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Michaël A. van Wyk
School of Electrical and Information Engineering

University of the Witwatersrand
Johannesburg, South Africa

Abstract—A novel random signal generator design that accom-
modates the specification of both the sample probability distri-
bution as well as the signal bandwidth is presented in this paper.
The generator achieves a high degree of computational efficiency
through the nonlinear transformation of trajectories produced
by a discrete–time dynamical system which has an ergodic map
as evolution rule. The ergodic map is designed using a recently
proposed solution of the inverse Frobenius–Perron problem that
allows for the selection of the map’s invariant distribution as well
as its spectral characteristics. The nonlinear transformation is
obtained via a novel piecewise polynomial fitting algorithm, which
facilitates the approximation of absolutely continuous probability
distributions over compact support with greater accuracy than
existing techniques. Numerical experiments indicate that the pro-
posed design achieves a reduction in signal generation time of up
to 22% compared to a conventional generator, while at the same
time using a smaller lookup table, maintaining a comparable level
of accuracy, and offering flexibility in the selection of the signal
bandwidth. It is concluded that the proposed approach is suitable
for signal generation in applications where low computational
complexity is a critical requirement.

I. INTRODUCTION

Performance evaluation of signal processing systems via
Monte–Carlo simulation involves the processing of sample
functions from random signal models of the system environ-
ment [1]. During simulation, sample functions are typically
produced by random signal generators that offer the flexibility
to specify both the probability distribution and power spectrum
of the random signal model. These generators are required
to maintain an appropriate tradeoff between computational
efficiency and accuracy in adhering to the prescribed statistics,
as dictated by the context in which the generators are applied.

Computational efficiency is a critical requirement of systems
that perform hardware–in–the–loop performance evaluation
of operational radar receivers [2]–[4]. Within this context,
pseudorandom signals are typically generated by field pro-
grammable gate array devices that are referred to as digital
radio frequency memory (DRFM) systems. These systems are
often required to generate samples at multi–gigahertz rates
while maintaining flexibility and exceeding a minimum accept-
able level of accuracy. Conventional random signal generators,

which follow the approach of filtering and transforming a
Gaussian random process (Fig. 1, top), are sufficiently flexible
for use in DRFM systems. However, these generators are com-
putationally inefficient when sampling from several common
probability distributions [1]; this leads to a scenario where
accuracy has to be sacrificed for efficiency through low order
approximation of the prescribed distribution.

This paper presents a novel random signal generator that is
suitable for use in applications where efficiency is a critical
requirement, but where accuracy and flexibility are to be
maintained. The generator’s design (Fig. 1, bottom) follows
an alternative approach towards random signal generation
that leads to a significant gain in computational efficiency.
Instead of using a Gaussian random process generator, the
design incorporates a discrete–time dynamical system which
has an ergodic map as evolution rule. The map is recursively
evaluated to directly produce a uniformly distributed signal
with prescribed bandwidth, thereby rendering the conventional
generator’s transformation of the Gaussian process to a uni-
form process unnecessary. The map is a member of the semi–
Markov piecewise linear maps, and is designed using a recent
solution of the inverse Frobenius–Perron (FP) problem [5], [6]
that facilitates selection of the map’s invariant distribution as
well as its spectral characteristics.

A memoryless nonlinear transformation is applied to the
uniformly distributed samples in order to realize a prescribed
absolutely continuous probability distribution over compact
support. Whereas the transformation equal to the inverse
cumulative distribution function (CDF) F−1 of the prescribed
distribution induces this distribution, the proposed design uses
a piecewise polynomial approximation of F−1 to improve
computational efficiency. Existing algorithms for fitting poly-
nomials in this context [1], [7] have deficiencies that lead
to unnecessary intervals in the approximation; this leads to
a larger coefficient lookup table and additional time required
to search through the table. These drawbacks are addressed
by a novel monotonic cubic polynomial fitting algorithm that
produces a more accurate approximation of the inverse CDF
over a smaller number of intervals.



