ON REGULAR EXPRESSIONS WITH
BACKREFERENCES AND TRANSDUCERS

Martin Berglund® Frank Drewes!®

Brink van der Merwe'©)

(Y Department of Information Science, Center for AI Research (CSIR),
Stellenbosch University, South Africa

(B)Department of Computing Science, Umea University, Sweden

(©)Department of Computer Science, Stellenbosch University, South Africa

Abstract

Modern regular expression matching software features many extensions, some general while
some are very narrowly specified. Here we consider the generalization of adding a class of
operators which can be described by, e.g. finite-state transducers. Combined with backreferences
they enable new classes of languages to be matched. The addition of finite-state transducers is
shown to make membership testing undecidable. Following this result, we study the complexity
of membership testing for various restricted cases of the model.

1. Introduction

In this paper we consider generalizations of various common feature additions in practical reg-
ular expression matching software. Notably we include expression with backreferences (which
we abbreviate REb here), an extension which allows the regular expression to “capture” literal
substrings as part of its matching procedure, and then “backreference” a previously captured
string to match an exact copy of it in a different position of the string. Furthermore, in most
matching engines (Java, Perl, etc.) the subexpression (?i) matches the empty string, but
enables case-insensitive matching for a subexpression, meaning that (?i) (.*)\1 matches any
ap -y B, where, for each i, o; and f; are the same letter up to one (perhaps) being
lowercase and the other uppercase. Several similar features exist (such as collating different
representations of Unicode symbols), which can all be naturally expressed as a transduction of
the matched string. To generalize this we here permit transducer subexpressions, obtained by
allowing the application of some string-to-string transducer to subexpressions. A transducer
subexpression ¢(FE) describes the language of strings obtained by applying the transducer ¢ to
the language matched by E. We call these extended expressions, obtained by adding backref-
erences and transducers, regular expressions with backreferences and transducers (REbt). For
the most part, the transducers considered will be finite-state transducers or restrictions thereof.

Reviewers:
12] is not yet
published, see
Lemma

in the
Appendiz for
reproduction
of the small
argument.

2 Martin Berglund, Frank Drewes, Brink van der Merwe

Beyond the transducer-like features of existing engines the REbt (and the various restricted
subclasses we consider) can also describe some frequently encountered non-context-free lan-
guages. According to Dassow et al. [5] the three most commonly encountered non-context-
free features in formal languages are reduplication, i.e. the ability to express languages of
the form Lgrp = {ww | w € ¥*}, multiple agreements, described by languages of the form
Lya = {a™"c" | n > 1}, and cross agreements, as given by languages of the form Loy =
{a™b™c"d™ | n,m > 1}. The language Lrp can be described by REb, but neither Ly nor Lga
can, which for a restricted class of REDb follows from the pumping lemma in [4], and for REb in
general, from the argument in [2] for why the language {a™b" | n > 0} cannot be described by
REDb. The language of the example Java expression (?71) (.*)\1 cannot be matched by REb
either, as evidenced by the sublanguage {a"bA™B | n > 0}, using that REDb is closed under
intersection with regular languages as shown in Theorem 21 in [9]. The REbt matching these
languages are quite simple, but the full formalism turns out to be very powerful. This estab-
lishes the goal of the paper, i.e. finding natural restrictions of REbt which can still match Lya
and Lga, can be tested for membership with a computational complexity not too distant from
REDb, and may be considered “natural”.

After definitions given in Section [2] and the unrestricted case being shown to have undecidable
membership in Section [3] the remaining sections explore various restrictions: Section [forbids
the capture of transducer preimages and considers permitting only non-deleting transducers.
Section |5| forbids transducers in capturing cycles (where a capturing cycle captures a submatch
and then later backreferences this capture as part of another submatch by the same capturing
subexpression), and requires the transducers occurring in captures to be functional. Finally,
Section [6] considers permitting only a single top-level transducer.

2. Definitions

Denote by N the set of natural numbers, excluding 0, No = NU {0}, and by [k], with & € N,
the set {j | 1 < j < k}. An alphabet is a finite set of symbols. For sets S and T we write
S W T to denote the union of these sets, assumed to be disjoint. Let € denote the empty
string and ¥, = 3 U {e}, where ¥ is an alphabet, and for a string w € ¥*, let substr(w)
be the set of all substrings of w, i.e. substr(e) = {¢}, and if w; € ¥ for 1 < i < n, then
substr(wy ... w,) = {e} U{w;...w; | 1 <7 < j <n}, in particular, ¢, w € substr(w). Given a
notion of expressions, defined inductively, we denote by subexps(F) the set of all subexpressions
of the expression F, that is, subexps(F) is the set of expressions used to obtain E inductively,
including duplicate expressions when the same subexpression appears at different places in
E. For a partial function f: A — B, let dom(f) denote its domain, range(f) its range, and
g = flz — y] denote the partial function such that g(x) = y but g(z) = f(z) for all z # x.
A partial function f with dom(f) = 0 is denoted by L. Let f[x — 1] denote the function
resulting when removing = from the domain of f. For a set A, we denote by |A| the cardinality

of A.

