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Abstract—This paper presents a novel technique for construct-
ing semi-Markov ergodic maps that harnesses a new solution
of the inverse eigenvalue problem for 3-by-3 doubly stochastic
matrices. The proposed solution facilitates the selection of the
spectral characteristics of the trajectories generated by these
ergodic maps through the selection of appropriate eigenvalues
for the Frobenius—Perron matrices associated with the maps.
It is proved that the proposed solution is able to realise all
possible eigenvalue triples for the matrices of interest, thereby
providing greater freedom in selecting the power spectral density
than existing techniques. The novel technique is demonstrated
by constructing several semi—-Markov ergodic maps with distinct
power spectra. It is concluded that the flexibility and versatility of
the technique holds potential for the purpose of system modelling
in various contexts.

I. INTRODUCTION

Dynamical systems encountered in various contexts are
known to exhibit chaotic behaviour [1]. It has been shown
that chaotic dynamics may arise in systems such as electrical
circuits, solid state devices, lasers and mechanical devices
[2]-[5], in addition to systems from fields such as biology,
chemistry and economics [6], [7]. Signals arising from these
systems appear to fluctuate randomly, due to the systems’ sen-
sitive dependence on the initial system state; this characteristic
complicates the effective processing of these signals.

Accurate modelling of chaotic systems is a prerequisite for
developing optimal strategies for processing signals arising
from these systems. Specifically, accurate models of chaotic
systems facilitate improved prediction, statistical inference and
system control [8]-[10]. As such, the problem of modelling
the evolution rule of an unknown chaotic system from the
observed dynamical behaviour and statistical properties of the
system is of importance. The inverse Frobenius—Perron (FP)
problem, which addresses the design of an ergodic dynamical
system’s evolution rule such that the invariant probability
distribution of its state matches a prescribed distribution, may
be used as a starting point for system modelling in this context.

In designing an ergodic map to model an unknown chaotic
system’s evolution rule, the flexibility to specify both the
invariant probability distribution associated with the system
state as well as the time autocorrelation function (ACF)

corresponding to state trajectories, as would result from the
choice of the ergodic map, is of interest. Several authors
have proposed solutions to the inverse FP problem that also
facilitate the prescription of the ACF [11]-[15]. However,
these solutions have certain shortcomings. Solutions that use
stochastic algorithms to derive the ergodic map [11] provide
little insight as to how the structure of the resulting map
gives rise to the ACF. Whereas analytic solutions have been
proposed that shed light on this relationship [12], [15], these
solutions only provide limited control over the resulting ACF.

This paper presents a generalisation of the solution to the
inverse FP problem presented in [15], which provides a means
for constructing a semi—-Markov ergodic map such that a
prescribed invariant probability distribution is approximated
while at the same time providing control over the resulting
ACEF. It was shown that the solution of [15] can only realise
ACFs that correspond to FP matrices' with real eigenvalues.
Mori et al. [16] proved that the time ACF associated with
an ergodic map may be expressed as a linear combination
of component functions that correspond to the FP operator
eigenvalues, where the argument of each eigenvalue is equal
to the frequency of oscillation of the corresponding component
function. Hence, it is anticipated that the set of ACF compo-
nent functions realisable by the solution of [15] is limited to
exponentially decaying functions that either decrease mono-
tonically, or oscillate at a frequency of 7 radians per sample.
This limitation, which was demonstrated experimentally in
[15], restricts the practicality of the solution.

The current paper presents a solution to the inverse eigen-
value problem for constructing 3—by-3 doubly stochastic FP
matrices with prescribed sets of complex eigenvalues, and the
subsequent derivation of a semi—-Markov ergodic map that
possesses the required FP matrix. In the case of complex
eigenvalues, it is demonstrated that the ACFs attainable using
this method contain component functions that oscillate with
frequencies equal to eigenvalue arguments (this is consistent
with the result anticipated from the theory developed in

'The FP matrix is the matrix representation of the FP operator, which
characterises the evolution of the state probability distribution under the
evaluation of the system’s evolution rule.
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[16]). Furthermore, it is proved that the proposed solution
to the inverse eigenvalue problem realises all possible eigen-
value triples for doubly stochastic matrices, thereby providing
greater freedom in selecting the power spectrum of trajectories
than the existing solution to the inverse FP problem for semi—
Markov maps [15]. Whereas the proposed technique is limited
to uniform invariant state distributions, it is anticipated that the
3-by-3 matrices may be used to construct higher—order maps
such that a prescribed invariant distribution is approximated
while reserving greater flexibility with regards to the ACF.

