
Genetic Programming for Password Cracking
Phase One: Grammar Induction

Thulani Mashiane

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Pietermaritzburg, South Africa

Council of Scientific and Industrial Research

Pretoria, South Africa

tmashiane@ukzn.co.za

Nelishia Pillay

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Pietermaritzburg, South Africa

Pillayn32@ukzn.ac.za

Abstract— Password cracking is the term commonly used to

describe the illegal action of gaining access to clear text versions

of user passwords. Hackers are notorious for stealing encrypted

passwords and cracking them. The same action of password

cracking can be used by system administrators to protect their

systems from weak user passwords. By applying a password

cracker to user passwords, weak or easy to crack passwords can

be identified. Through the design of a password cracker system

administrators can prevent weak passwords from being saved

onto their systems. Users can also be made aware of the strength

of the passwords they are currently employing. A manner in

which password cracking can be made more effective is to

produce a few guess words with a high probability of cracking a

large number of passwords. Research has revealed the successful

use of grammars to generate effective password guess words. In

order to generate password grammars, genetic programming is

applied to grammar induction for the purpose of inducing

grammars that will be used as input to a password cracking tool.

To achieve this goal the current paper looks at the performance

of genetic programming in the induction of regular and context-

free languages. The results of the experiments conducted are

promising, with the genetic programming algorithm managing to

induce twenty three of the twenty six context-free languages it

was tested on. The value of this paper lies in the evaluation of the

genetic programming technique for grammar induction. The

output of the research will be used to build a genetic

programming system which can evolve grammars to generate

password guess words to crack user created passwords.

Keywords— Genetic programming; grammar induction;

password cracking

I. INTRODUCTION

A password is a secret chain of characters (alphabet letters,
numbers or special characters) which is used as a key to gain
entry into a system. A system assumes that a user that can
produce the correct password has authorised access to it. The
aim of password implementation is for authorised users to gain
easy access to the system by producing the password, but
impossible or at least very difficult for unauthorised users to
produce the password. Different password implementations
exist.Some are more technologically advanced such as
biometric or graphical . The most basic text based. While other
forms of password implementation are seen as more secure,

text based passwords are still heavily used to protect resources
such as funds in a bank, or to protect user privacy such as
conversations on social network sites. In order to assign a
password, there are two main approaches that are followed.
The first approach is allowing users to create passwords for
themselves. In the second approach the administrator creates
the password and assigns it to the user.

In most cases password creation is left in the hands of
users. It is common knowledge in the security domain that
human users are the weakest link in many security systems.
This is also true in the creation of text based passwords. The
majority of users create weak passwords that are easy to guess.
This can be attributed to users following a routine when
completing tasks. These routines make the passwords created
by users predictable and a security risk.

Researchers have used different techniques to search for
patterns in user passwords. Using 14 000 password entries
Bishop and Klein [1] searched for the commonly known
patterns such as word length, dictionary words and keyboard
patterns. Jakobsson and Dhiman [2] built a parser to uncover
the internal structure of passwords. The research takes a two-
phased approach ; the first phase was a search for components
and the second focused on deriving rules that join the different
components. Weir, Aggarwal, de Medeiros and Glodek [3]
build a computer program that takes in as input probabilistic
context-free grammars to create a password cracker. The
structures of the grammars are essentially patterns that are
derived for actual user passwords. The research presented in
this paper would like to build on this work by applying genetic
programming to the induction of grammars which will later be
used for password cracking. The languages studied in the
current work are a set of benchmark regular languages as well
as a set of standard context-free grammar languages that have
previously been used in studying grammar induction.

The breakdown for the rest of the paper is as follows:
Section II gives an introduction to grammars and explains their
relevance to password guess words. Section III gives an
explanation of genetic programming. Section IV motivates by
presenting previous research, why genetic programming can be
used to evolve grammar structures. Section V presents the
genetic programming algorithm used in the study. Section VI

file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_1
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_2
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_3

describes the experiment setup. Section VII presents the results
from the study. Section VIII provides an analysis of the results
as well as a comparison to previous research. The paper is
concluded in section IX. Future work is then presented in
section X.