To keep our notion of regular expressions with backreferences and transducers general, we define

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 3

it relative to a set © of string transducers. When we say that © is a class of transducers we
mean that every element ¢ of © denotes a transduction £(t) on X* for some alphabet X, i.e. L£(t)
is a binary relation £(¢) C ¥* x ¥*. As a transducer ¢t € O is a denotation of a transduction,
it has a length, namely its length when written down as a string. We denote this length by
|t|. Clearly, classes of transducers that specify the same transductions may differ regarding,
e.g. their succinctness, and thus also with respect to their computational complexity.

We say that a transducer ¢ is:

e non-deleting if there is a constant ¢ such that |u| < c|v| + ¢ for all (u,v) € L(t), we call
the smallest such ¢ the non-deletion constant of t,

e non-generating if the transducer defined by the inverse relation £(¢)~! is non-deleting, and

e functional if L(t) is a partial function, i.e. [{v € ¥* | (u,v) € L(t)}| < 1 for all u € ¥*.

Definition 2.1 Let © be a class of transducers. For input and backreference alphabets > and P,
a €Y., ped andt € O a transducer on X, the set of regular expressions with backreferences
and transducers (over ©), REbls ¢, is obtained inductively from the following subexpressions:
(1) 0; (2) a; (3) (F|G); (4) (F-G); (5) (F*); (6) (16); (7) ([sFlg); and; (8) t(F); where
F,G € REbts 5.

We call the REDt that can be constructed using rules 1-7 regular expressions with backreferences
(REDb or REbyg ¢), using 1-5 and 8, regular expressions with transducers (REt or REty), and,
using 1-5, regular expressions (RE or REy).

For £ € REDbt, we denote by | F| the length of E as a string, but letting each transducer symbol
t in |E| contribute length |¢| (i.e. not just 1), and by enve x (or simply env, when ¢ and ¥ is
understood) the set of all partial functions from ® to ¥*. We refer to these partial functions as
environments, since they keep track of which substring, in ¥*, from the input string, is bound
to a given backreference symbol ¢ € ®. The empty environment, i.e. the partial function in
env with empty domain, is denoted by _L.

Definition 2.2 For E € REbts ¢, we define the matching relation M(E) C envg e X 3* X
envs, o inductively on the structure of E, as follows.

1.0 if E=0;

2.{(f,a,f) | f € envno} if E = a with a € ¥¢;

3. M(F)UM(G) if E = (F|G);

4- A(f,ow, 9) | (fiv, f') € M(F), ([w,g9) € M(G)} if E = (F - G);

5 M) U{(f,vw,q) | (f,v,f) € M(F*),(f,w,g) € M(F)}, or the least fized point of
M(E)=M(E)UM(E-F), if E = (F*);

6. {(f,w, [l —=w)) | (fiw,) € M(F)} if E = ([sF]y) with ¢ € ©;

T A(f,w,)| f € envse, f(§) =w} if E = (15);

8. A(f,w,)| (f,v, f) € M(F),(v,w) € L(t)} if E = (t(F)) for somet € O.

The language matched by a REbt E, denoted L(F), is defined as the set L(F) = {w | (L,w, f) €
M(E), f € envs o}

4 Martin Berglund, Frank Drewes, Brink van der Merwe

Let td(E) denote the set of all transducers occurring in E. For technical convenience, we assume
that every transducer in td(F) is referred to only once in E. Hence, two distinct subexpressions
t(F) and t'(F') have t # t' even though we may of course have L(t) = L(t').

As usual, when writing an expression as a string some parentheses may be elided using the rule
that Kleene closure ‘*’ takes precedence over concatenation ‘-’, which takes precedence over
union ‘|’. In addition, outermost parenthesis and parenthesis in subexpressions of the form
([¢E]s) and (1), may be dropped, and E; - Ey abbreviated as EjEy. Naturally, the brackets
which denote a capturing group may not be elided.