The remainder of this paper is set out as follows. In
section II, an overview of existing solutions to the inverse
FP problem that facilitate the specification of the ACF is
presented. Several definitions and preliminary results related
to the ergodic maps of interest are provided in section III.
In section IV, the proposed solution to the inverse eigenvalue
problem, as well as the proposed technique for constructing
the ergodic map, is presented. The proposed technique’s ability
to realise systems with distinct power spectra is demonstrated
through experimentation in section V. The paper is concluded
in section VL.

II. LITERATURE REVIEW

An overview of existing solutions to the inverse FP problem
is provided in [15]. Rogers et al. [17] proposed a technique for
constructing semi—Markov ergodic maps with prescribed in-
variant probability density functions (PDFs) that are piecewise
constant. This technique constructs the map directly from an
N-by—N FP matrix with a predefined structure, which is fully
specified by a set of 2N parameters. The structure of the FP
matrix leads to a simplified analytic expression for the Perron
eigenvector (i.e. the eigenvector associated with the unity
eigenvalue), which coincides with the invariant PDF of the
map. It was demonstrated that an arbitrary piecewise constant
invariant PDF may be selected through a suitable choice of the
FP matrix parameters. The relationship between the parameters
and the rate of decay of the ACF was investigated, but the
analysis is limited to positive and monotonically decreasing
ACFs. Furthermore, it is not indicated how individual ACF
component functions may be selected using the method.

Diakonos et al. [11] proposed a stochastic algorithm for
generating unimodal maps with prescribed invariant PDF and
ACF. Whereas this proposed technique provides a large degree
of flexibility in specifying the ACF, it is computationally
intensive. Furthermore, in contrast to analytic solutions of the
inverse FP problem, the technique may fail to converge or
produce an accurate solution with regards to the ACF.

Baranovsky and Daems [12] considered the design of er-
godic maps with prescribed invariant distributions and ACFs.
The technique involves the design of an initial piecewise linear
map with uniform invariant PDF and a predistorted ACF.
The required map is subsequently obtained via a conjugation
transformation. Whereas the technique allows for the construc-
tion of initial maps with ACFs having richer properties as
compared to Markov maps, the proposed technique is limited
in that it only allows for the selection of conjugate map ACFs

with a restricted form (i.e. the conjugate map’s normalised
ACF at delays 7 > 1 is necessarily equal to the initial map’s
normalised ACF at delay 7 = 1, raised to the 7th power).

Nie and Coca [13], [14] proposed a technique for construct-
ing piecewise linear semi—-Markov maps that approximate the
evolution of an unknown system from a sequence of PDFs
generated by the system. Whereas the proposed technique
is able to capture the dynamical behaviour of the system, it
requires the generation of PDFs by selecting the initial state
of the system, which is not possible in certain contexts.

McDonald and Van Wyk [15] proposed a solution to the
inverse FP problem for constructing a semi—Markov ergodic
map such that the map’s invariant distribution approximates a
prescribed distribution. The solution involves the construction
of a stochastic matrix with a prescribed eigenspectrum via
recursive Markov state disaggregation [18], and the subsequent
derivation of a semi—-Markov map with FP matrix equal to
the stochastic matrix. The proposed solution grants a certain
degree of freedom in selecting the ACF component functions.
However, the recursive Markov state disaggregation technique
is limited to producing stochastic matrices with real eigenval-
ues; it was demonstrated experimentally that the corresponding
ACF component functions are limited to exponentially decay-
ing functions that either decreasing monotonically, or oscillate
at a frequency of 7 radians per sample.

III. PRELIMINARIES

The current paper uses the notation of [15]. Consider a
nonlinear map S : Z — Z, where Z = [a, b] denotes a compact
interval of the real line. Let .S be measurable and nonsingular
with respect to the Borel o—algebra on Z and the normalised
Lebesgue measure. Furthermore, let X, denote a random
variable (RV) on Z with an absolutely continuous distribution
and PDF fy. The evaluation of the map S according to the
expression X;11 = S(X;), for i € {0,1,...}, produces
a sequence of RVs {X;, X5,...} with corresponding PDFs
given by fi11(z) = Pg[fi(z)]. In this expression, Pg is the
FP operator associated with S [19]. If the PDF f; associated
with the RV X asymptotically converges to a unique invariant
PDF f%(z) such that f&(x) = Pg[f&(x)], then S is ergodic.