II. GRAMMARS AND PASSWORDS

A grammar is a set of symbols, variables and rules. The
rules of a grammar govern how the symbols and variables can
be used in the generation of a language. Grammars for natural
languages have their origin in the field of linguistics. Recently
however, computer science researchers have been investigating
how grammars can be applied in domains such as pattern
recognition, image processing, and video processing.
Grammars have also been used in the field of password
cracking.

Formally a grammar is defined by the quadruple G = (V, Σ,
S, P) [6, 7]. V represents a finite set of non-terminal symbols. Σ
is the alphabet of the grammar which consists of a set of
terminal symbols. S is the start symbol and P represents the
finite set of production rules in the form α → β where α, β ∈ (V
∪Σ) and α ≠ ε. P represents the rules which are used to create
the strings in a language [6, 7]. Grammar induction is defined
as the challenge of creating a grammar from a given set of
positive and negative samples. Among other approaches,
evolutionary algorithms have been applied to the induction of
regular and context-free grammars. The next section will
discuss genetic programming, an evolutionary algorithm that
has been previously applied to grammar induction, as well as
previous research that has been conducted in the field.

User created passwords are created by using different
characters which are combined in different ways or
permutations. Through a survey of literature, it is found that
there exists two general categories in password patterns;
character patterns and word patterns. Character patterns are
passwords or part of passwords that result from using one or
more characters independently, or characters that do not form
part of a word. Patterns that fall under this category are
singular (a single alphabet character), repeated character (the
same repeated character), increments (a repeated character of
alphabet letters or numbers) and keyboard patterns (patterns
which are derived through the order which they are presented
on the keyboard). Word patterns are a result of mangling rules
that are applied to password dictionary words. The patterns that
fall under this category are capitalization (simply capitalizing
every letter in the word), concatenation (placing one or more
words together), l33t (leet) substitutions (replacing letters in
dictionary words with numbers or symbols that resemble that
letter), inverse and palindrome.

Grammars can be used to capture the structures which are
found in user created passwords. For example the palindrome
pattern can be represented by the grammar G = (V, Σ, S, P)
where :

V = {S, B}; Σ = {a, b }; S = {S}; P ={ S → a S a ; S → b
S b; S → a ; S → b }

The palindrome ‘baabaab’ can then be constructed by using
the grammar productions.

The next section gives an explanation of genetic
programming.

III. GENETIC PROGRAMMING

The skill of writing computer programs is seen as difficult
to acquire. Good programmers must have programming skills
as well as some domain knowledge of the problem in order to
build a solution. A programmer must show attention to detail
as a single error, whether syntactical or logical, can cause an
entire system to fail. This is one of the reasons that Computer
Scientists have looked to alternative methods in building
computer programs. Genetic programming is a technique of
automatically evolving computer programs. Inspired by
Darwin’s principle of evolution, genetic programming evolves
a randomly generated population of programs towards a
desired solution program [4].

A generational genetic programming run begins with
creating an initial population of randomly generated programs.
The individuals are then evaluated to find the individuals in the
population that are closer to the solution program than others.
A selection method is then used to select the individuals that
will be used as parents. The next generation is created by
applying genetic operators, usually reproduction, mutation and
crossover to the parents. Once a new population has been
created, the algorithm iterates until a solution to the problem is
found or a stopping criterion is met. The complete process,
starting with the initial population and iteratively refining this
population over a number of generations, is known as a genetic
programming run [4, 5]. Fig. 1. shows a diagram of a
generational genetic programming run.

Fig. 1. Steps of a Generational Genetic Program Run

IV. GENETIC PROGRAMMING FOR GRAMAR INDUCTION

This section will present previous research using genetic
programming for grammar induction.

Javed [6] implemented genetic programming for the
induction of context-free grammars. The context-free
grammars represent domain specific languages (DSL).
Grammar representation was in Backus Naur Form. The initial

file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_4
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_5

population was created by productions from a correct grammar
for the language. One point crossover and mutation were
implemented. These genetic operators were not sufficient for
the induction of context-free grammars. Therefore three
additional genetic operators were designed. These include the
option operator, iteration + and iteration* operators. Option
allows the production rule to choose between two productions.
Iteration* allows a production rule to call a value on the left
hand side of a production zero or more times. Iteration+ allows
the production rule to call a value on the left hand side of a
production at least once. The fitness measure computed the
number of grammars that were correctly passed, the closeness
of the inferred grammars to the correct grammar and lastly the
scalability of the grammar. With the addition of the helper
genetic operators the genetic programming system was able to
induce small sized DSL context-free grammars.

