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Abstract— Password cracking is the term commonly used to 

describe the illegal action of gaining access to clear text versions 

of user passwords. Hackers are notorious for stealing encrypted 

passwords and cracking them. The same action of password 

cracking can be used by system administrators to protect their 

systems from weak user passwords. By applying a password 

cracker to user passwords, weak or easy to crack passwords can 

be identified. Through the design of a password cracker system 

administrators can prevent weak passwords from being saved 

onto their systems. Users can also be made aware of the strength 

of the passwords they are currently employing.  A manner in 

which password cracking can be made more effective is to 

produce a few guess words with a high probability of cracking a 

large number of passwords. Research has revealed the successful 

use of grammars to generate effective password guess words. In 

order to generate password grammars, genetic programming is 

applied to grammar induction for the purpose of inducing 

grammars that will be used as input to a password cracking tool. 

To achieve this goal the current paper looks at the performance 

of genetic programming in the induction of regular and context-

free languages. The results of the experiments conducted are 

promising, with the genetic programming algorithm managing to 

induce twenty three of the twenty six context-free languages it 

was tested on. The value of this paper lies in the evaluation of the 

genetic programming technique for grammar induction. The 

output of the research will be used to build a genetic 

programming system which can evolve grammars to generate 

password guess words to crack user created passwords. 

Keywords— Genetic programming; grammar induction; 

password cracking 

I.  INTRODUCTION  

A password is a secret chain of characters (alphabet letters, 
numbers or special characters) which is used as a key to gain 
entry into a system. A system assumes that a user that can 
produce the correct password has authorised access to it. The 
aim of password implementation is for authorised users to gain 
easy access to the system by producing the password, but 
impossible or at least very difficult for unauthorised users to 
produce the password. Different password implementations 
exist.Some are more technologically advanced such as 
biometric or graphical . The most  basic text based. While other 
forms of password implementation are seen as more secure, 

text based passwords are still heavily used to protect resources 
such as funds in a bank, or to protect user privacy such as 
conversations on social network sites. In order to assign a 
password, there are two main approaches that are followed. 
The first approach is allowing users to create passwords for 
themselves. In the second approach the administrator creates 
the password and assigns it to the user. 

In most cases password creation is left in the hands of 
users. It is common knowledge in the security domain that 
human users are the weakest link in many security systems. 
This is also true in the creation of text based passwords. The 
majority of users create weak passwords that are easy to guess. 
This can be attributed to users following a routine when 
completing tasks. These routines make the passwords created 
by users predictable and a security risk. 

Researchers have used different techniques to search for 
patterns in user passwords. Using 14 000 password entries 
Bishop and Klein [1] searched for the commonly known 
patterns such as word length, dictionary words and keyboard 
patterns. Jakobsson  and Dhiman [2]  built a parser to uncover 
the internal structure of passwords. The research takes a two-
phased approach ; the first phase was a search for components 
and the second focused on deriving  rules that join the different 
components. Weir, Aggarwal, de Medeiros and Glodek [3] 
build a computer program that takes in as input probabilistic 
context-free grammars to create a password cracker. The 
structures of the grammars are essentially patterns that are 
derived for actual user passwords. The research presented in 
this paper would like to build on this work by applying genetic 
programming to the induction of grammars which will later be 
used for password cracking. The languages studied in the 
current work are a set of benchmark regular languages as well 
as a set of standard context-free grammar languages that have 
previously been used in studying grammar induction. 

The breakdown for the rest of the paper is as follows: 
Section II gives an introduction to grammars and explains their 
relevance to password guess words. Section III gives an 
explanation of genetic programming. Section IV motivates by 
presenting previous research, why genetic programming can be 
used to evolve grammar structures. Section V presents the 
genetic programming algorithm used in the study. Section VI 

file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_1
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_2
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_3


describes the experiment setup. Section VII presents the results 
from the study. Section VIII provides an analysis of the results 
as well as a comparison to previous research. The paper is 
concluded in section IX.  Future work is then presented in 
section X. 

