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Abstract—Since the release of the National Centre for Human
Language Technology (NCHLT) Speech corpus, very few addi-
tional resources for automatic speech recognition (ASR) system
development have been created for South Africa’s eleven official
languages. The NCHLT corpus contained a curated but limited
subset of the collected data. In this study the auxiliary data
that was not included in the released corpus was processed with
the aim to improve the acoustic modelling of the NCHLT data.
Recent advances in ASR modelling that incorporate deep learning
approaches require even more data than previous techniques.
Sophisticated neural models seem to accommodate the variability
between related acoustic units better and are capable of exploiting
speech resources containing more training examples. Our results
show that time delay neural networks (TDNN) combined with
bi-directional long short-term memory (BLSTM) models are
effective, significantly reducing error rates across all languages
with just 56 hours of training data. In addition, a cross-corpus
evaluation of an Afrikaans system trained on the original NCHLT
data plus harvested auxiliary data shows further improvements
on this baseline.

Index Terms—NCHLT corpora, speech data, under resourced
languages, automatic speech recognition, Bidirectional Long
Short Term Memory, Kaldi

I. INTRODUCTION

In September 2009, the Department of Arts and Culture
(DAC) of the South African government put out a call for
proposals for the development of speech and text resources for
the country’s eleven official languages. These resources were
to be delivered to the National Centre for Human Language
Technology (NCHLT) with the aim to advance the develop-
ment of human language technology (HLT) in South African
languages. The aim of the NCHLT Speech project was to
create speech resources for the development of text-to-speech
(TTS) and automatic speech recognition (ASR) systems, for
the eleven official languages in South Africa. The project was
carried out by a research group at the CSIR’s Meraka Institute
and the corpora were delivered to the DAC in 2013.

The ASR data that was made publicly available after the
completion of the project constitute a subset of the data that
was collected. The released data was selected from the total
pool of collected data to satisfy the project specifications [1].
Very few speech resources have been developed for the coun-
try’s official languages since the NCHLT project. The aim of
the study reported on here was therefore to investigate the
potential value of the data that was collected but not included
in the NCHLT speech corpus.

ASR systems rely on large volumes of transcribed data from
which acoustic models can be derived. The variation that is

expected to occur in speech data should be represented in
the training data to build representative models. Training data
should therefore be diverse, containing examples that represent
as much as possible of the variation typically observed in
speech signals.

The initial version of the data collection tool resulted in
a high repetition of a limited number of prompts. It would
not be good practice to include too many examples of the
same utterances in a training set, so the repeated prompts were
mostly excluded from the NCHLT Speech corpus. However,
it is often said that “there is no data like more data” and
some of the more recent acoustic modelling techniques do
indeed seem to be capable of using just about any training
data to improve modelling accuracy. The aim of this study was
therefore to determine how much of the un-released NCHLT
data is potentially useful and whether simply having “more”
data could improve the performance of ASR for South Africa’s
official languages.

II. BACKGROUND

While it may be true that “there is no data like more data”
it also holds that models trained on bad data will produce poor
results: “garbage in, garbage out.” We thus wanted to identify
utterances that were not suitable for model development and
exclude those from the pool of auxiliary data.

The NCHLT data collection protocol included a number of
crude checks to identify corrupt and empty recordings. In our
current investigation we also eliminated prompts that could
not be aligned with the phone string expected to be produced
when they are pronounced. In addition, we used a phone-based
dynamic programming (PDP) scoring technique [2] to rank
recordings according to the degree of acoustic match between
the expected and produced prompts.

The ASR results that were published with the first release
of the NCHLT Speech corpus were obtained using both the
HTK [3] and Kaldi [4] toolkits. At the time the best results
were obtained using the Kaldi implementation of Subspace
Gaussian Mixture Models (SGMMs). A more recent study on
one of the languages (Xho) suggests that substantial gains over
the initial baseline can be achieved with Deep Neural Net
(DNN) approaches [5]. Since the study published in [5], it
has been shown that time delay neural network (TDNN) [6],
[7] and long short-term memory (LSTM) acoustic models
outperform systems based on DNNs [8], [9].