In [7] grammar induction was revisited by Javed [7] with
the use of genetic programming. The alterations to the previous
system were in the representation of the grammars. The
grammars were now represented using derivation trees and
syntax graphs. A new helper operator called the delete operator
was implemented. This operator deletes a production rule from
a grammar. The genetic programming system was successful in
evolving grammars for languages which required a small
grammar structure. Larger grammar structures could not be
induced. The helper operators were an important element in
this study. They allowed the properties of context-free
grammars to be represented in full. Properties such as allowing
for recursion are captured using the iteration operators. An
more suitable representation of a context-free grammar can
capture the described properties of a grammar. This topic will
be elaborated upon in the discussion of the current systems
grammar representation.

Javed, Barrett, Matej Marajan and Alan [8] built on the
work in [6] and [7]. The genetic programming system
implemented is similar to [7]. The researchers suggested that
the right hand side of the grammars be treated as a collection of
regular sets. These regular sets are connected by union,
concatenation and recursion. It was anticipated that the genetic
programming system would find the small regular grammars of
the big grammar and join them using concatenation, union or
recursion. Again, what the researchers tried to capture in their
suggestion is the properties or capabilities of context-free
grammars. This observation implies that there are missing
properties in grammar induction that prevents a solution from
being evolved. This can be linked back to Koza’s requirements
for a genetic programming system. Koza [4] emphasised that
the terminal set, function set, fitness function and problem
representation must be implemented so that it is possible to
evolve a solution. If the problem domain is not fully
represented, the genetic program cannot evolve a solution.

Korkmaz and Üçoluk [11] also did some work on this topic.
The grammars were represented as a structured tree. The
fitness function used took into consideration both the number
of correctly passed strings and the size of the grammar (See
equation 1). The genetic operators used were crossover,
mutation and reproduction.

(1)

The training set included 20 simple English sentences
consisting of noun phrase (NP) and a verb phrase (VP)
structures.

Given the symbolic character of grammar induction,
genetic programming is apt for this purpose. However, like in
the study conducted by Javed [6] it was found that standard
genetic programming was unable to evolve solution grammars.
This is due to the high interdependency among the subparts of
a context-free grammar. The grammar must be seen as a whole
structure not as a structure made up of building blocks.
Therefore the aim of the study was to formalise a control
module for the genetic programming. A second shortcoming of
the standard genetic programming technique is the tree
representation of the individuals. The tree representation served
to be an impediment in the search for the solution grammar.
The reasoning behind this statement is that as mentioned
before, the productions in a grammar are highly interdependent
meaning that a slight change in one element can dramatically
change the fitness of the whole grammar. The researchers
stress that crossover and mutation could cause more harm than
good in the evaluation of grammars. The situation mentioned in
the research has been looked at by the pioneers of genetic
programming and is termed destructive crossover [4]. The
solution employed by Korkmaz and Üçoluk [11] uses the same
reasoning as non-destructive crossover where an offspring
created by crossover or mutation forms part of the next
generation only if its fitness is better or equal to its parents. .