In the remainder of this paper, ergodic maps S with unique
invariant densities and that belong to the class of semi—-Markov
maps are considered. Semi—Markov maps [20], which consti-
tute a superset of the class of Markov maps, are defined in
what follows. Let Q = {Q1,Q2,...,Qx} denote a partition
of Z = [a,b] into N nonoverlapping intervals, such that
Qn = [qnflvqn) for n = 1727"'7N -1, QN = [qulab]
and go = a. A map S belongs to the class of O—semi—Markov

maps if there exist disjoint intervals R;n) such that, for any

n=12...N,Q, = Uf(:"l)R;-n), S| e is monotonic, and
J

S (Rgn)) € Q. It was proved in [20] that the invariant PDF

f& of a piecewise linear and expanding Q—semi—Markov map

(i.e. a map where S|R<,,L> is linear with a slope having an

absolute value greater than unity, for all n = 1,2,... N and

j=1,2,...k(n)) is piecewise constant on the intervals of Q.
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Consider the restriction of the FP operator of a piecewise
linear and expanding Q-semi—-Markov map S to the space of
functions constant on the intervals of Q. Furthermore, let PDFs
with domain Z that belong to this space be represented by row
vectors f of length IV, such that each vector element equals
the constant value of the PDF over the corresponding interval
of Q. This restriction facilitates the representation of the FP
operator Pg as an N-by—N matrix Pg, which is referred to
as the FP matrix of S, such that f,,; = f;Ps. The invariant
density f corresponding to the map S is the left eigenvector
of the matrix Pg that corresponds to the eigenvalue of unity
(this follows from the expression fg = f5Ps). The FP matrix
Ps = [P, j]i j=1,2,...,n may be derived from its corresponding
O-semi—Markov map by setting

} .M

P = { [(Slpo )7t i SR = Q;
’ 0 otherwise

Consider any N-by—N stochastic matrix P (i.e. a matrix
with real elements restricted to the interval [0, 1], and with
rows that sum to unity). Gora and Boyarsky [20] proved the
existence of a piecewise linear and expanding semi—Markov
map defined over the N—interval uniform partition I/ of the
interval Z, such that the FP matrix associated with the map is
equal to the stochastic matrix P. An algorithm for constructing
a U—semi-Markov ergodic map with this property is provided
in [20] (proposition 1). This algorithm is a component of the
proposed technique for constructing semi—Markov maps with
selectable spectrum; it is provided in what follows.

Algorithm 1. (Construction of a piecewise linear and
expanding U—semi—Markov ergodic map with FP matrix equal
to stochastic matrix P [20]): Let w, = a+n(b—a)/N.
Furthermore, let Uy, = [up—1,uy) wheren =1,2,... N — 1,

and let Uy = [un—1,un]. For each interval U,
the function S|y, is constructed. Consider the FP
matrix elements Py j , Py j,,...,Pnj ., > 0, such that
Py +Puj,+...+ P, =1 Compute the intervals
R = [rg'i)l, rg”)), where s =1,2,... k and
b—a) o
Tgn) = Up—1*+ % Z ij“. (2)

v=1

The function S|R(‘n), for s=1,2,...k, is given by

Sl pen (&) = (2 = 1) /(P j,) + w5, 3)

This section is concluded with the characterisation of the
time ACF associated with the trajectories of an ergodic map,
as presented by Mori et al. [16]. In general, for an ergodic
map S with FP operator Pg, the time ACF is given by

i b AT
n=1

= Z bn exp[(In(|An]) + targ(An))7], @)

n=1

o(1) =

where b,, depends on the eigenfunctions of Pg, A, denotes
the nth eigenvalue of Pg, and 4 £ .,/=1. In general, the FP

operator may have both real and complex eigenvalues, where
A1 = 1and |\, <1 for all n > 1. Eq. 4 reveals that the
normalised ACF is a linear combination of oscillating and
exponentially damped component functions. The rate of decay
of each component is determined by the magnitude of the
corresponding eigenvalue, whereas its oscillation frequency is
determined by the argument of the corresponding eigenvalue.