Example 2.3 A simple class of transducers over ¥*, corresponding to finite-state transducers
with only one state, is the set of allt = (ay : 1, ..., ax: Bx) where k € N and an, By, ..., g, B €
Y... The transduction denoted by t is

E(t) = {(ail "'Oéinaﬁil /Bln) ‘ ne N> Z‘17---72‘11 € [k]}

Taking EMA = [1a*]1tb(T1)tc(/h) and ECA = [1a*]1[2b*]2tc(ﬁ)td<T2> fI’OIH REbt{a,b,c,d},{l,Q} with
tb =a. b, tc =a:c and td =b:d yields ﬁ(EMA) = LMA and E(ECA) = LCA7 with LMA and LCA
as given in the introduction.

We often let ¥ and @ indicate arbitrary input and backreference alphabets respectively, and
may then also drop them, writing REbt instead of REbty, ¢.

The subset REDb of REDbt is equivalent to the semantics originally given by Aho in [I], which
agrees fully with the behavior or many popular software implementations (e.g. Boost, the NET
standard library implementation, the PCRE library [3]), and form a superset of many more
(e.g. the Java and Python implementations). The semantics considered by Schmid in [9] is also
closely related, with one difference being that subexpressions of the form [4--- 14 - - -], are not
permitted by Schmid (but are here, in Aho, and in most implementations). Schmid also differs
from Aho, while agreeing with other important theoretical work [4], in having 1, match the
empty string if ¢ has not yet been captured (i.e. they let £L(F) = {w | (L., w, f) € M(E)}
where 1.(¢) = ¢ for all ¢ € ®). We again adopt the Aho approach to align with the software
practice, also noting that Aho semantics can simulate the use of L., by first “initializing” all
symbols from ® to ¢ (using a leading sequence of subexpressions [4e], for all ¢ € ®).

3. Unrestricted Language Classes

The use of transducers without severe restrictions unsurprisingly gives rise to a Turing complete
formalism. To make this precise, let FST denote the class of all one-way finite-state string
transducers. More precisely, FST is the set of all ¢ = (Q, 3, qo, 0, F') where (1) @ is a finite
set of states, (2) X is the input and output alphabet, (3) qo € Q is the initial state, (4) § C
Q X X X X, x Q is the transition relation, and (5) F' C @ is the set of final states.

A computation of such an FST t is a sequence (g1, a1, 81,4,), - -, (qn, O, Bn, ¢l,) of zero or more
transitions, having ¢, = ¢;41 for all i € [n — 1]. The transduction £(¢) C ¥* x ¥* consists of

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 5

all (v, w) such that there exists a computation (qi, a1, 51,4,), - (Gn, On, Bn, ¢,,) With g = ¢4,
¢, €EF,v=a; -ay,and w= /-5,

Theorem 3.1 For every recursively enumerable language L there exists an E € REbt over FST
such that L(E) = L. Consequently the membership problem is undecidable for REbt over FST.

Proof. For a Turing machine M with input alphabet I', choose a representation of the
configurations of M as strings w € X*, where ¥ D I', such that we can construct

e a transducer ti,; € FST such that (w,c) € L(tn) if ¢ € £* is the initial configuration of
M when starting with w € I'* as input,

e a transducer t,.. € FST such that (¢, ¢) € L(tae) if ¢ is the concatenation of configurations
of M, with only the last configuration being accepting, and

e a transducer tye, € F'ST such that (c,¢) € L(tsep) if M can go from the configuration ¢
to the configuration ¢’ in a single step.

This is easy for any reasonable string representation of configurations: t;,;; adds a tape head
and state at the front, t,.. checks for an accepting state, and e, performs one of a finite
number of constant substring rewritings around the tape head, implementing the rules of M.

Then, take ® = {¢} and define F, € REbty ¢ to be

[61 1o D ([¢tinit (16)| ptace ([otstep (16)]0 7)),

where D € FST deletes the entire input (and outputs). Thus, the first subexpression selects
and captures any input string w. The subexpression D(---) simulates a computation of M on
w to either fail or, if M accepts, yield ¢. O

Corollary 3.2 Theorem holds even if E is required to be a REbt over functional non-
generating FST's.

Proof. The FSTs used in the proof of Theorem are already non-generating. Further, we
can without loss of generality pick M to be a deterministic Turing machine, at which point the
natural way of constructing the transducers will make them functional. O

The rest of the paper studies restrictions of REbt which we consider to be natural, and which
make matching more tractable while including REb and retaining the ability to match e.g. Lyia
and Lca. Tractability of restrictions must be judged relative to the known NP-completeness
of the uniform membership problem for REb [I], forming a lower bound. The non-uniform
membership problem for REb can be decided in PTIME, and if |®| is bounded, the same holds
true for the uniform membership problem.

Lemma 3.3 For E € REbs, ¢ and w € ¥* we may decide whether w € L(E) by using Algo-
rithm 1. This algorithm runs in time polynomial in |w| and |E|, with a polynomial of degree

O(|®]).