Rodrigues and Lopes [12] worked on the induction of
context-free grammars. The grammars in the research were
represented as tree structures with the root node being ‘S’
which represents the start symbol. The initial population was
randomly generated. All the productions were reachable
directly or indirectly from the start symbol ‘S’. The fitness
measure was computed by multiplying the specifity and
sensitivy. Specifity is the total number of correctly rejected true
negatives divided by the number of true negatives and false
positives in the training set. Sensitivity is calculated by the total
number of true positives correctly accepted by the grammar
divided by the number of true positives and false negatives in
the training set. The experiment in this study makes alterations
to the standard genetic programming technique with the
introduction of two new operators; the ‘Incremental Learning
Operator’ as well as the ‘Expansion Operator’. The
Incremental Learning Operator was brought in to support
convergence in the genetic run. The operator adds new positive
productions through the use of the table produced when
constructing the Cocke, Younger and Kasami CYK algorithm.
The CYK algorithm is a parsing algorithm for context free
grammars. It takes in a grammar in Chomsky Normal Form
(CNF) as well the string to be passed. The string is constructed
from the bottom up using the productions in the grammar [12].
For a more detailed explanation see [13]. Table I shows an
example of the table produced by the CYK algorithm. Once the
table is constructed, the Incremental Learning Operator checks
to see if there are any productions in the top row of the table. If
there are, a new production is created by changing the left

file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_7
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_8
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_4
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_11
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_6
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_4
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_11
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_12
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_12
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_13

production of the production in the table to ‘S’ (start symbol of
the grammar). If there are no productions in the top row then
the new production is created by making the start variable the
left hand side production and the right hand side variables are
created by using the left hand side of the productions in the row
below the top row. This operator adds positive productions
which then promote convergence; however it does not
guarantee the rejection of false negatives.

TABLE I. EXAMPLE OF CYK TABLE FOR THE STRING ‘ABA’

2 S → C D

1 C→ A B D→B A

0 A → a B→ b A→ a

 A b a

The Incremental Learning Operator was successful in
adding positive productions to the grammar [12]. The
expansion operator adds diversity to the population by creating
new productions and adding them to the grammar. To mitigate
against the creation of useless productions, the left hand side of
the production rule is a new variable and the right hand side
contains variables that are in the grammar as well as a new
variable. Two new productions are created through the
expansion operator. The expansion operator was then used to
replace the reproduction operator of standard generational
genetic program. The approach was successful in inducing
grammars for the Tomita set of benchmark languages.

Based on the literature review, it was found that genetic
programming is able to induce small structured grammars.
Through the analysis of previous research, the importance of
understanding and aligning the requirements of grammar
induction with those of genetic programming come through.
Domain appropriate representation of the grammar, genetic
operations, parameters and evaluation function are important in
the design of a successful genetic programming system.

The next section describes the genetic programming
algorithm implemented in the study presented.

V. GENETIC PROGRAMMING ALGORITHM

The aim of the current study is to explore whether genetic
programming can be used for evolving grammars. The evolved
grammars will be used to generate password cracking guess
words. Therefore the first step is to analyse the capability and
performance of genetic programming for the induction of
grammars. The current section will therefore be centered on the
topic of genetic programming for grammar evolution. Previous
research has investigated the application of genetic
programming on a few grammar languages. In this section a
genetic programming system will be presented where the
genetic programming technique is applied to fifteen benchmark
regular language sets and eleven context-free grammar
languages.

A. Datasets

The datasets used were designed for the induction of
deterministic finite automata (DFA). Since DFAs are used as

acceptors for context-free languages, it is appropriate to use
these datasets to induce grammars that generate the context-
free languages.

The datasets for the first seven regular languages were
created by Blair and Pollack [14]. The target DFA’s are small
in size, meaning the language can be represented using a DFA
containing one to four states. The remaining seven regular
languages were created by Miclet and Gentile [15]. The
instances contained in the dataset include both positive (belong
to the language) and negative (do not belong to the language)
words.

TABLE II. REGULAR GRAMMAR LANGAUGES

 Language Description

L1 a *

L2 (a b) *

L3 Any sentence without an odd number of consecutive a's
after an odd number of consecutive b's.

L4 Any sentence over the alphabet a, b without more than
two consecutive a's.

L5 Any sentence with an even number of a's and an even
number of b's.

L6 Any sentence such that the number of a's differs from
the number of b's by 0 modulo 3.

L7 a * b * a * b *

L8 a * b

L9 (a * + c *) b

L10 (a a) * (b b b) *

L11 Any sentence with an even number of a's and an odd
number of b's.

L12 a (a a) * b

L13 Any sentence over the alphabet a, b with an even
number of a's.

L14 (a a) * b a *

L15 b c * b + a c * a

The dataset for context-free languages was created by the
researcher by generating the positive examples and negative
instances. These languages have also been used in previous
studies [16].