Further improvements were reported for bi-directional
LSTMs (BLSTMs) that process input data in both time di-



rections using two separate hidden layers. BLSTMs allow the
preservation of both past and future context information [10].
The interleaving of temporal convolution and BLSTM layers
has been shown to model future temporal context effec-
tively [11]. Furthermore, for BLSTM training on limited data
(10-50 hours), as much as 5 layers of depth seem to be better
than 3 layers. For training sets approaching 100 hours of
data even better performance can be obtained using 6 deep
layers [12]. TDNN-BLSTM acoustic models also yielded the
best results in this study.

In the remainder of this paper we report on the extent
of the repetition in the NCHLT auxiliary data as well as
the techniques that were used to identify potentially useful
recordings. In addition we present new baseline results for
the NCHLT Speech data and investigate the utility of the
auxiliary data by conducting initial ASR experiments using
newly harvested data.

III. EXTENDED CORPORA

As was mentioned in Section I, not all the data that was
collected during the project was included in the final NCHLT
Speech corpus because the initial recordings only represented
a limited vocabulary. A second phase of data collection was
initiated with updated data collection tools. As a result, two
data sets were collected for a number of languages: one set
with many examples of a limited vocabulary and one set with
fewer examples of a more diverse vocabulary.

A. Speech data

After data collection was completed, three data sets were
created using a progressive data selection strategy to construct
the final deliverable [1]:

1) NCHLT-raw
The total set of usable data collected after all empty
and otherwise unusable recordings were discarded. This
includes multiple sessions of some speakers and multiple
examples of some prompts.

2) NCHLT-baseline
A subset of NCHLT-raw representing approximately
200 unique speakers per language and more than 200
utterances per speaker. Recordings from the more di-
verse second batch of data were given preference in
cases where speakers participated in both data collection
campaigns.

3) NCHLT-clean
A subset of NCHLT-baseline constituting the final de-
liverable of ±56 hours of speech data for all 11 official
languages.

All three of these data sets contain prompted speech.
Prompts were derived from the biggest text corpus that was
available for each language [13]. A text selection algorithm
was used to optimise vocabulary coverage using the most
frequently observed n-grams for each language.

A mobile data collection tool was subsequently used to
record the prompts while they were read out by partici-
pants [14]. These recordings were not manually annotated.

Instead, a confidence scoring technique was used to identify
recordings that did not match their associated transcriptions.
Poor matches usually occur as a result of reading errors, high
levels of background noise, hesitations, etc.

The recordings with the best confidence scores (well-
matched with their associated transcriptions) and that con-
tributed most to lexical diversity were included in the final
corpora [1]. These criteria were used to select an equal amount
of data (±56 hours of speech) for all 11 languages. As a
result, data of a sufficiently good acoustic quality was excluded
from the final corpora for some languages. We refer the data
in NCHLT-baseline not included in NCHLT-clean as Aux1.
It should be borne in mind that Aux1 contains utterances
produced by the same speakers as in the NCHLT-clean data
set. Aux2 includes all utterances from NCHLT-raw that are not
in NCHLT-baseline.

Table I presents the initial number of recordings (init) in the
Aux1 and Aux2 data sets for each language1. The failed column
in the table shows how many utterances in each data set failed
the alignment process described in Section V. The percentage
value in the last row of the table indicates that more than 90%
of both the data sets could be aligned and could therefore be
considered for harvesting. This corresponded to 780.57 and
640.70 hours of audio in Aux1 and Aux2 respectively.

TABLE I
TOTAL NUMBER OF AUXILIARY RECORDINGS (Aux1 & Aux2), NUMBER OF
FAILED PHONE ALIGNMENTS (failed) AND DURATION [H] OF ADDITIONAL

DATA PER LANGUAGE.