Proof. The steps of the algorithm correspond directly to the semantics given in Definition [2.2]

6 Martin Berglund, Frank Drewes, Brink van der Merwe

Algorithm 1 Membership decision procedure for REby, ¢
procedure MEMBERSHIP(w € ¥* F € REby o)
> Returns true if w € L(FE)
Let env(w) = {f € envy ¢ | range(f) C substr(w)}
Let T : env(w) X substr(w) X subexps(F) x env(w) — {true, false}
T(f,v,E,) + false for all (f,v, E, f) € dom(T)
T(f,a,a, f) < true for all & € ¥, and f € env(w)
T(f, e, F*, f) < true for all F* and f
repeat
if T(f,v1,F*,9) NT(g,ve, F, f') = true for some v,v5 and g then
T(f,vivg, F*, ') < true
if T(f,v1, F,g9) NT(g,vq,G, f") = true for some v,v5 and g then
T(f,vive, F -G, f') < true
if T(f,v, F,f)VT(f,v,G, f") = true then
T(f,v,F |G, f) « true
if T(f,v, F,g) = true then
T(f,’U, [¢F]¢79[¢ = U]) < true

if f(¢) = v then

T(f,v,7s, f) < true

until no additional function values of 1" were set to true
return true if 7(L, w, F, f) equals true for some f

The claimed bound (|w|+]E])°U®D on the running time can be verified by noting that dom(7) is
of size |env(w)|*| E| (‘w‘;l), and |env(w)| < (1+ (‘w‘;l))'q", since a function in env(w) maps each
¢ € ® to one of the at most (|w|2+1) substrings, or leaves it undefined. With |®| bounded, this
makes |dom(7")| polynomial in |w| and |E|, and the algorithm can be performed in a polynomial
number of steps (scanning dom(7") for a way to use one of the rules to set another cell to true,
halting if a full scan results in no new true cells). a

Further, only regular languages are matched by REt over FST (as the class of regular languages
is closed under FST), but the expressions are succinct.

Lemma 3.4 For E € REt over FST it is PSPACE-complete to decide whether ¢ € L(E), and
in general, uniform membership testing for expressions in REt is PSPACE-complete.

Proof. PSPACE-hardness can be seen by a reduction from the (complement of the) PSPACE-
complete problem FINITE AUTOMATON INTERSECTION EMPTINESS [0], where the instances
are sets of finite automata {A1,..., A, } and the question is whether £(A;)N--- N L(A4,) = 0.
For each A;, i € [n], construct the FST ¢, with L(¢;) = {(w,w) | w € L(A)}, and let E =
D(ty(-+-t,(X*)--+)) where D is the FST that takes every input to . Then the intersection is
non-empty if and only if € € L(E).

The problem can be solved in a straightforward way by constructing a product automaton which
simulates all active transducers at once. Explicitly constructing such an automaton requires

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 7

exponential space (as its states would be the Cartesian product of the states of all transducers
and automata for the subexpressions). However, one can incrementally construct this product
automaton, remembering only a single (product) state and its outgoing transitions at every
step, while doing a nondeterministic search (recall that deterministic and nondeterministic
PSPACE are equal) for an accepting path, to solve the problem in PSPACE. a

4. Limiting Capturing and Deletions

In limiting deletions and nesting of transducers, we find further use for Algorithm [I| after
extending it to handle transducers. A key observation to achieve this, is to note that for any
(f,v, F, f') € dom(T) in Algorithm [I| where F' contains no captures (and thus f = f’), the
evaluation of T'(f,v, F,) can be done without knowing the values of T'(f, v, F’, f), for proper
subexpressions I of F', by constructing an NFA that is language equivalent to F' (after replacing
backreferences ¢ in F' by f(¢)).

In order to do this efficiently, the nesting of transducer applications must be bounded. We first
formalize the notion of nesting depth.

Definition 4.1 The nesting depth nd(F) of E € REbt is defined inductively as nd(E) = 0 if
E € REb, and nd(E) = max{l + nd(F) | t € td(E), t(F) € subexps(E)} otherwise.

Algorithm 2 Membership decision procedure for the subclass of REbty ¢ in Theorem

procedure MEMBERSHIP(w € ¥*, E € REbty ¢)
> Returns true if w € L(F)
> Modify dom(7") in Algorithm 1| as follows
Let subexps'(E) C subexps(FE), where subexps’(F) excludes all proper
subexpressions that do not contain captures.
Let T : env(w) x substr(w) x subexps'(E) x env(w) — {true, false}.
Evaluate T'(¢/,w', E’, ") for all (¢/,w’, E', €") such that £’ contains no captures.

repeat

until no additional function values of T" were set to true
return true if 7(L, w, E, f) equals true for some f

Theorem 4.2 For all E € REbts ¢ over FST such that no t(F) € subexps(E) with t € td(E)
contains a capture, the non-uniform membership problem can be solved in polynomial time using
Algom'thm@ whereas the uniform membership problem is NP-complete for nd(E) bounded and
PSPACE-complete in general.