Fig. 1. Conventional (top) and proposed (bottom) random signal generators.

Numerical experiments were carried out to benchmark the
performance of the novel random signal generator against
a second generator that follows the conventional approach
to signal generation. The results indicate that the proposed
generator is significantly more efficient, achieving a reduction
in generation time of between 18% and 22% for the beta
distribution at the same level of accuracy as the conventional
generator. The proposed generator also maintains smaller
lookup tables (a reduction of up to 33%), while offering
flexibility in specifying the signal bandwidth.

The remainder of this paper is set out as follows. Section II
presents a survey of random signal generator designs aimed
at maximizing efficiency while maintaining acceptable ac-
curacy and flexibility. The fundamentals of random signal
generation through the use of ergodic maps are presented in
section III. Section IV presents the design of the proposed
generator, whereas the results of experimentation are presented
in section V. Conclusions are drawn in section VI.

II. LITERATURE SURVEY

Conventional random signal generators that accommodate
the specification of both the sample distribution and the power
spectrum of the signal follow the filter–and–transformation
approach, in which a filter shapes the power spectrum of a
Gaussian random process, and a transformation induces the
prescribed sample distribution (refer to [1] and Fig. 1, top).
The transformation equal to the composition of the Gaussian
CDF and the inverse CDF F−1 of the prescribed distribution
induces this distribution exactly. However, the computational
complexity associated with the evaluation of this transfor-
mation is unacceptably high in cases where F−1 has to be
evaluated via numeric search, which includes many common
distributions such as the gamma and beta distributions [1].

Several methods aimed at lowering the transformation com-
plexity of conventional generators were investigated in [1],
[7], [8]. These methods trade accuracy in reproducing the
prescribed distribution for efficiency by constructing approx-
imations of F−1 that are computationally less expensive
to evaluate. The approximation of F−1 with straight lines
over disjoint intervals was considered in [1]. Despite the
low computational cost of evaluating the approximation over
each interval, the accuracy of the approximation improves
slowly with respect to the number of intervals. This leads
to impractically large coefficient lookup tables and a slower
search–based table lookup during generation.

The nonlinear approximation of F−1 with piecewise–
defined higher–order polynomials over a fixed number of
intervals was considered in [8]. In this approximation, the
interval boundaries are chosen to ensure that those intervals
towards the center of the domain [0, 1] are of uniform width,
whereas the width of each successive interval is halved towards
the distribution tail. Lagrange interpolation is carried out to
obtain a Chebyshev polynomial approximation. This method
presents a substantial improvement over linear approximation.
However, due to its complexity and an excessive amount of
time required to derive the approximation, the method is not
considered to be suitable for routine use in approximating
arbitrary distributions [1].

The approximation of F−1 with third and fifth order poly-
nomials defined piecewise over a variable number of intervals
was considered in [1], [7]. The segmentation strategy involves
the recursive bisection of the domain until a specified level of
accuracy is achieved over each interval. This method produces
generators that are computationally efficient; however, its
recursive segmentation strategy tends to produce unnecessary
intervals while approaching those regions of the domain where
the slope of F−1 is steep. Furthermore, the method does not
guarantee that each polynomial is strictly monotonic — if
this is not the case, the straightforward inverse relationship
between the approximation and the resulting CDF no longer
holds, leading to a loss in accuracy.

III. RANDOM SIGNAL GENERATION VIA ERGODIC MAPS

Consider a nonlinear map S : I → I, where I = [0, 1] is
the unit interval over R. Let S be measurable over the Borel
σ–algebra B on I and nonsingular with respect to the Borel
measure µ defined on B. Furthermore, let X0 denote a random
variable on I with an absolutely continuous distribution and
probability density function (PDF) f0. The generation of sam-
ple functions of the random process {X1, X2, . . .} defined by
the expression Xi+1 = S(Xi), i ∈ {0, 1, . . .}, is considered.