II. GRAMMARS AND PASSWORDS 

A grammar is a set of symbols, variables and rules. The 
rules of a grammar govern how the symbols and variables can 
be used in the generation of a language. Grammars for natural 
languages have their origin in the field of linguistics. Recently 
however, computer science researchers have been investigating 
how grammars can be applied in domains such as pattern 
recognition, image processing, and video processing. 
Grammars have also been used in the field of password 
cracking.  

Formally a grammar is defined by the quadruple G = (V, Σ, 
S, P) [6, 7]. V represents a finite set of non-terminal symbols. Σ 
is the alphabet of the grammar which consists of a set of 
terminal symbols. S is the start symbol and P represents the 
finite set of production rules in the form α → β where α, β ∈ (V 
∪Σ) and α ≠ ε. P represents the rules which are used to create 
the strings in a language [6, 7]. Grammar induction is defined 
as the challenge of creating a grammar from a given set of 
positive and negative samples. Among other approaches, 
evolutionary algorithms have been applied to the induction of 
regular and context-free grammars. The next section will 
discuss genetic programming, an evolutionary algorithm that 
has been previously applied to grammar induction, as well as 
previous research that has been conducted in the field.   

User created passwords are created by using different 
characters which are combined in different ways or 
permutations. Through a survey of literature, it is found that 
there exists two general categories in password patterns; 
character patterns and word patterns. Character patterns are 
passwords or part of passwords that result from using one or 
more characters independently, or characters that do not form 
part of a word. Patterns that fall under this category are 
singular (a single alphabet character), repeated character (the 
same repeated character), increments (a repeated character of 
alphabet letters or numbers) and keyboard patterns (patterns 
which are derived through the order which they are presented 
on the keyboard). Word patterns are a result of mangling rules 
that are applied to password dictionary words. The patterns that 
fall under this category are capitalization (simply capitalizing 
every letter in the word), concatenation (placing one or more 
words together), l33t (leet) substitutions (replacing letters in 
dictionary words with numbers or symbols that resemble that 
letter), inverse and palindrome.  

Grammars can be used to capture the structures which are 
found in user created passwords. For example the palindrome 
pattern can be represented by the grammar G = (V, Σ, S, P) 
where : 

V = {S, B};  Σ = {a, b }; S = {S}; P ={ S  → a S a ; S  → b 
S b; S → a ; S → b } 

The palindrome ‘baabaab’ can then be constructed by using 
the grammar productions. 

The next section gives an explanation of genetic 
programming. 

III. GENETIC PROGRAMMING 

The skill of writing computer programs is  seen as difficult 
to acquire. Good programmers must have programming skills 
as well as some domain knowledge of the problem in order to 
build a solution. A programmer must show attention to detail 
as a single error, whether syntactical or logical, can cause an 
entire system to fail. This is one of the reasons that Computer 
Scientists have looked to alternative methods in building 
computer programs. Genetic programming is a technique of 
automatically evolving computer programs. Inspired by 
Darwin’s principle of evolution, genetic programming evolves 
a randomly generated population of programs towards a 
desired solution program [4]. 

A generational genetic programming run begins with 
creating an initial population of randomly generated programs. 
The individuals are then evaluated to find the individuals in the 
population that are closer to the solution program than others. 
A selection method is then used to select the individuals that 
will be used as parents. The next generation is created by 
applying genetic operators, usually reproduction, mutation and 
crossover to the parents. Once a new population has been 
created, the algorithm iterates until a solution to the problem is 
found or a stopping criterion is met. The complete process, 
starting with the initial population and iteratively refining this 
population over a number of generations, is known as a genetic 
programming run [4, 5]. Fig. 1. shows a diagram of a 
generational genetic programming run. 

 

Fig. 1. Steps of a Generational Genetic Program Run 

IV. GENETIC PROGRAMMING FOR GRAMAR INDUCTION 

This section will present previous research using genetic 
programming for grammar induction.   