Lang Aux 1 Aux 2
init failed dur init failed dur

Afr 54 117 2 451 42.68 47 290 356 39.14
Eng 42 958 952 29.78 54 719 628 38.92
Nbl 37 669 3 224 42.56 100 402 4 202 120.07
Nso 65 224 2 259 64.89 53 318 947 51.80
Sot 74 457 5 858 73.86 47 938 700 43.51
Ssw 67 410 7 172 78.41 136 422 9 490 167.00
Tsn 69 655 1 953 70.15 35 156 356 36.98
Tso 71 311 3 781 83.67 2 316 1 489 0.65
Ven 82 895 4 886 93.69 44 666 1 220 54.94
Xho 90 560 8 739 102.95 53 269 2 549 54.95
Zul 77 833 3 471 97.93 30 319 327 32.74
Total 734 089 6.1% 780.57 605 815 3.7% 640.70

B. Unique and repeated prompts

A first analysis of unique and repeated prompts in the
NCHLT-clean data was conducted shortly after the corpus was
released [15]. Tables II and III provide type and token counts
for the prompts in the NCHLT-clean, Aux1 and Aux2 data sets.
The values in the NCHLT TRN Type column correspond to
the number of unique prompts in the NCHLT training set. The
counts for prompt types that occur in the test set but not in
the training set are listed in the NCHLT TST Type column.

1Three character ISO codes are used to refer to the 11 official languages in
all the tables in this paper: Afrikaans (Afr), English (Eng), isiNdebele (Nbl),
Sepedi (Nso), Sesotho (Sot), Siswati (Ssw), Setswana (Tsn), Xitsonga (Tso),
Tshivenda (Ven), isiXhosa (Xho), isiZulu (Zul).



TABLE II
TYPE & TOKEN COUNTS FOR PROMPTS only IN NCHLT TRN & only IN NCHLT TST. AUX1 AND AUX2: TYPE AND TOKEN COUNTS FOR PROMPTS

REPEATED IN AUXILIARY DATA.

NCHLT TRN Aux1 Aux2 NCHLT TST Aux1 Aux2
Language Ty To Ty To Ty To Ty To Ty To Ty To
Afr 9 482 39 589 8 268 30 494 996 29 224 44 44 44 299 0 0
Eng 6 509 33 595 5 724 22 425 1 934 17 095 95 106 86 301 9 14
Nbl 9 967 29 416 7 056 20 639 9 964 63 833 599 632 403 724 196 278
Nso 14 247 45 803 12 415 41 453 6 787 34 699 223 291 194 556 28 61
Sot 9 414 34 010 8 273 42 105 3 561 23 714 122 122 122 485 0 0
Ssw 9 781 28 472 9 097 33 662 9 781 79 138 160 164 158 687 2 2
Tsn 13 230 40 994 11 206 41 768 1 588 28 533 407 443 160 309 32 32
Tso 10 517 34 265 10 144 42 177 646 659 173 179 173 911 0 0
Ven 14 188 37 456 13 085 49 008 6 738 34 037 436 439 434 1 527 0 0
Xho 11 416 26 713 9 470 43 812 2 190 11 651 511 511 201 818 0 0
Zul 7 580 19 585 7 220 34 330 1 191 9 760 277 299 276 1 377 0 0

TABLE III
TYPE & TOKEN COUNTS FOR PROMPTS IN BOTH NCHLT TRN and NCHLT TST. AUX1 AND AUX2: TYPE & TOKEN COUNTS FOR PROMPTS REPEATED

IN AUXILIARY DATA. NEW UNIQUE: TYPE & TOKEN COUNTS FOR NEW PROMPTS IN AUX1 AND AUX2.

NCHLT TRN TST Aux1 Aux2 New Unique Aux1 New Unique Aux2
Language Ty To Ty To Ty To Ty To Ty To
Afr 2 463 23 328 2 318 14 565 1 089 16 697 1 244 6 378 80 1 013
Eng 2 804 40 673 2 627 16 065 2 455 35 894 583 3 215 195 1 088
Nbl 2 269 9 393 1 696 4 366 2 269 16 326 2 450 8 716 2 716 15763
Nso 2 082 10 258 1 783 5 818 1 015 6 466 3 513 15 138 1 969 11 145
Sot 1 726 20 600 1 680 15 111 814 18 998 2 507 10 898 937 4 526
Ssw 2 292 11 898 2 189 9 219 2 292 2 546 3 442 16 670 3 448 22 376
Tsn 868 14 137 682 8 316 528 3 454 4 596 17 309 223 2 781
Tso 2 476 10 626 2 427 8 505 6 6 2 706 15 937 148 162
Ven 2 331 8 979 2 193 7 834 1 041 3 732 3 987 19 640 1 641 5 677
Xho 1 057 16 419 1 500 15 081 1 024 36 792 5 636 22 110 490 2 277
Zul 1 814 21 844 1 772 22 915 1 040 19 296 2 321 15 740 262 936

NCHLT TRN TST types correspond to unique prompts that
occur in both the training and the test set2.