Proof. The requirement on subexpressions of F, of the form ¢(E’), ensures that all (f,v, F, f') €
dom(T), in Algorithm , are such that v is a substring of w (as in Algorithm , and thus our
environments can stay functions from ® to substr(w), instead of being functions from ® to *.

8 Martin Berglund, Frank Drewes, Brink van der Merwe

The restriction on nd(F) is required in order to evaluate cells of the form (f,v, F’, f'), where
E'’ contains no captures, in polynomial time (in |E|, where the degree of the polynomial is in
O(nd(E))). In the uniform case membership in REb is NP-complete as it is NP-hard [1] and
in NP. For the latter, observe that accepting w requires only a polynomial (in |E| and |w])
number of cells in T to be set, bounded by the number of subexpressions matching substrings
of w for a given match, including duplicates of subexpressions F', where F* € subexps(F),
when F' matches more than one substring, and also including subexpressions matching ¢ at a
given position in the input string to potentially set a capture to the empty string. These cells
can be nondeterministically chosen, verifying the match by applying Algorithm [2| to those cells
only. Thus uniform membership is in PSPACE, and thus PSPACE-complete by Lemma 3.4} O

Next we restrict the type of transducers allowed in expressions.

Definition 4.3 Let n-REbt denote the set of all E € REbt such that all t € td(E) are non-
deleting.

In the uniform case the complexity of the membership problem for n-REbt remains quite high,
but it sheds some light on how one may further rein the complexity in.

Lemma 4.4 Uniform membership for E € n-REbt over FST is EXPSPACE-hard in general
and PSPACE-hard for all fized nd(E) > 2.

Proof. For any fixed Turing machine 7" running in space f(|w|), construct ¢, tstep and tacc as
in the proof of Theorem Given an input string w we argue how to construct an expression
E € n-REbt such that e € L(F) if and only if T" accepts w. For a polynomial and exponential
f this characterizes PSPACE and EXPSPACE respectively.

For k € N, let D;, € FST be a non-deleting transducer such that £(Dy) = {(u, a"V/*) | u € ¥*},
where a is an arbitrarily chosen symbol in 3 and ¢/’ denotes integer division. Note that Dy can
be constructed using k + 1 states.

If f is a polynomial, let & = f(Jw|) and let

E = Di([stimit(w)]) (Dr([ststep(Ts)]6))" Dr(tace(T5))-

Then ¢ € L(F) if and only if T" accepts w using at most f(|w]|) tape cells, the simulation
working the same way as in Theorem [3.1 with Dy deleting all remnants of the computation.
Clearly, E can be constructed in polynomial time and has nesting depth 2.

If f is the exponential ¢" construct E as above, but replace each subexpression Dy(E’) with
the subexpression D'cw|(E’), i.e. using |w| nested applications of D, to reduce up to c*! symbols
to €. This makes makes nd(F) = |w| + 1, but the reduction remains polynomial. O

Lemma 4.5 The uniform membership problem for E € n-REbt over any class © of transducers
can be decided in space O(|E|*|w|?c?™F)) where c is the largest non-deletion constant in td(E),
provided that the membership problem for transducers in © can be solved within this space bound.

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 9

Proof (sketch). For any string w we can check whether w € L(FE) in the following way. Let
{t1,...,tx} = td(F), and let ¢ be the largest non-deletion constant of the transducers, i.e. ¢ > 1
such that (u,v) € L(t;) implies |u| < c|v| + ¢ for 1 < i < k. In the following, let m = "),

Now note that for £ to match w it must do so without any subexpression matching a string
longer than m(|w| + ¢). This is the case as every subexpression is, by definition, surrounded by
at most nd(E) transducers, and each transducer shrinks the string by at most a factor of ¢ (after
deleting up to ¢ characters), meaning in total that any string matched by a subexpression is
shrunk by at most a factor m (after deleting up to ¢ characters). A string longer than m(jw|+c)
being matched by a subexpression thus results in the overall string matched being longer than
w.

We can then determine whether w € L(F) by performing a nondeterministic search across the
expression, remembering only a single search state (p, f,e) consisting of three things:

1. The current position p reached in F (viewing F as a string).

2. Whenever entering a subexpression a string of length at most m(|w| + ¢) is nondetermin-
istically guessed and recorded in a table f mapping subexpressions to strings, inserting a
marker > in each f(E’) to record the position up to which the string has been matched so
far.