Javed [6] implemented  genetic programming for the 
induction of context-free grammars. The context-free 
grammars represent domain specific languages (DSL). 
Grammar representation was in Backus Naur Form. The initial 
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population was created by productions from a correct grammar 
for the language. One point crossover and mutation were 
implemented. These genetic operators were not sufficient for 
the induction of context-free grammars. Therefore three 
additional genetic operators were designed. These include the 
option operator, iteration + and iteration* operators. Option 
allows the production rule to choose between two productions. 
Iteration* allows a production rule to call a value on the left 
hand side of a production zero or more times. Iteration+ allows 
the production rule to call a value on the left hand side of a 
production at least once. The fitness measure computed the 
number of grammars that were correctly passed, the closeness 
of the inferred grammars to the correct grammar and lastly the 
scalability of the grammar. With the addition of the helper 
genetic operators the genetic programming system was able to 
induce small sized DSL context-free grammars. 

In  [7] grammar induction was revisited by Javed [7] with 
the use of genetic programming. The alterations to the previous 
system were in the representation of the grammars. The 
grammars were now represented using derivation trees and 
syntax graphs. A new helper operator called the delete operator 
was implemented. This operator deletes a production rule from 
a grammar. The genetic programming system was successful in 
evolving grammars for languages which required a small 
grammar structure. Larger grammar structures could not be 
induced. The helper operators were an important element in 
this study. They allowed the properties of context-free 
grammars to be represented in full. Properties such as allowing 
for recursion are captured using the iteration operators. An 
more suitable representation of a context-free grammar can 
capture the described properties of a grammar.  This topic will 
be elaborated upon in the discussion of the current systems 
grammar representation. 

Javed, Barrett, Matej Marajan and Alan [8] built on the 
work in [6] and [7]. The genetic programming system 
implemented is similar to [7]. The researchers suggested that 
the right hand side of the grammars be treated as a collection of 
regular sets. These regular sets are connected by union, 
concatenation and recursion. It was anticipated that the genetic 
programming system would find the small regular grammars of 
the big grammar and join them using concatenation, union or 
recursion. Again, what the researchers tried to capture in their 
suggestion is the properties or capabilities of context-free 
grammars. This observation implies that there are missing 
properties in grammar induction that prevents a solution from 
being evolved. This can be linked back to Koza’s requirements 
for a genetic programming system. Koza [4] emphasised that 
the terminal set, function set, fitness function and problem 
representation must be implemented so that it is possible to 
evolve a solution. If the problem domain is not fully 
represented, the genetic program cannot evolve a solution. 

Korkmaz and Üçoluk [11] also did some work on this topic. 
The grammars were represented as a structured tree. The 
fitness function used took into consideration both the number 
of correctly passed strings and the size of the grammar (See 
equation 1). The genetic operators used were crossover, 
mutation and reproduction.   

(1) 

The training set included 20 simple English sentences 
consisting of noun phrase (NP) and a verb phrase (VP) 
structures. 

Given the symbolic character of grammar induction, 
genetic programming is apt for this purpose. However, like in 
the study conducted by Javed [6] it was found that standard 
genetic programming was unable to evolve solution grammars. 
This is due to the high interdependency among the subparts of 
a context-free grammar. The grammar must be seen as a whole 
structure not as a structure made up of building blocks. 
Therefore the aim of the study was to formalise a control 
module for the genetic programming. A second shortcoming of 
the standard genetic programming technique is the tree 
representation of the individuals. The tree representation served 
to be an impediment in the search for the solution grammar. 
The reasoning behind this statement is that as mentioned 
before, the productions in a grammar are highly interdependent 
meaning that a slight change in one element can dramatically 
change the fitness of the whole grammar. The researchers 
stress that crossover and mutation could cause more harm than 
good in the evaluation of grammars. The situation mentioned in 
the research has been looked at by the pioneers of genetic 
programming and is termed destructive crossover [4]. The 
solution employed by Korkmaz and Üçoluk [11] uses the same 
reasoning as non-destructive crossover where an offspring 
created by crossover or mutation forms part of the next 
generation only if its fitness is better or equal to its parents. .  