IV. METHODS

The solution of the inverse eigenvalue problem for 3-by-3
doubly stochastic matrices is presented in two parts, corre-
sponding to the case of real eigenvalues and the case of strictly
complex eigenvalues?. It is proved that this solution realises
all possible eigenvalue triplets for these matrices. The section
concludes with an algorithm for constructing a semi—-Markov
ergodic map with selectable spectral characteristics.

A. Inverse Eigenvalue Problem: Real Eigenvalues

The inverse problem for constructing a doubly stochastic
matrix with prescribed real eigenvalues is solved using recur-
sive Markov state disaggregation (MSD) [15], [18]. Recursive
MSD is a technique for constructing a stochastic matrix by
interpreting it as the transition matrix of a Markov chain.
Starting with an elementary single—state Markov chain, the
states of the Markov chain are disaggregated (or split) one—by—
one in a recursive fashion. The disaggregation of a particular
state is achieved by increasing the dimensionality of the
transition matrix of the Markov chain and recomputing a
subset of the transition probabilities in a particular manner.

Let s,(j ) denote a specific state of a Markov chain
immediately prior to the jth application of MSD, and let

its corresponding stationary probability be denoted by péj _1),

where j = 1,2,... Np. Consider a case where state s}fﬁl)
is to be disaggregated during the jth application of MSD.
To achieve disaggregation, select elements of the transition
matrix PU—1) associated with the preceding Markov chain are
recomputed in such a manner that the stationary probabilities
of those states that are not currently undergoing disaggregation
remain the same. The stationary probability of the preceding

state s,(j - is divided between the two new states sfjl ) and

s,(jz) such that pfjl) = a(j)pé,]_l) and p,(jz) =(1- a(j))pfj_l),
where ol/) € (0, 1) is specified prior to the jth application of
MSD. Furthermore, the matrix P) of the successive Markov
chain (i) inherits all eigenvalues of the corresponding transition
matrix PU~Y), and (ii) contains an additional eigenvalue @)
that is specified prior to the jth application of MSD.

MSD is used to solve the inverse problem for real eigen-
values as follows. All doubly stochastic matrices P have an
eigenvalue of unity; without loss of generality, let A; = 1 and
A2, A3 € R(—1,1) denote the remaining eigenvalues of the

2 All doubly stochastic matrices possess an eigenvalue A1 equal to unity. The
two cases considered in this section (real and strictly complex eigenvalues)
pertain to the remaining eigenvalues Ao and A3 of the 3-by—3 matrix.
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Fig. 1. Regions of specifiable eigenvalues for the proposed solution to the
inverse eigenvalue problem, in the (a) real and (b) strictly complex cases.

matrix> that is to be derived, with the requirement that
q
A3 <A < L &)

MSD is first applied to the single state of the elementary
Markov chain with a(® = 2/3 and \() = ),, thereby
obtaining a two-state Markov chain with states sgl) and
s$. The stationary probabilities of these states are equal to
PV =2/3 and p{") = 1/3, whereas the transition matrix P(1)
eigenvalues are equal to A\; = 1 and As. In the subsequent step,
state s'!) is disaggregated with o® = 1/2 and A = \g,
thereby obtaining a Markov chain with states 552), 322) and
séQ). The stationary probabilities of these states are all equal
to 1/3, whereas the eigenvalues of the transition matrix P (%)
associated with this Markov chain are equal to {1, A2, A3}
The transition matrix P £ P(?) is given by

1 a1 Qaz Q3
P = gl @2 o as |, (6)
a3 Q3 Q4

where
a1 = 24 A2+ 3As, (7N
oy = 2+ X — 33, (3
a3z = 2(1 - )‘2)7 (9)
ay = 2(1+2X\). (10)

The requirement that the elements of the matrix must lie within
the interval [0, 1], combined with eq. 5, imposes the conditions

1/2<h <1 a1
and

24+ A

J; 2 <N < Ao (12)

on the eigenvalues that may be specified. The region of
eigenvalues that may be specified using the matrix of eq. 6,
as illustrated in fig. 1(a), coincides with the entire region of
possible real eigenvalues for doubly stochastic matrices [21].