3. The current environment e € envgy, recording the strings so far captured (if any) and
these too never need to be longer than |®| - (m(Jw| + ¢) + 1).

Informally we start in state (po, f, L) where pg is the leftmost position in F, setting f to map
E to pw, then we nondeterministically walk the expression, guessing a new string to enter into
f whenever we enter a subexpression, verifying the guess, updating the parent marker (and the
current environment if a capture), and simulating transducers as needed, whenever we exit a
subexpression. If the rightmost position can be reached with f(F) = w> then w is matched.

A state uses space |E| + |E| - m(Jw| 4+ ¢) + |®] - (m(Jw| 4+ ¢) + 1), so the procedure runs in
nondeterministic space O(|E||w|c"™) (since we assumed that the space needed for evaluating
transducers fits into this bound). Thus, applying Savitch theorem [§] gives a deterministic
procedure in O(|E|?|w|?c?"®)) space. O

Theorem 4.6 Uniform membership for E € n-REbt over FST is EXPSPACE-complete in
general and PSPACE-complete for all fivred nd(E) > 2.
Proof. Combines Lemma 4.4 and O

The non-uniform variant of the problem is not surprisingly a bit less complex, but remains
NP-complete.

Lemma 4.7 The non-uniform membership problem for n-REbt over © is in NP, provided that
deciding membership is in NP for every 6 € ©.

Proof. For any (fixed) F € n-REbt, if w is an input string, then we can check whether
w € L(FE) in nondeterministic polynomial time by the following procedure. Let ¢ be the largest

Reviewers:
Many of the
precise
details are
elided by this
statement,
but a more
complete
procedure is
outlined in
the appendizx.

10 Martin Berglund, Frank Drewes, Brink van der Merwe

non-deletion constant in td(E) and m = "), By the same argument as in Lemma [4.5/ no

subexpression (more precisely: none of the matching relations inductively used in matching,
as defined by Definition in £ matches a string longer than m(|w| + ¢) when E matches
w. Additionally, fewer than (|w| + ¢) - [subexps(E)| instances of a subexpression matching a
string longer than m can occur, as such strings contribute to the length of the overall string
matched (the [subexps(E)| accounts for nested subexpressions involved in the match of part of
a substring, or transducer preimage, matched by a larger subexpression).

Start by nondeterministically choosing a string v of length m(Jw| + ¢)? - [subexps(E)|, and con-
struct v’ to be a string containing as a substring every string of length at most m (the length
of v is thus exponential in m, but is fixed as it depends only on F), and let v’ = vv’. Then
modify Algorithm [I] by adding the following step to the repeat-until loop:

if T(f,u, F,f") = true and (u,v) € L(t) then
T(f,v,t(F), f') « true

The resulting algorithm, applied to the input string |w’|, sets T'(L,w, E, f) to true for some f
if and only if E matches w. This procedure runs in nondeterministic polynomial time as w’ is
polynomial in length when E is taken to be fixed (as m is then constant). This works because
any subexpression matching a string of length at most m can find that string in the v section
of w', and the at most (|w|+c¢)-|subexps(F)| subexpressions matching strings of length at most
m(|w| + ¢) will have their strings nondeterministically generated in the v section of w'. 0

Lemma 4.8 The non-uniform membership problem for n-REbts, ¢ over © is NP-hard if ©
contains all single state FST.

Proof. ~ We demonstrate NP-hardness by a reduction from the NP-hard LONGEST CoOM-
MON SUBSEQUENCE problem [7], the instances of which are the tuples ({wy,...,wy},n),
{wy,...;,wyn} C L((a|b)*), n € N, such that there exists a string v of length n which forms a
subsequence of w; for all 7.

Take 3 = {a,b, #,x} and ® = {1}, let t and s be the transducers a: x,b:zand a:a,b:b,e:a,e:b,
then Eies = t([guess (@] 0)*] guess) (FF(S(Tguess))* matches the string a"#w # - - - #w,, if and only if
Wy, ..., Wy, are strings in {a, b}* with a common subsequence of length n.

To see this, note that the initial ™ means that a string w € {a,b}"™ must be captured by the
capturing group ‘guess’. Thus, each w; must be matched by inserting as and bs into w, making
w a common subsequence of each of wy, ..., w,. As such any instance of LONGEST COMMON
SUBSEQUENCE can be decided by checking whether x"#wq# - - - #wy, € L(Eles). a

This expression Fj, used in the previous proof, will be reused near-verbatim to demonstrate
NP-hardness of membership in fin- and nt-REbt (to be defined in the next section).

Theorem 4.9 The non-uniform membership problem for n-REbts ¢ over © is NP-complete
for every © containing all single state FST, provided that the membership problem of each
transducer in © is in NP.