Rodrigues and Lopes [12] worked on the induction of 
context-free grammars. The grammars in the research were 
represented as tree structures with the root node being ‘S’ 
which represents the start symbol. The initial population was 
randomly generated. All the productions were reachable 
directly or indirectly from the start symbol ‘S’. The fitness 
measure was computed by multiplying the specifity and 
sensitivy. Specifity is the total number of correctly rejected true 
negatives divided by the number of true negatives and false 
positives in the training set. Sensitivity is calculated by the total 
number of true positives correctly accepted by the grammar 
divided by the number of true positives and false negatives in 
the training set. The experiment in this study makes alterations 
to the standard genetic programming technique with the 
introduction of two new operators; the ‘Incremental Learning 
Operator’ as well as the ‘Expansion Operator’. The 
Incremental Learning Operator was brought in to support 
convergence in the genetic run. The operator adds new positive 
productions through the use of the table produced when 
constructing the Cocke, Younger and Kasami CYK algorithm. 
The CYK algorithm is a parsing algorithm for context free 
grammars. It takes in a grammar in Chomsky Normal Form 
(CNF) as well the string to be passed. The string is constructed 
from the bottom up using the productions in the grammar [12]. 
For a more detailed explanation see [13]. Table I shows an 
example of the table produced by the CYK algorithm. Once the 
table is constructed, the Incremental Learning Operator checks 
to see if there are any productions in the top row of the table. If 
there are, a new production is created by changing the left 
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production of the production in the table to ‘S’ (start symbol of 
the grammar). If there are no productions in the top row then 
the new production is created by making the start variable the 
left hand side production and the right hand side variables are 
created by using the left hand side of the productions in the row 
below the top row. This operator adds positive productions 
which then promote convergence; however it does not 
guarantee the rejection of false negatives. 

TABLE I.  EXAMPLE OF CYK TABLE FOR THE STRING ‘ABA’ 

2 S → C D   

1 C→  A B D→B A  

0 A → a B→ b A→ a 

 A b a 

 

The Incremental Learning Operator was successful in 
adding positive productions to the grammar [12]. The 
expansion operator adds diversity to the population by creating 
new productions and adding them to the grammar. To mitigate 
against the creation of useless productions, the left hand side of 
the production rule is a new variable and the right hand side 
contains variables that are in the grammar as well as a new 
variable. Two new productions are created through the 
expansion operator. The expansion operator was then used to 
replace the reproduction operator of standard generational 
genetic program. The approach was successful in inducing 
grammars for the Tomita set of  benchmark languages. 

Based on the literature review, it was found that genetic 
programming is able to induce small structured grammars. 
Through the analysis of previous research, the importance of 
understanding and aligning the requirements of grammar 
induction with those of  genetic programming come through. 
Domain appropriate representation of the grammar, genetic 
operations, parameters and evaluation function are important in 
the design of a successful genetic programming system. 

The next section describes the genetic programming 
algorithm implemented in the study presented.  

V. GENETIC PROGRAMMING ALGORITHM   

The aim of the current study is to explore whether genetic 
programming can be used for evolving grammars.  The evolved 
grammars will be used to generate password cracking guess 
words. Therefore the first step is to analyse the capability and 
performance of genetic programming for the induction of 
grammars. The current section will therefore be centered on the 
topic of genetic programming for grammar evolution. Previous 
research has investigated the application of genetic 
programming on a few grammar languages. In this section a 
genetic programming system will be presented where the 
genetic programming technique is applied to fifteen benchmark 
regular language sets and eleven context-free grammar 
languages. 