The Aux1 and Aux2 columns indicate how many of these
Types also occur in the auxiliary data. The type and token
counts for the unique prompts that occur only in the auxiliary
data are provided in the last four columns of Table III. The
values in these tables indicate that the auxiliary data mostly
contains repetitions of prompts that are already in the NCHLT-
clean corpus.

C. Phone representations

The data analysis in this study required phone level tran-
scriptions to process utterances. Text pre-processing was re-
quired to prepare the transcriptions for pronunciation ex-
traction. All text was converted to lowercase and unwanted
symbols (not within the list of graphemes for a particular
language) were removed. Since numerous additional words
occurred in the auxiliary data, the existing NCHLT pronunci-
ation dictionaries had to be extended before the data could be
processed.

During the NCHLT project, a set of grapheme-to-phoneme
(G2P) rules were derived from the so-called NCHLT-inlang
dictionaries [1]. These rules were used to predict pronuncia-
tions for the new words. No explicit procedure was followed

2Type and token counts for the NCHLT DEV set are not included in the
table. On average, the development sets contain around 3 000 prompt tokens.

to identify out-of-language words, but for certain languages
the in-language G2P rules did not contain rules for particular
graphemes or the punctuation mark used to indicate an apos-
trophe in English (Eng). For these words the Eng G2P rules
were used to generate pronunciations and the phones were
mapped to similar sounds using the in-language phone set.

Eng was the only language for which a different procedure
was followed. G2P rules trained on a version of the Oxford
Advanced Learner’s dictionary, adapted to South African Eng
using manually developed phoneme-to-phoneme rules were
used for the analysis of the Eng data [16].

IV. NCHLT-CLEAN BASELINE REVISITED

This section presents a more recent baseline ASR recipe for
the NCHLT-clean corpora. The train, development and test sets
defined in [1] were used throughout.

A. ASR systems

We built phone recognition systems following the same
Kaldi recipes used in [5] to create Triphone, SGMM and
DNN-HMM hybrid models. TDNN-BLSTM models were also
implemented by adapting the Kaldi Wall Street Journal (WSJ)
example recipe [4].

The TDNN-BLSTM acoustic models were trained using
40-dimensional high-resolution MFCC features. The high-



resolution MFCCs were derived from speed3 and volume4

perturbed data.
Since the TDNN-BLSTM recipe required high-resolution

MFCC features, a standard MFCC front-end with a 25ms
Hamming window and a 10ms shift between frames (16
kHz sampling frequency) was employed to train all the other
models. Mean and variance normalisation operations, applied
on a per speaker basis, followed the extraction of 13 cepstra
which included C0. Delta and double delta coefficients were
added. These features were used to estimate 3-state left-to-
right HMM triphone models, incorporating linear discriminant
analysis (LDA), maximum likelihood linear transform (MLLT)
training and speaker adaptive training (SAT). SGMM training
followed. The Kaldi nnet2 setup was used to train DNN-HMM
hybrid models keeping the same parameter settings as in [5],
[18].

The TDNN-BLSTM network was generated with the nnet3
Kaldi setup. We replaced the nnet3 component graph with
a similar TDNN-BLSTM structure obtained from a Switch-
board chain model example recipe. This graph contained 1
standard, 3 time-delay and 3 BLSTM layers. For all layers
the cell-dimension was set to 1024. The BLSTM forward and
backward layers implemented delays of −3 and 3 respectively,
setting recurrent and non-recurrent parameter dimensions of
256 and a decay time of 20. The remaining training parameters
provided in the WSJ recipe were used without adjustment
except for minibatch sizes (set to either 32 and 16) to enable 70
parallel CPU training jobs on a node with an 80 GB memory
constraint.