TABLE III. CONTEXT-FREE GRAMMAR LANGUAGES

 Language Description

L1 an bn where n ≥0

L2 an c bn where n ≥0

L3 All palindromes with an odd number of letters. ∑ = {a, b}

L4 s sr where s is in (a + b) *

L5 s c sr where s is in (a + b) *

L6 s is in (a + b)*: the number of a’s in s is equal to the
number of b’s in s.

L7 an b2n where n ≥0

file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_12
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_14
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_15
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_16

L8 {an bn: n ≥0} ᴜ {a}

L9 a a * b a *

L10 an b2n where n ≥1

L11 All strings with balanced brackets. ∑ = {(,)}

A. Representation

The individuals for the current program are represented as
tree structures with the maximum of arity of two as shown in
Fig 2. A maximum width and depth allowed for the control in
size of the individuals in the population to avoid bloat as
suggested by Mernik et al. [9].

Fig. 2. Tree representation for the grammar productions: S→a B, B→b a

The root node in each tree is always ‘S’ which represents
the start symbol. This allows for all the nodes to be reached
directly or indirectly from the start symbol. The function set
used were the variables ‘S’, ‘A’,‘B’,‘C’,’D’ and ‘E’. The
number of variables was sufficient because none of the target
languages required more than five states. Having a small set of
variables also reduced the search space. The terminals were
mined from each sample set. The values include ‘0’and‘1’
where the |Σ| = 2. The terminal symbol ‘2’ was added where
the |Σ| = 3. As in the study conducted by Korlmaz and Göktürk
[11], the productions of a grammar are highly interlinked;
therefore to address the need for unity, the single tree
representation permits the tree to evolve as a unit.

B. Initial Population

The initial population was randomly generated using the
grow method. Each individual represented a single grammar
and matched the structure in Fig 2.

C. Fitness Evaluation

To evaluate the population, the accuracy calculation, which
is commonly used in machine learning, was used [12]. The first
step is computing a confusion matrix. A confusion matrix is a
matrix that keeps count of the positive examples that the
grammar can generate (True positive), the negative examples
that the grammar cannot generate (True Negatives), the
positive examples that the grammar cannot generate (False
Negatives) and the positive examples the grammar failed to
generate (False negative). The dataset of positive and negative
instances are used to calculate these values.

To compute the confusion matrix, each example string in
the dataset had to be evaluated to see whether or not it can be
constructed using the given grammar. The Cocke, Younger and
Kasami (CYK) algorithm was used for this evaluation given its
previous success when implemented by Rodrigues and Lopes
[12]. Firstly each individual was converted to Chomsky
Normal Form .

Accuracy was then computed according to the formulae:

 (2)

Accuracy is a good measure in this case because it assumes
equal cost for false positives and false negatives. This is
appropriate because in grammar induction, it is equally
important that the grammar being induced can generate only
words in the language but must not generate words that do not
belong to the language. The fitness value for each individual is
equal to the accuracy measure.

D. Selection Method

The tournament selection method as described by Koza [4]
is implemented. Tournament selection randomly selects
individuals equal to the tournament size. The individual with
the best fitness value is chosen as the winner of the tournament
selection.

E. Genetic Operators

Genetic Operators allow the winners of the selection
method to undergo genetic modification.

Reproduction: The reproduction method is implemented as
follows: A grammar is selected using the selection method.
That grammar is copied over to the next generation.

Crossover: Standard crossover as described by Koza [4]
was implemented. To mitigate against bloat, a restriction in the
size of the number of the tree is set at 15 for regular languages
and 20 for the context-free languages. This number is kept low
because when the tree is converted to Chomsky Normal Form
for evaluation, the number of productions increases.

Mutation: Standard mutation as described by Koza [4] was
implemented. The same bloat mitigation strategy was also
applied to crossover.

VI. EXPERIMENT SETUP

The genetic programming algorithm was implemented in
Java using JDK1.7.0_45 and the simulations were ran on an
Intel Core i7-3770 machine running Windows 7, 64-bit.
Generation genetic programming was implemented. The
parameter values of the genetic programming runs were tuned
using trial and error and were set as follows for the regular
languages: mutation= 15%, reproduction=5% and
crossover=80%. A population size of 150 was set for all
languages and the number of generations was set to 50. Ten
runs were performed for each language.