A. Datasets 

The datasets used were designed for the induction of 
deterministic finite automata (DFA). Since DFAs are used as 

acceptors for context-free languages, it is appropriate to use 
these datasets to induce grammars that generate the context-
free languages.  

The datasets for the first seven regular languages were 
created by Blair and Pollack [14]. The target DFA’s are small 
in size, meaning the language can be represented using a DFA 
containing one to four states. The remaining seven regular 
languages were created by Miclet and Gentile [15]. The 
instances contained in the dataset include both positive (belong 
to the language) and negative (do not belong to the language)  
words.  

TABLE II.  REGULAR GRAMMAR LANGAUGES 

 Language Description 

L1 a * 

L2 ( a b ) * 

L3 Any sentence without an odd number of consecutive a's 
after an odd number of consecutive b's. 

L4 Any sentence over the alphabet a, b without more than 
two consecutive a's. 

L5 Any sentence with an even number of a's and an even 
number of b's. 

L6 Any sentence such that the number of a's differs from 
the number of b's by 0 modulo 3. 

L7 a * b * a * b * 

L8 a * b 

L9 ( a * + c * ) b 

L10 ( a a ) * ( b b b ) * 

L11 Any sentence with an even number of a's and an odd 
number of b's. 

L12 a ( a a ) * b 

L13 Any sentence over the alphabet a, b with an even 
number of a's. 

L14 ( a a ) * b a * 

L15 b c * b + a c * a 

 

The dataset for context-free languages was created by the 
researcher by generating the positive examples and negative 
instances. These languages have also been used in previous 
studies [16]. 

TABLE III.  CONTEXT-FREE GRAMMAR LANGUAGES 

 Language Description 

L1 an  bn where n ≥0 

L2 an c bn where n ≥0 

L3 All palindromes with an odd number of letters. ∑ = {a, b} 

L4 s sr where s is in ( a + b ) * 

L5 s c sr where s is in (a + b) * 

L6 s is in (a + b)*: the number of a’s in s is equal to the 
number of b’s in s. 

L7 an b2n where n ≥0 
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L8 {an bn: n  ≥0} ᴜ {a} 

L9 a a * b a * 

L10 an b2n where n ≥1 

L11 All strings with balanced brackets. ∑ = {(, )} 

 

A. Representation 

The individuals for the current program are represented as 
tree structures with the maximum of arity of two as shown in 
Fig 2. A maximum width and depth allowed for the control in 
size of the individuals in the population to avoid bloat as 
suggested by Mernik et al. [9].  

 

Fig. 2. Tree representation for the grammar productions: S→a B, B→b a 

The root node in each tree is always ‘S’ which represents 
the start symbol. This allows for all the nodes to be reached 
directly or indirectly from the start symbol. The function set 
used were the variables ‘S’, ‘A’,‘B’,‘C’,’D’ and ‘E’. The 
number of variables was sufficient because none of the target 
languages required more than five states. Having a small set of 
variables also reduced the search space. The terminals were 
mined from each sample set. The values include ‘0’and‘1’ 
where the |Σ| = 2. The terminal symbol ‘2’ was added where 
the |Σ| = 3. As in the study conducted by Korlmaz and Göktürk 
[11], the productions of a grammar are highly interlinked; 
therefore to address the need for unity, the single tree 
representation permits the tree to evolve as a unit.  

B. Initial Population 

The initial population was randomly generated using the 
grow method. Each individual represented a single grammar 
and matched the structure in Fig 2.  

C. Fitness Evaluation 

To evaluate the population, the accuracy calculation, which 
is commonly used in machine learning, was used [12]. The first 
step is computing a confusion matrix. A confusion matrix is a 
matrix that keeps count of the positive examples that the 
grammar can generate (True positive), the negative examples 
that the grammar cannot generate (True Negatives), the 
positive examples that the grammar cannot generate (False 
Negatives) and the positive examples the grammar failed to 
generate (False negative).  The dataset of positive and negative 
instances are used to calculate these values.  