The FP operator PS : L1 → L1 associated with the map S
characterises the evolution of PDF fi under the evaluation of
S, such that fi+1 = PS(fi) [9]. Let S be an ergodic map. It
follows that there exists at most one PDF f∗S that is a stationary
density of PS — i.e., f∗S = PS(f∗S). If it exists, the density
f∗S is referred to as the invariant density with respect to S.

A consequence of ergodicity is that sample averages con-
verge almost everywhere to ensemble averages in the limit of
infinitely long trajectories generated by measure–preserving



maps [9]. This implies that the sample distributions of trajec-
tories {x1, x2 . . .} converge to f∗S asymptotically for almost
all x0. The proposed approach to random signal generation
exploits this property; specifically, a generator with a uniform
density f over the domain [0, 1] is realized by designing
an ergodic and measure preserving map S such that its FP
operator PS has the stationary density f∗S = f . Furthermore,
by virtue of the fact that the eigenspectrum of PS determines
the characteristics of the time autocorrelation function [6], a
power spectrum with the required characteristics is realized by
selecting the eigenspectrum of PS during the design phase.
Sample functions are generated by evaluating xi+1 = S(xi)
for distinct initial values x0, which serve as seed values.

The proposed generator uses a map from the class
of semi–Markov ergodic maps [10], due to their com-
putational simplicity and flexibility. A Q–semi–Markov
map is defined by a hierarchy of two sets Q and R
of nonoverlapping intervals that partition the domain I.
Let Q = {Q1, Q2, . . . , QN}, where Qn = [qn−1, qn) for
n = 1, 2, . . . , N − 1, QN = [qN−1, 1] and q0 = 0. Further-
more, let R = {(Rj,1)

l(1)
j=1, (Rj,2)

l(2)
j=1, . . . , (Rj,N )

l(N)
j=1 } such

that Qn = ∪l(n)j=1Rj,n. The map S : I → I is Q–semi–
Markov if S restricted to each interval Rj,n is monotonic and
S(Rj,n) ∈ Q for all n = 1, 2, . . . , N and j = 1, 2, . . . , l(n).

Any invariant density f∗S of a piecewise linear and ex-
panding Q–semi–Markov map is piecewise constant on the
intervals of Q [10]. This result facilitates the restriction of
the FP operator PS of any map from this class to the space
of functions constant on the intervals of Q. Let PDFs with
domain I that belong to this space be represented by row
vectors f of length N , such that each vector element equals the
constant value of the density over the corresponding interval.
The FP operator PS may now be represented by an N–by–N
matrix PS (the FP matrix of S), such that f i+1 = f iPS . It
follows that the invariant density f∗S is equal to the normalized
left eigenvector of PS that corresponds to the unity eigenvalue.

The eigenvalues of PS determine the dominant spectral
characteristics of the map [6]; i.e., each eigenvalue corresponds
to a distinct spectral mode, where the mode’s center frequency
is equal to the eigenvalue argument, and the mode’s bandwidth
is inversely proportional to the eigenvalue magnitude. Hence,
both the invariant density and the dominant spectral charac-
teristics of an ergodic semi–Markov map are determined by
its FP matrix eigenvalues and eigenvectors.

IV. RANDOM SIGNAL GENERATOR DESIGN

The design of the proposed generator is presented in Fig. 1
(bottom). The generator uses a discrete–time dynamical system
which has an ergodic U–semi–Markov map S : I → I as
evolution rule, where U is the uniform partition of I = [0, 1].
The recursive evaluation of the evolution rule, starting with
an initial (seed) value x0, generates a signal with a uniform
distribution and with a prescribed bandwidth. The prescribed
distribution is realized through a memoryless nonlinear trans-
formation, which is a piecewise–defined polynomial approxi-
mation of the distribution’s inverse CDF.