The parameter values for the context-free languages were
as follows: mutation= 20%, reproduction=5% and
crossover=75%. A population size of 250 was set for all

file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_9
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_11
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_12
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_4
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_4
file:///G:/PRASA2014_TMV4.0.doc%23_ENREF_4

languages and the number of generations was set to 50 -100.
Ten runs were performed for each language.

VII. RESULTS

The presented system was able to evolve solutions for
thirteen out of the fifteen regular languages. For the context-
free languages, the GP algorithm managed to evolve grammars
for ten out of the eleven languages. Table IV shows a summary
of the results as well as the production rules evolved for each
language.

TABLE IV. GRAMMAR SOLUTIONS EVOLVED

 Regular Language Solutions

L1 S → 0; B → S; S → 00; E → S0; S → BE

L2 S → 01; A → 01; D → AS; S → D

L3 No solution found

L4 S → D; S → AA; S → C; S → 0;S → S; S → B; S

→ SB; A → S; A → A; A → 0; B → D; B → 1B; B

→ S; C → 1; C → 01; D → 1S; D → CS

L5 S → 11; D → 01; S → 00; D → 10;D → SD; S → DD;

S → SS

L6 C → 00; C → 1; C → 1; C → 1; S → C0; S → 01;

B → SS; A → B; S → A; C → CS; D → CC; S → CD

L7 D → 0; C → D; D → 0; D → 0D; D → D1; A → 1; S

→ A; D → S; S → DD; B → 0; B → SB; S → B; S →

CS

L8 D → 1; C → D; D → 0C; S → D ;B → 0S; S → B

L9 B → 1; C → 2B; B → C; S → B; C → 2S; B → C; B

→ C; S → B; S → 0S; S → S; S → S; S → 0S;S →

S

L10 C → 00; D → 11; S → D1; S → 00;B → S; S → SB;

S → S; S → CS

L11 No solution found

L12 C → 00; D → C; B → 01; B → B; B → 0B; S → B;

S → DS

L13 D → 1; S → D; A → 0; A → SA; S → 0A; S → 1;C →

SS; C → C; S → 1;C → CS; C → C; S → C

L14 B → 00; A → 1; C→ BA; S → C0; S → S0; S → S;

C→ S; A → C; C → A; S → C0; C → S; S → C; A →

S;S → A

L15 A → 0; A → A2; C → 1; C → 2C; C → C; S → 1C; D

→ 12; A → SD; B → A; S → AB; S → S

 Context-Free Language Solutions

L1 S → C; C → 01; B → 0S; S → B1

L2 S → C1; E → 2; D → E; S → D; C → 0S

L3 No solution found

L4 B → 0 ;B → 1; S → 10; B → S1; S → BB;B → 0S; D

→ BB; S → D

L5 E → 02; D → E; S → 2; S → DS; C → 0; E → SC; E

→ E; S → 0E; C → 1S; S → C1

L6 S → 10; S → 01; B → S0; S → 1B; S → SS

L7 A → 11; C → A; S → 0C; C → 11;E → SC; S → 0E

L8 A → 0; C → 0; D → C1; C → AD; S → C1; S → S; A

→ S1; S → A

L9 E → 0; S → E1; S → S0; S → 0S;S → S

L10 A → 11; C → A; S → 0C; C → 11; E → SC; S → 0E

L11 E → 1; C → 1; B → 0C; S → EB; C → 1; B → 01; S

→ CB; C → S; C → SC; S → 0C

VIII. ANALYSIS

This section analyses the performance of genetic
programming for grammar induction. As can be seen from
Table V the number of runs where a correct solution was found
is show. This value is referred to as the success rate. The
success rate of genetic programming was higher simple
languages such as L1 in the regular languages and L1 of
Context-free languages.