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 11

Proof. Combines Lemma [4.7] and O

5. Limiting Nesting and Non-Functional Behavior

In this section we consider restrictions to the way in which REbt may nest the application
of transducers, and in the process also consider the restriction to functional transducers, the
combination of which gives rise to a convenient normal form. The choice of restrictions is driven
by the intuition that the construction in Theorem [3.1] relies on the subexpression [ststep(Ts)]o”
to match complex languages by the iterated application of t4.,. By syntactically avoiding the
iterated application of a transducer to previous output produced by the same transducer, we
obtain a class of languages with much better properties.

Definition 5.1 For £ € REbts e (over an arbitrary class of transducers) let Yiqp) = X W
{{;)e | t € td(E)} and define T(E) € REbs,,, & as the expression obtained by replacing
every subexpression of the form t(F'), where t € td(E), with (;-F-);. Let 7' be the inverse
transformation, so 7~ (7(E)) = E for all E.

Note that each string in £(7(E)) is a valid expression in REsx,, , . Thus, 77'L(7(E)) denotes
the set of expressions in REty, obtained by applying 7! to each expression in £(7(E)). Further-

more, L(771L(7(F))) is the union of all languages obtained by applying £ to each expression
in 771L(7(E)).

Let us define the first restriction, which forbids the capture of the output of non-functional
transducers.

Definition 5.2 An expression EE € REbt is functional if every transducer that occurs in a
capturing subexpression is functional (i.e. t € td(F) for some [4F|s € subexps(E) only if t is
functional). We denote the subset of REbt containing precisely the functional expressions as

f-REbt.

Lemma 5.3 In general, L(E) C L(77'L(7(E))), but L(r7'L(7(E))) = L(E) for E € f-REDbt.

Proof (sketch). Strings w € L(7(F)) (potentially) contains a number of substrings of the form
(404, precisely where a transducer ¢ is applied to obtain strings in £(E). Applying 7! recovers
the transducers (turns the substrings (;v); back into ¢(v)), and then applying £ evaluates
all transducers. In general, L(E) C L(77'L(7(F))), since in L(F) subexpressions containing
transducers first apply the transducer before (potentially) copying the output of the transducer,
while in L(77'L(7(E))), subexpressions containing transducers (might) first get copied before

applying the transducers. But the restrictions on transducers in f-REbt ensures equality. O

Example 5.4 In this example we show that the equality L(7~'L(7(E))) = L(E) of Lemmal5.]
does not hold for REbt in general. Let E = [,f(a*))iTy, with f given by a:a,a:b. Then
L(T(E)) = {{sa")s{sa"); | n € No}, thus L(r7((;a")s(sa")s)) = L(f(a™)f(a")) = (a|)*",
whereas L(E) = {ww | w € L((a|b)*)}. That is, in L(E) the transducer is applied before it

12 Martin Berglund, Frank Drewes, Brink van der Merwe

gets copied by the capturing group and backreference, whereas T “hides” the transducer as a
string, letting it be copied before it is applied, after which 7=! is applied to recover the two
transducers obtained by copying, and L then evaluates them independently.

Next we construct a transducer 7' such that under certain restrictions, expressions over FST
satisfy L(T(7(E))) = L(t7Y(L(T(E)))).

Definition 5.5 For ¢ € N and E € REbts e over FST, with td(E) = {ti,...,t,}, where
ti = (Qi, 2, qoi, 04, Fy), for i € [n], let Tg. = (Q,%,q0,9, F) be the transducer defined as
follows: () @ = {q € (@1~ wQu)" | gl < e} (#) ¥ = Soumy = S0 {0)¢ | ¢ € 1d(E)}; (i)
qo = ¢; (iv) F'={e}; and; (v) § = 0,U & U6, Uds where:

o 5 ={(q, (.60 q0.) | i € [n],q € Q,]al + 1 < c};

o & ={(q1 Gt)& @) [P €[], € Q,q € Fi};

o). ={(e,,a,e) | a € ¥'};

e 0y is defined inductively over the length k of state sequences, as follows: for a, € 3.,
(g1 Qs , B,qy -~ qp,) € s if for some o/ € 3. and i € [n],

- (qk7a70/7q;g> € 51'7‘ a’nd7
- (@ @, B¢ qiy) € 6. U b,

Informally, without the length restriction enforced by ¢ in Tk, i.e. letting ¢ = oo, we have
L(Tgo(T(E))) = L(T7H(L(T(E)))). Next we define a restriction to ensure that a (finite) value
can be selected for ¢ such L(Tg(7(FE))) = L(r (L(7(E)))).