The map S is designed using a recently proposed solution
of the inverse FP problem [5], [6]. The design process involves
the synthesis of a doubly stochastic matrix P with a prescribed
eigenvalue spectrum, and the subsequent derivation of the
U–semi–Markov map S such that its FP matrix PS is equal
to P. The doubly stochastic matrix P is constructed using
the recursive Markov state disaggregation algorithm [5] —
starting with the elementary one–state Markov chain, the states
of the Markov chain are recursively disaggregated (or ‘split’)
in a manner such that the resulting states are equiprobable.
Following a specified number of rounds of disaggregation, the
state transition matrix of the final Markov chain is selected
as the matrix P. The disaggregation algorithm allows for the
selection of an additional transition matrix eigenvalue as each
state is disaggregated, thereby providing control over the signal
bandwidth. The U–semi–Markov map S is constructed from
the entries of P using the algorithm provided in [6], [10].

The nonlinear transformation is a piecewise–defined cubic
polynomial approximation Ĝ of the inverse CDF of the pre-
scribed distribution. Let G = F−1 denote the inverse CDF,
where G : I → [a, b]. The approximation Ĝ is defined over the
intervals [x1, x2), [x2, x3), . . . , [xK , xK+1], where the interval
endpoints are selected iteratively, and where x1 , δL and
xK+1 , 1− δR such that 0 < δL, δR � 1. The coefficients of
each polynomial are selected to ensure that the approximation
Ĝ and its first derivative are respectively equal to G and G′ at
each interval’s endpoints, thereby ensuring that both the PDF
and CDF of the resulting distribution are perfectly fitted to
the prescribed distribution at these points. The coefficients of
Ĝ(x)|[xk,xk+1) , ak(x−xk)3 +bk(x−xk)2 +ck(x−xk)+dk
are computed using the expressions

ak = (∆xk)−2[−2mk +G′(xk) +G′(xk+1)], (1)
bk = (∆xk)−1[3mk − 2G′(xk)−G′(xk+1)], (2)
ck = G′(xk), (3)
dk = G(xk), (4)

where ∆xk , xk+1 − xk, ∆yk , G(xk+1) − G(xk) and
mk , ∆yk/∆xk, for k = 1, 2, . . . ,K.

Iterative segmentation is performed in a manner which en-
sures that the L1 norm of the difference between Ĝ and G over
the domain I does not exceed a prescribed error threshold. Let
the error ε(xk, xk+1) over the interval [xk, xk+1) be defined
as

ε(xk, xk+1) ,
∫ xk+1

xk

|Ĝ(x)−G(x)|dx. (5)

The interval endpoints are selected to ensure that the
normalized error over each interval does not exceed a specified
threshold ε∗; i.e., ε(xk, xk+1)/∆xk ≤ ε∗ for k = 1, 2, . . . ,K.
Assuming that a ≤ Ĝ(x) < G(δL) for x < δL and
G(1− δR) < Ĝ(x) ≤ b for x > 1− δR, it follows that
ε(0, 1) < ε∗ + ε∗L + ε∗R, where ε∗L = [max{δL, G(δL)− a}]2
and ε∗R = [max{δR, b−G(1− δR)}]2. The endpoints δL and
1 − δR are obtained from the prescribed thresholds ε∗L and
ε∗R via numeric search during the first step of segmentation.



Fig. 2. Probability density functions of beta distributions B1 to B4.

Fig. 3. Cumulative distribution functions of beta distributions B1 to B4.

The right endpoints of the intervals are selected iteratively,
starting with the leftmost interval [δL, x2) and proceeding to
the right. The right endpoint xk+1 of the interval [xk, xk+1)
is selected as the largest x ∈ Rk, where Rk , (xk, 1 − δR],
such that the normalized error over the interval Ak , [xk, x)
does not exceed ε∗, and which ensures monotonicity of the
polynomial over the interval. Monotonicity is maintained [11]
over the interval Ak if 0 ≤ α(Ak), β(Ak) < 3, where
α(Ak) , G′(xk)/m(xk, x), β(Ak) , G′(x)/m(xk, x), and
m(xk, x) , [G(x)−G(xk)]/[x− xk]. It follows that

xk+1 = max{x ∈ Rk : α(Ak), β(Ak) ∈ [0, 3), ε̃(Ak) ≤ ε∗},
(6)

where ε̃(Ak) , ε(xk, x)/(x−xk). Numerical experimentation
has led to the conclusion that the value of xk+1 may readily be
obtained, for smooth probability distributions, via a numeric
search over a sufficiently fine grid in Rk.