3The derivation is conducted under the assumption that there exists a doubly
stochastic matrix with eigenvalues A2 and A3. At the end of the derivation,
conditions on the eigenvalues are derived that guarantee the existence of the
matrix.

It follows that eqs. 6 to 10, under the conditions of eqs. 11
and 12, may be used to solve the inverse eigenvalue problem
for doubly stochastic matrices in the case of real eigenvalues
)\2 and )\3.

B. Inverse Eigenvalue Problem: Strictly Complex Eigenvalues

A generalisation of the approach that was used to derive
an expression for the generalised rotation matrix in [22] is
used to solve the inverse eigenvalue problem for 3-by-3
doubly stochastic matrices with strictly complex eigenvalues.
As in the real-valued case, let the unity eigenvalue of the
doubly stochastic matrix be denoted by A;. Perfect and Mirsky
[21] proved that the remaining eigenvalues Ao and Aj, if
strictly complex, must necessarily be complex conjugate pairs.
Without loss of generality, let Ao = re® and A3 = 3,
where 0 < < 1 and 6 € (0,7). Due to the fact that the
eigenvalues are distinct, the matrix P is diagonalisable and
may be decomposed as

P=VDV! (13)

where the columns of V are the eigenvectors of P, and D
is the diagonal matrix with entries equal to the respective
eigenvalues of P. Consider the case where P is orthogonal.
It follows that V is a unitary matrix,

ef‘b/\/g V1,2 V1,3
V= €e?/V3 v w23 |, (14
e?/V3 wv3n vs3

where v; ; € C and ¢ € [0, 2m). By substitution of eq. 14 into
eq. 13, and from the properties that V is unitary and that the
elements of P are real-valued, the matrix P is derived as

1 P P2 B
P=§ Bs P1 B2 |, (15)
B2 B3 B
where
81 = 14 2rcos(f), (16)
By = 1—rcos(9)2|:\/§7“sin(9), a7
and
Bz = 1—rcos(f) =+ 3rsin(h). (18)

The requirement that the elements of the matrix P must lie
within the interval [0, 1] imposes the conditions

Re{\2} > —1/2 (19)

and 1 - Re{)s} 1 - Re{)s}

V3 VR
where Re{A\3} = Re{\2} and Im{\3} = —Im{\;}. The
region of eigenvalues specifiable using the matrix of eq. 15,
as illustrated in fig. 1(b), coincides with the entire region of
possible strictly complex eigenvalues for doubly stochastic
matrices [21]. It follows that egs. 15 to 18, under the conditions
of egs. 19 and 20, may be used to solve the inverse eigenvalue
problem for doubly stochastic matrices in the case of strictly
complex eigenvalues Ay and As.

<Im{A} < (20)
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TABLE I
EIGENVALUES OF FP MATRICES BELONGING TO MAPS IN W; TO Wjs.

Set | Eigenvalue A1 Eigenvalue A2 Eigenvalue A3
Wi AL =1 [A2] = 0.85[rmax(0)] (@) A3 = A3
arg[\o] € [0, 27/3]

WQ Map 1: )\1 =1 )\2 =0.85 )\3 = 0.68
Map 2: A1 =1 A2 = 0.75 Az = 0.60
Map 3: A1 =1 A2 = 0.50 Az =0.40
Map 4: A\ =1 A2 = 0.05 A3z = 0.04

W3 A1 =1 ‘)\2| € (0,1) A3 = )\5

arg[Ao] = 27w/3

(@) The function 7max (#) denotes the maximum magnitude that a complex
eigenvalue with argument 6 may assume — refer to fig. 1(b).

C. Construction of Semi—-Markov Maps with Selectable Spec-
tral Characteristics

In what follows, a technique for deriving a U/—semi—
Markov* ergodic map that facilitates the selection of the
trajectories’ spectral characteristics is presented. The proposed
technique is based on the observation that the map’s FP
matrix eigenvalues partly determine the properties of the power
spectral density (PSD) associated with the trajectories.