To compute the confusion matrix, each example string in 
the dataset had to be evaluated to see whether or not it can be 
constructed using the given grammar. The Cocke, Younger and 
Kasami (CYK) algorithm was used for this evaluation given its 
previous success when implemented by Rodrigues and Lopes 
[12]. Firstly each individual was converted to Chomsky 
Normal Form . 

Accuracy was then computed according to the formulae: 

    (2) 

Accuracy is a good measure in this case because it assumes 
equal cost for false positives and false negatives. This is  
appropriate because in grammar induction, it is equally 
important that the grammar being induced can generate only 
words in the language but must not generate words that do not 
belong to the language. The fitness value for each individual is 
equal to the accuracy measure. 

D. Selection Method 

The tournament selection method as described by Koza [4] 
is implemented. Tournament selection randomly selects 
individuals equal to the tournament size. The individual with 
the best fitness value is chosen as the winner of the tournament 
selection. 

E. Genetic Operators 

Genetic Operators allow the winners of the selection 
method to undergo genetic modification. 

Reproduction: The reproduction method is implemented as 
follows: A grammar is selected using the selection method. 
That grammar is copied over to the next generation. 

Crossover: Standard crossover as described by Koza [4] 
was implemented. To mitigate against bloat, a restriction in the 
size of the number of the tree is set at 15 for regular languages 
and 20 for the context-free languages. This number is kept low 
because when the tree is converted to Chomsky Normal Form 
for evaluation, the number of productions increases. 

Mutation: Standard mutation as described by Koza [4] was 
implemented. The same bloat mitigation strategy was also 
applied to crossover. 

VI. EXPERIMENT SETUP 

The genetic programming algorithm was implemented in 
Java using JDK1.7.0_45 and the simulations were ran on an 
Intel Core i7-3770 machine running Windows 7, 64-bit. 
Generation genetic programming was implemented. The 
parameter values of the genetic programming runs were tuned 
using trial and error and were set as follows for the regular 
languages: mutation= 15%, reproduction=5% and 
crossover=80%. A population size of 150 was set for all 
languages and the number of generations was set to 50. Ten 
runs were performed for each language. 

The parameter values for the context-free languages were 
as follows: mutation= 20%, reproduction=5% and 
crossover=75%. A population size of 250 was set for all 
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languages and the number of generations was set to 50 -100. 
Ten runs were performed for each language. 

VII. RESULTS 

The presented system was able to evolve solutions for 
thirteen out of the fifteen regular languages. For the context-
free languages, the GP algorithm managed to evolve grammars 
for ten out of the eleven languages. Table IV shows a summary 
of the results as well as the production rules evolved for each 
language. 

TABLE IV.   GRAMMAR SOLUTIONS EVOLVED 

 Regular Language Solutions 

L1 S →  0; B →  S; S →  00; E →  S0; S →  BE 

L2 S →  01; A →  01; D →  AS; S →  D 

L3 No solution found 

L4 S → D; S → AA; S → C; S → 0;S →  S; S →  B; S 

→ SB; A →  S; A →  A; A → 0; B → D; B → 1B; B 

→ S; C → 1; C →  01; D → 1S; D → CS 

L5 S → 11; D → 01; S → 00; D → 10;D → SD; S → DD; 

S → SS 

L6 C → 00; C → 1; C → 1; C → 1; S →  C0; S → 01; 

B → SS; A → B; S → A; C → CS; D → CC; S → CD 

L7 D → 0; C → D; D → 0; D → 0D; D → D1; A → 1; S 

→ A; D → S; S → DD; B → 0; B → SB; S → B; S → 

CS 

L8 D → 1; C → D; D → 0C; S → D ;B → 0S; S → B 

L9 B → 1; C → 2B; B → C; S → B; C →  2S; B → C; B 

→ C; S → B; S → 0S; S → S; S → S; S → 0S;S →  

S 

L10 C → 00; D → 11; S → D1; S → 00;B → S; S → SB; 