The proposed design uses additional transformations to
achieve a more accurate fit to distributions with heavier tails.

Fig. 4. Proposed and conventional generators’ interval count, as a function
of the polynomial approximation error ε(0, 1).

Fig. 5. Power spectra of the proposed generator.

Two intervals [δL, TL) and [1− TR, 1− δR] are defined over
the domain of G, such that these intervals correspond to the
left and right tails of the prescribed distribution. Within these
intervals, cubic polynomials are fitted over z , log(x) to
log(G(ez) − a) and log(b −G(1 − ez)) respectively, thereby
stretching the domain and range of G. Whereas these trans-
formations facilitate more accurate approximation over fewer
intervals, they incur the computational costs of exponentiation
and the evaluation of logarithms.

V. NUMERICAL EXPERIMENTS

The performance of the proposed generator was bench-
marked against the conventional generator of Fig. 1. The
generators were designed to produce beta distributed sig-
nals with PDF f(x, α1, α2) = xα1−1(1− x)α2−1/B(α1, α2),
x ∈ (0, 1), where B(α1, α2) , Γ(α1)Γ(α2)/Γ(α1 + α2) and
α1, α2 > 0 denote the distribution parameters. Four distinct
parameter pairs (α1, α2) were selected, thereby producing dis-



Fig. 6. Relative processing time of the conventional (CRSG) and proposed
(PRSG) generators.

Fig. 7. Table size of the conventional (CRSG) and proposed (PRSG)
generators.

tributions B1 to B4 (Figs. 2 and 3) with distinct characteristics
that facilitate a thorough performance evaluation.

The proposed generator’s ergodic map was designed over
the N = 16 interval partition U , and with dominant eigenvalue
λ1 as indicated in Fig. 5. The polynomial approximation was
computed with ε∗L = ε∗R = 10−16 and ε∗ = 10−9 for the
efficiency benchmark. The tail intervals were defined with
parameters TL = TR = 10−3. The conventional generator was
designed with the goal of maximizing efficiency, and with the
same approximation error as the proposed generator for the
efficiency benchmark; the ziggurat Gaussian generator [12]
and the Chebyshev approximation of the Gauss CDF [13] were
incorporated in the design. The polynomial approximation of
the conventional generator was derived using the cubic Her-
mite interpolation method of [1]. The conventional generator
uses a first order IIR filter for spectral shaping.

Fig. 4 compares the number of intervals produced by the

two fitting algorithms in approximating B1 to B4, and while
maintaining the same level of accuracy. The novel algorithm
outperforms the conventional algorithm and achieves a reduc-
tion of up to half the interval count for heavier–tailed distri-
butions B2 to B4; this leads to smaller lookup tables that are
less expensive to search. The novel generator simultaneously
accommodates a wide range of signal bandwidths (Fig. 5).

The efficiency benchmark is presented in Fig. 6, whereas
the corresponding lookup tables are compared in Fig. 7. The
proposed generator achieves a reduction in processing time of
18% to 22% during signal generation. The greatest gain is
observed for the heavier–tailed distribution B4; this implies
that additional computation in the tail is compensated for by
the efficiency gain due to interval count reduction. The novel
generator uses smaller tables, with up to 33% size reduction.

VI. CONCLUSIONS

The results indicate that the proposed approach to random
signal generation, which involves the use of ergodic maps
and piecewise polynomial transformations constructed via a
novel fitting algorithm, provides a significant computational
efficiency gain and table size reduction compared to the con-
ventional design. This performance gain is achieved without
compromising on accuracy and while accommodating the
selection of the signal bandwidth. The proposed design is
suitable for applications where efficiency is critical.
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