B. Phone recognition measurement

A position independent phone configuration was used to
convert the training transcriptions to a phone level represen-
tation. During system evaluation, this arrangement seamlessly
converts the standard Kaldi word error rate (WER) measure-
ment to a phone error rate (PER). Estimations of all PERs
used speech phone labels only, ignoring any silence labels.
Recognition employed a flat ARPA language model consisting
of equiprobable 1-grams.

The best ratio between acoustic and language model contri-
butions was determined by varying the language-scale param-
eter (integer values in the range of 1-20) during scoring. The
acoustic-scale parameter was set to the default value of 0.1 and
the best language-scale parameter was chosen using the devel-
opment data sets previously defined for NCHLT-clean [1]. The
selected language-scale parameters were subsequently used
during data harvesting and to gauge recognition performance.

C. Results

Table IV shows the development (dev) and test set (tst) PER
results of SGMM, DNN, and the baseline TDNN-BLSTM
models for each language. As in [1] the number of phone
labels (#Phns) provide an indication of the label complexity.

3Using factors of 0.9, 1.0 and 1.1 [17].
4Choosing a random factor between 0.125 and 2.

TABLE IV
PERS FOR SGMM, DNN AND TDNN-BLSTM BASELINE SYSTEMS PER

LANGUAGE

SGMM DNN BLSTM
Lang #Phns dev tst dev tst dev tst
Afr 37 11.31 12.73 8.50 9.63 5.89 6.64
Eng 44 18.68 18.42 14.06 13.73 7.69 7.24
Nbl 49 20.62 21.43 16.59 18.03 10.04 10.77
Nso 44 14.54 14.91 12.05 12.60 9.29 9.64
Sot 39 21.42 21.47 16.21 16.48 11.44 11.92
Ssw 39 17.12 16.65 13.39 13.71 9.17 8.70
Tsn 34 15.44 14.36 11.98 11.14 8.24 7.17
Tso 55 15.38 13.58 11.12 11.16 7.10 6.67
Ven 39 15.14 15.60 12.47 13.20 8.61 9.10
Xho 53 20.00 20.18 16.46 15.72 11.20 11.25
Zul 46 16.66 18.10 13.33 15.25 10.18 10.72

The results for the SGMM models are similar to the phone
recognition result obtained with HTK in the 2014 study [1].

In general, PERs improved with more sophisticated models.
The table shows that substantially lower PERs were obtained
using TDNN-BLSTM models in comparison with SGMMs
and DNNs. In fact, in most cases the TDNN-BLSTM PERs
were almost half the corresponding SGMM values.

V. DATA HARVESTING

The purpose of automatic data harvesting is to detect
acoustically compromised recordings so that they are not used
as train or test data during system development. Section V-A
describes the mechanism we used to rank recordings in terms
of acoustic quality. Quantifying the acoustic variability in the
data enabled the selection process described in Section V-B.

A. Acoustic ranking

For each language, we processed all of the Aux1 and Aux2
data using the improved baseline acoustic models described in
Section IV. The harvesting procedure required each utterance
to be decoded twice. Firstly, the standard free phone decode
implementing an ergodic phone loop generated a sequence of
phone labels, purely based on the acoustics. Next we used the
supplied Kaldi functionality to compute training alignments
from lattices for nnet3 models. This algorithm generates a
decoding graph for a single fixed sequence of phone labels,
which directly corresponds to the reference transcription. In
the event that the acoustics are not a good match for the
forced sequence of phone labels, this constraint can result in
the decode operation exiting without producing any output.
Such unsuccessful decodes served as a first selection criterion
to filter out large transcription errors.

As explained in Section II, PDP scoring matches the free
phone decode and forced phone label sequences. It is possible
to adjust the PDP algorithm using a cost matrix so that string
edit operations (substitution, deletion and insertion) contribute
differently for the various phone labels [19]. We opted to
use a flat phone matrix where the contributions of the edit
operations are the same for every phone label. Insertions and
deletions contributed half as much to the score as substitutions
and correctly recognised labels.



B. Data selection

This section reports on our attempt to improve ASR perfor-
mance for two languages adding additional data from Aux1.
To select the suitable subsets of additional training data, we
estimated local PERs for 400 utterances at a time.

Fig. 1. Local phone error rates (PERs) for 400 utterance subsets of the Aux1
data.