The first step of the technique consists of selecting suitable
eigenvalues Ao and A3 for the 3-by-3 FP matrix Pg of the
required map S, thereby selecting the spectral characteristics
associated with the map. From eq. 4, it is anticipated that (i)
the frequency of oscillation of each ACF component is equal
to the argument of the corresponding eigenvalue of the FP
matrix, and (ii) the rate of decay of the ACF component (and
its bandwidth) is inversely proportional to the magnitude of
the eigenvalue. These relationships are verified in section V
by constructing several ergodic maps with distinct FP matrix
eigenvalues, and computing the PSDs associated with the maps
numerically from an ensemble of trajectories.

Having selected suitable matrix eigenvalues, the doubly
stochastic FP matrix P is constructed using either eqs. 6
to 10 for real eigenvalues Ay and A3, or egs. 15 to 18 for
strictly complex eigenvalues Ay and \3. The final step consists
of constructing the required semi—Markov map S such that
the map’s FP matrix Pg equals the matrix P derived in the
previous step; this is achieved using algorithm 1, in which the
map is constructed over a domain Z = [a, b] that is uniformly
partitioned into three intervals of equal length. It is noted
that the semi—Markov map derived in the final step is not
a unique solution for a prescribed FP matrix. This observation
follows from the fact that each element of the FP matrix is
inversely proportional to the absolute value of the slope of the
linear function defined over the corresponding subinterval of
the map (refer to eq. 1); hence, any of the linear functions that
constitute the resulting map may be redefined with a negative
slope.

V. RESULTS

The proposed technique was used to construct several
ergodic semi—-Markov maps in order to (i) characterise the re-
lationship between the FP matrix eigenvalues and the spectral

4Recall that U denotes the uniform partition of the interval [a, b].

1.2 T T T T T T T

;
O [%)=0385 Arg[1,]=0
O D,=043. Arglh,] =73 ]
7 ,]=049, Arg[d] =72

A =085 Argl)] =2m/3 ||

Normalised ACF magnitude

0.4 . L L 1 . L . I 1
2 3 4 5 6 7 8 9 10

Delay [samples]

Fig. 2. Measured ACFs generated using the ergodic maps of set Wj.

15 : : : - , ; ;
O  [1)=085 Arg[i,]=0
O [,]=043, Arglh ] =73 []
v \;.;\ =0.49, Arg[ >.;| =n2 ||
A 1= 085, Arg[,] =23

Power spectral density [dB]
(5]
wn

- 2n/3 -n/2  -n/3 0 /3 w2 2n/3 m
Normalised frequency o [rad / sample]

Fig. 3. Measured PSDs generated using the ergodic maps of set W;.

properties associated with the map, and (ii) illustrate how FP
matrix eigenvalues may be selected to realise power spectra
with distinct characteristics. The relationship between each
eigenvalue’s argument and the frequency of oscillation of the
corresponding ACF component, as well as the relationship
between each eigenvalue’s magnitude and the bandwidth of
the ACF component, were investigated.

A. Eigenvalue Argument and Oscillation Frequency

A set W of U—ergodic semi—Markov maps were derived to
characterise the relationship between the FP matrix eigenval-
ues and the oscillation frequency of the ACF components. The
eigenvalues Ao and A3 = A5 of the FP matrices associated with
the maps in this set were selected such that arg[As] € [0, 27 /3]
and |A2| = 0.85[rmax(0)], where rpax(6) denotes the largest
magnitude that may be selected for an eigenvalue Ao with
argument 6 = arg[\s] (refer to table I). The maps were
derived from the respective FP matrices using algorithm 1.
The domain of each map was selected as the unit interval. A
positive slope was selected for each linear function defined
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Fig. 4. Measured ACFs generated using the ergodic maps of set Wa.

12,5 : : - .
O 7,=085.7,=068
ol O %,=0752,=060]|
v 1, =050.2,=040
A 2,=0052,=004
7.5¢

251

Power spectral density [dB]

X/ L I L
-n/2 -n/4 0 /4 n/2 3n/4 bid
Normalised frequency  [rad / sample]

5 L
-m -3n/4

Fig. 5. Measured PSDs generated using the ergodic maps of set Ws.

over its corresponding segment.