S → S; S → CS 

L11 No solution found 

L12 C → 00; D → C; B → 01; B → B; B →  0B; S → B; 

S → DS 

L13 D → 1; S → D; A → 0; A → SA; S → 0A; S → 1;C → 

SS; C → C; S → 1;C → CS; C → C; S → C 

L14 B → 00; A → 1; C→ BA; S → C0; S → S0; S → S; 

C→ S; A → C; C → A; S → C0; C → S; S → C; A → 

S;S →  A 

L15 A → 0; A → A2; C → 1; C → 2C; C → C; S → 1C; D 

→ 12; A → SD; B →  A; S → AB; S → S 

 Context-Free Language Solutions 

L1 S → C; C → 01; B → 0S; S → B1 

L2 S → C1; E → 2; D → E; S → D; C → 0S 

L3 No solution found 

L4 B → 0 ;B → 1; S → 10; B → S1; S → BB;B → 0S; D 

→ BB; S → D 

L5 E → 02; D → E; S → 2; S → DS; C → 0; E → SC; E 

→ E; S → 0E; C → 1S; S → C1 

L6 S → 10; S → 01; B → S0; S → 1B; S → SS 

L7 A → 11; C → A; S → 0C; C → 11;E → SC; S → 0E 

L8 A → 0; C → 0; D → C1; C →  AD; S → C1; S → S; A 

→ S1; S → A 

L9 E → 0; S → E1; S → S0; S → 0S;S → S 

L10 A → 11; C → A; S → 0C; C → 11; E → SC; S → 0E 

L11 E → 1; C → 1; B → 0C; S → EB; C → 1; B → 01; S 

→ CB; C → S; C → SC; S → 0C 

VIII. ANALYSIS  

This section analyses the performance of genetic 
programming for grammar induction. As can be seen from 
Table V the number of runs where a correct solution was found 
is show. This value is referred to as the success rate. The 
success rate of genetic programming was higher simple 
languages such as L1 in the regular languages and L1 of 
Context-free languages.  

TABLE V.    SUCCESS RATE FOR GRAMMAR INDUCTION 

 Number of runs where a correct solution was 
found  

 Regular Languages Context-free Languages 

L1 10 10 

L2 10 10 

L3 0 0 

L4 4 4 

L5 1 1 

L6 10 6 

L7 1 4 

L8 10 5 

L9 6 10 

L10 10 9 

L11 0 10 

L12 10  

L13 10  

L14 10  

L15 1  

 
The common characteristic of the languages that were not 

generated is that they contain an odd number of alphabet 
characters. This could be a challenge for genetic programming. 
A possible reason for this is that generally, it takes more 
productions to represent an odd number of variables as 
compared to an even number.    

The genetic programming algorithm performed well in 
situations where the language being generated was simple such 
as L1, for both regular and context-free languages. The 
evaluation of context-free grammars was a challenge because 
of the lack of a benchmark data set. Initially the use of 
randomly generated datasets yielded unsatisfactory, brittle 
solutions. In those situations more positive and negative 
examples were added in order to guide the genetic 
programming algorithm towards a better solution.  



IX. CONCLUSION 

As shown by the results, genetic programming was 
successful in inducing a solution grammar for twenty three out 
of the twenty six languages that it was tested on. Therefore 
genetic programming can be applied to grammar evolution.  

The biggest limitation in evolving grammars is the 
dependency of an algorithm on the dataset used. This problem 
was also experienced by the current investigation. The 
grammars produced were over specific. Over specification to 
the dataset causes the grammars to allow words that are not in 
the language to be generated by the solution grammar. To solve 
this problem domain knowledge was used to add more positive 
and negative examples to the dataset. 

X. FUTURE WORK 

Future work will look to apply the genetic programming 
algorithm obtained from the current study to a dataset made up 
of leaked passwords in order to evolve grammars to be used to 
generate password guess words. Once the grammars have been 
constructed, they will be used to generate passwords structures 
also known as password masks.   
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