TABLE V. SUCCESS RATE FOR GRAMMAR INDUCTION

 Number of runs where a correct solution was
found

 Regular Languages Context-free Languages

L1 10 10

L2 10 10

L3 0 0

L4 4 4

L5 1 1

L6 10 6

L7 1 4

L8 10 5

L9 6 10

L10 10 9

L11 0 10

L12 10

L13 10

L14 10

L15 1

The common characteristic of the languages that were not

generated is that they contain an odd number of alphabet
characters. This could be a challenge for genetic programming.
A possible reason for this is that generally, it takes more
productions to represent an odd number of variables as
compared to an even number.

The genetic programming algorithm performed well in
situations where the language being generated was simple such
as L1, for both regular and context-free languages. The
evaluation of context-free grammars was a challenge because
of the lack of a benchmark data set. Initially the use of
randomly generated datasets yielded unsatisfactory, brittle
solutions. In those situations more positive and negative
examples were added in order to guide the genetic
programming algorithm towards a better solution.

IX. CONCLUSION

As shown by the results, genetic programming was
successful in inducing a solution grammar for twenty three out
of the twenty six languages that it was tested on. Therefore
genetic programming can be applied to grammar evolution.

The biggest limitation in evolving grammars is the
dependency of an algorithm on the dataset used. This problem
was also experienced by the current investigation. The
grammars produced were over specific. Over specification to
the dataset causes the grammars to allow words that are not in
the language to be generated by the solution grammar. To solve
this problem domain knowledge was used to add more positive
and negative examples to the dataset.

X. FUTURE WORK

Future work will look to apply the genetic programming
algorithm obtained from the current study to a dataset made up
of leaked passwords in order to evolve grammars to be used to
generate password guess words. Once the grammars have been
constructed, they will be used to generate passwords structures
also known as password masks.

REFERENCES

[1] M. Bishop, and D. Klein, Improving system security via proactive
password checking. Computers & Security, 1995. 14(3): p. 233-249.

[2] M. Jakobsson, and M. Dhiman, The benefits of understanding
passwords, in Mobile Authentication. 2013, Springer. p. 5-24.

[3] M. Weir, A. Sudhir, M. Breno, and G. Bill, Password cracking using
probabilistic context-free grammars. in Security and Privacy, 2009 30th
IEEE Symposium on. 2009. IEEE.

[4] J.R. Koza, Genetic Programming: vol. 1, On the programming of
computers by means of natural selection. Vol. 1. 1992: MIT press.

[5] J.R. Koza, Introduction to genetic programming tutorial: from the basics
to human-competitive results. in Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation. 2010.
ACM.

[6] F. Javed, Inferring context-free grammars for domain-specific
languages. in Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. 2005. ACM.

[7] F. Javed, Techniques for context-free grammar induction and
applications. 2007. The University of Alabama

[8] M. Mernik, et al., Learning context-free grammars using an evolutionary
approach. Birmingham: University of Maribor and University of
Alabama, 2003a.(Technical Report), 2003.

[9] F. Javed, B. Bryant, M. Črepinšek, M. Mernik and A. Sprague, Context-
free grammar induction using genetic programming. in Proceedings of
the 42nd annual Southeast regional conference. 2004. ACM.

[10] P. Wyard, Context free grammar induction using genetic algorithms. in
Grammatical Inference: Theory, Applications and Alternatives, IEE
Colloquium on. 1993. IET.

[11] E. Korkmaz, and G. Üçoluk, Genetic programming for grammar
induction. 2001.

[12] E. Rodrigues, and H.S. Lopes. Genetic programming for induction of
context-free grammars. in Intelligent Systems Design and Applications,
2007. ISDA 2007. Seventh International Conference on. 2007. IEEE.

[13] D. Klein, and C.D. Manning. Natural language grammar induction using
a constituent-context model. in NIPS. 2001.

[14] A.D. Blair, and J.B. Pollack, Analysis of dynamical recognizers. Neural
Computation, 1997. 9(5): p. 1127-1142.

[15] P. Dupont, and L. Miclet, Inférence grammaticale régulière: fondements
théoriques et principaux algorithmes. 1998.

[16] A. Naidoo, Evolving Automata Using Genetic Programming, Masters
Thesis 2008, University of KwaZulu-Natal, 2008