The measured ACFs and PSDs associated with the maps
of set W, are provided in figs. 2 and 3. In the cases where
arg[Ae] = m/2 and arg[As] = 27/3, the figures reveal
the emergence of spectral components with frequencies that
correspond to the arguments of the eigenvalues Ay and As.
For the case where arg[A\s] = m/3, it is observed that the
largest magnitude that may be selected for the eigenvalues
A2 and Az is relatively small (specifically, rmax(7/3) = 0.5).
This limitation restricts the minimum bandwidth of these ACF
components, with the result that these components are not
visually distinguishable from a plot of the PSD. The ACF cor-
responding to the case of real eigenvalues (A2 = A3 = 0.85)
decays monotonically at a relatively slow rate, which corre-
sponds to a ACF component with a narrow bandwidth around
zero frequency.

B. Eigenvalue Magnitude and Bandwidth

In order to characterise the relationship between the magni-
tude of an eigenvalue and the bandwidth of its corresponding

v . . ; . . . : . ‘
O [1,=085, Arg[r,]=2n/3

O ) =075 Arglr] =2n/3
V=050, Argln] = 2m3

0.8

0.6 |
04F

0.2

Normalised ACF magnitude

-02F

0.4 . . . . . . . . .
0

Delay [samples]

Fig. 6. Measured ACFs generated using the ergodic maps of set Ws.

10r . . . : .
O Ih|=085, Arg[h | =2n/3
O [1,]=0.75 Arg[h ] =27/3

7.5+ A ’ ]
o T =050, Arg[1,] = 2n/3 5

Power spectral density [dB]

- -2n/3 -n/3 0 n/3 2n/3 T
Normalised frequency o [rad / sample]

Fig. 7. Measured PSDs generated using the ergodic maps of set Ws.

ACF component, two sets Wo and Ws of ergodic semi—
Markov maps were derived. The first set W, consists of maps
associated with real FP matrix eigenvalues, whereas the maps
of the second set Ws are associated with strictly complex FP
matrix eigenvalues. The two map sets W, and W3 were used
to investigate the bandwidths of ACF components centered
around zero frequency and a frequency of 27/3 radians per
sample, respectively. The selection of FP matrix eigenvalues
for these sets are summarised in table I. The maps of both sets
Ws and W5 were derived from the respective FP matrices in
the same manner as was done for the maps in the set W.

The ACFs and PSDs corresponding to the maps of set Wa
are presented in figs. 4 and 5, respectively. As anticipated from
eq. 4, the ACFs corresponding to these maps are monotonically
decreasing and the respective PSDs are concentrated around
zero frequency. An inverse relationship is observed between
the bandwidth of the ACF component and the magnitude of
the eigenvalues Ao and \3. This observation is supported from
fig. 4, which reveals an inverse relationship between the rate
of decay of the ACF and the eigenvalue magnitudes.
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Figs. 6 and 7 present the ACFs and PSDs associated with
the maps of set Ws. A similar inverse relationship is observed
between the bandwidth of the signal components centered
around +27 /3 radians per sample and the magnitude of the
corresponding eigenvalues.

VI. SUMMARY AND CONCLUSIONS

A novel technique for constructing semi—-Markov ergodic
maps was proposed in this paper. The technique uses a
new solution to the inverse eigenvalue problem to construct
3-by-3 doubly stochastic FP matrices with complex eigen-
values. These eigenvalues were shown to govern, in part, the
characteristics of the resulting map’s ACF and PSD. It was
demonstrated experimentally that distinct spectral character-
istics may be realised through appropriate selection of the
FP matrix eigenvalues. Furthermore, it was proved that the
proposed solution to the inverse eigenvalue problem is able
to realise all possible eigenvalue triples for doubly stochastic
matrices, thereby providing greater freedom in selecting the
power spectrum. By facilitating the selection of complex
eigenvalues, the proposed technique allows for the selection of
the oscillation frequency of ACF components. This element of
novelty improves the flexibility and versatility of the proposed
technique, as compared to existing techniques [15].

It is noted that the proposed technique is limited to pro-
ducing ergodic maps with a uniform invariant distribution.
However, it is anticipated that the FP matrices that comprise
the proposed solution to the inverse eigenvalue problem may
be used to construct semi—Markov chaotic maps with larger FP
matrices and invariant densities that approximate a prescribed
density, while reserving greater flexibility with regards to
the ACF. The generalisation of the recursive Markov state
disaggregation technique, and its application to the solution of
the inverse FP problem for both a prescribed invariant density
and ACEF, is a topic for future research.
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