data
plane and NFV platforms is achieved.

 For future work, P4 with be explored further with regards to
reliability of the SDN data plane.

REFERENCES

[1] 5G PPP SN Working Group, “Vision on Software Networks and 5G,”

5G-PPP Initiat., vol. 2017, no. January, pp. 1–38, 2017.

[2] Han, S., Jang, K., Panda, A., Palkar, S., Han, D. and Ratnasamy, S.,
2015. Softnic: A software nic to augment hardware. Dept. EECS, Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-
155.

[3] Thyagaturu, A.S., Mercian, A., McGarry, M.P., Reisslein, M. and
Kellerer, W., 2016. Software defined optical networks (SDONs): A
comprehensive survey. IEEE Communications Surveys &
Tutorials, 18(4), pp.2738-2786.

[4] Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S., Rizzo,
L. and Shenker, S., 2015, October. E2: a framework for NFV
applications. In Proceedings of the 25th Symposium on Operating
Systems Principles (pp. 121-136). ACM.

[5] Perino, D., Gallo, M., Laufer, R., Houidi, Z.B. and Pianese, F., 2016,
April. A programmable data plane for heterogeneous nfv platforms.
In Computer Communications Workshops (INFOCOM WKSHPS), 2016
IEEE Conference on (pp. 77-82). IEEE.

[6] Version, O.S.S., 2015. 1.5. 0 (Protocol version 0x06). Open Networking
Foundation.

[7] Sivaraman, A., Kim, C., Krishnamoorthy, R., Dixit, A. and Budiu, M.,
2015, June. Dc. p4: Programming the forwarding plane of a data-center

OpenFlow P4

Assumes a fixed parser
Supports programmable

parser to allow new headers to
be defined

Assumes the match/action
stages in series

The match/action can be in
parallel or series

Actions are constrained by a
fixed switch design

Actions are composed from
protocol-independent primitives
supported by the switch

switch. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research (p. 2). ACM.

[8] Yadav N, Cohn D. OpenFlow Primitive Set. Google Inc., External
Version: 0.1, Created Jul. 2011 Jul.

[9] Song, H., 2013, August. Protocol-oblivious forwarding: Unleash the
power of SDN through a future-proof forwarding plane. In Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software
defined networking (pp. 127-132). ACM.

[10] Yu, M., Wundsam, A. and Raju, M., 2014. NOSIX: A lightweight
portability layer for the SDN OS. ACM SIGCOMM Computer
Communication Review, 44(2), pp.28-35.

[11] Barbette, T., Soldani, C. and Mathy, L., 2015, May. Fast userspace
packet processing. In Proceedings of the Eleventh ACM/IEEE

Symposium on Architectures for networking and communications
systems (pp. 5-16). IEEE Computer Society.

[12] Rosa RV, Rothenberg CE. Taking Open vSwitch to the Gym: An
Automated Benchmarking Approach. InIV Workshop pre IETF/IRTF
2017 Jul.

[13] Singh T, Jain V, Babu GS. VXLAN and EVPN for data center network
transformation. InComputing, Communication and Networking
Technologies (ICCCNT), 2017 8th International Conference on 2017 Jul
3 (pp. 1-6). IEEE.

[14] Cidon, E., Choi, S., Katti, S. and McKeown, N., 2017, August.
AppSwitch: Application-layer Load Balancing within a Software
Switch. In Proceedings of the First Asia-Pacific Workshop on
Networking (pp. 64-70). ACM.