Figure 1 depicts graphs of the local PERs. These values
were computed for non-overlapping subsets of utterances,
ordered according to PDP scores. Figure 1 reveals a large
range of PER scores for different subsets of utterances. PERs
of higher than 100% can occur due to, for example, runaway
insertions during free phone recognition. At an operating point
of 50% PER, more than 20 hours and for some languages even
more than 60 hours of additional data can be selected.

We decided to use a conservative estimate of 30% PER.
Applying this threshold, we selected 29.8 hours of Afr and
18.9 hours of Eng data. The selected data also contained
additional test data (for the same speakers as the NCHLT-
clean development and test sets). Excluding these utterances
resulted in 27.8 hours of additional data for Afr and 17.7 hours
for Eng.

C. Selection validation

Our evaluation included cross-corpus test data to determine
whether overtraining on the NCHLT corpus occurred. Section
V-C1 introduces these data sets and explains the creation of
the required phone representations.

1) Cross-corpus data: During the RCRL project [20] 330
Afr radio news bulletins that were broadcast between 2001
and 2004 on the RSG radio station were purchased from the
SABC. The data was transcribed to create a corpus of around
27 hours of speech data. For the validation purposes in this
study a previously selected 7.9 hour evaluation set containing
28 speakers was used.

The 20 hour South African broadcast news (SABN) corpus
was compiled using broadcasts of one of South Africa’s main

radio stations, SAFM. The news bulletins were recorded be-
tween 1996 and 2006 and contain a mix of newsreader speech,
interviews and crossings to reporters at remote locations [21].
We compiled a 3.5 hour subset of speech from 26 speakers as
validation data.

To obtain the phone sequences from the RSG and SABN
orthographies, we implemented the same procedure as for the
NCHLT Afr and Eng systems. After text pre-processing, G2P
rules were applied to generate pronunciations for new words.

Fig. 2. Comparing PERs of all acoustic models on NCHLT test data.

2) Validation experiments: Figure 2 depicts the recognition
results before and after data augmentation for NCHLT-clean
test data. Overall the Afr systems produced lower PERs than
the Eng systems. For Afr lower PERs were obtained for DNN-
based systems, especially for the TDNN-BLSTM models (the
latter dropping from 6.64% to 5.14%). The results for the
Eng systems did not follow the same trend. While the DNN
acoustic models produced a small gain (13.23% compared to
13.73%), the augmented system yielded a higher PER with
the TDNN-BLSTM model (8.46% compared to 7.24%).

Fig. 3. Comparing PERs of all acoustic models on RSG and SABN test
data.

Cross-corpus recognition results are illustrated in Figure 3.
Decoding RSG data, the Afr system produced trends similar
to those observed for the NCHLT test data. Again, the DNN
and TDNN-BLSTM systems yielded performance gains with
PERs dropping from 29.49% to 26.60%. Interestingly, the
augmented Eng system produces slightly better results for
triphone and SGMMs employing fewer parameters.



VI. CONCLUSION

This paper introduced a new ASR baseline for the entire
NCHLT Speech corpus. Even with the available 56 hour
corpora, deep learning architectures consistently produced
substantial performance gains, lowering PERs considerably.
The paper also described the large portion of previously
unreleased auxiliary NCHLT data. Acoustic confidence scores
could be obtained for close to 90% of the auxiliary data using
the TDNN-BLSTM baseline ASR to perform data harvesting.
Two sets of additional audio data (Aux1 and Aux2) with
a total duration of more than 1400 hours were compiled.
Since the speaker identities in Aux1 could be mapped to
those in NCHLT-clean, initial data augmentation experiments
could be conducted. The additional 27.8 hours of training
data significantly improved Afr recognition results. In contrast,
results seem to indicate that the 17.7 hours of additional Eng
training data was not enough to achieve a similar improvement
for Eng. These trends were successfully verified for both
languages using data from different corpora.

Future work should focus on efficiently extending the
training data sets for all languages. The Aux1 and Aux2 data
contains many repetitions of the “search term-like” prompts in
the NCHLT-clean train and test data sets. The impact of these
repetitions on various neural models still needs to be assessed.
The identity of the speakers in the Aux2 data also has to be
verified against the speakers in NCHLT-clean and Aux1.
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