Definition 5.6 An ezpression E € REbt such that every t € td(E) occurs only once in E, is
loop-free if L(7(FE)) contains no subexpression of the form (i (;-+)¢+)¢, i.€. there are no
nested subexpressions {(;---)y for any t € td(E). We denote the set of all loop-free REbt by
I-REDbt.

Lemma 5.7 For E € I-REbts, ¢ over FST, we have L(Tg e (T(E))) = L(77HL(T(E)))).

Proof. Set ¢ to be the maximum number of nested transducers in 77! (v) over any v € L(7(E)),
i.e. ¢ < [td(E)| by Definition 5.6, We prove that T, simulates all transducers running at each
point of an input string. Thus T . produces the same output strings as would be obtained by
first having 77! recover the transducers, and then evaluating them by using £. This can be
seen by induction on the number of transducers in £. Assume Tx . can go from state ¢ - - - qx
to ¢} - - - ¢, while reading v and producing w as output, and that ¢; (and thus also ¢}) is a state
from t;, for ¢ € [k]. Then there exists strings v, ..., v, with v9 = w and vy = v, such that
transducer t;, for ¢ € [k], can go from state ¢; to ¢ when reading v; and producing v;_; as
output. Add to this the brackets (i,)¢, instructing Tg,. when to start and stop and check
for acceptance of transducer t;, and make Tp . act as the identity (the rules in J.) when no
transducers are simulated, to complete the picture.

It is sufficient to pick ¢ to be equal to the |td(E)|, since this is an upper bound for the nesting
depth for pairs of transducer brackets, i.e. symbols of the form (;,), for strings matched by

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 13

7(E), given that E € I-REbty, ¢. The transducer T . reaches a state sequence ¢ - - - ¢ precisely
when the combined effect of k (distinct) transducers are being simulated by Tg ., and [td(E)]
places an upper bound on the number of transducers being applied simultaneously. a

Corollary 5.8 For all E € fl-REbts o (i.e. expressions fulfilling both Definitions[5.9 and [5.6)
over FST we have L(E) = L(Tg,jtae)(T(£)), and thus every fl-REbt can be put in a normal
form t(E") where E' € REb (i.e. an expression with only a single top-level transducer).

Proof. This result combines Lemma [5.3| with Lemma O

Definition 5.9 Let t-REbt denote the subset of REbt which are in the normal form of Corol-
lary[5.8

Remark 5.10 Lemma demonstrates that non-uniform membership for fl-REbt and thus
t-REbt (both over FST) is NP-hard, since Ej.s used in the proof of Lemma is in fl-REbt
(although the transducer s in Ej is not functional, output of s is not captured), and the above
corollary can be used to convert E.s to an expression t-REDt.

6. The Membership Problem for t-REbt

We show that the class t-REbt, and thus also fl-REbt, has a decidable membership problem,
but it is complex, even with the input string fixed.

Corollary 6.1 (of Lemma [3.4) For E € t-REbts ¢ over FST it is PSPACE-hard to decide
whether € € L(E).

Proof. Modify Lemma by letting E = D([1X*]1t1(T1) - - tn(T1)) € fI-REDbt, with ¢4,... ¢,
as in the proof of Lemma [3.4 Then ¢ € £(F) iff the intersection £(A;) N...N L(4,), again
with the A; as in (the proof of) Lemma is non-empty. The expression E can converted
into t-REbt normal form by Corollary Note that Tg o (i.e. ¢ = 2) needs to be constructed,
and the resulting expression is therefore polynomial in the size of E. Note that the proof of
Lemma [5.7 in fact shows that we can set ¢ to be the maximum number of nested transducers
in 77(v) over any v € L(7(E)), which in this case is ¢ = 2, instead of using [td(F)| = n + 1.

O

Next we show that the membership problem for t-REbt (and by extension fl-REbt) can be
decided in polynomial space. The approach works by, for a given input string and ¢(F) €
t-REbt, computing the preimage of ¢ on w, and intersecting this regular language with L(F).
To achieve this within polynomial space, however, it is necessary to not expand captures and
backreferences.

Definition 6.2 For E € REbts s we define 0(E) € REts,p with Yo = S W {[},]}14 | ¢ €
O i € [n]}, where n is equal to the mazximum number of capturing expressions on the same
capturing symbol, by making the following substitutions in E.

14 Martin Berglund, Frank Drewes, Brink van der Merwe

1. Replace every subexpression of the form Ty, with 1.

2. Replace the ith subexpression (ordered for example from left to right based on the position
of the opening capturing bracket) of the form [,F),, by [[Q)F]]fj>

Let 071 be the inverse transformation of o, i.e. o= (o(E)) = E, and extend o~ to sets of
expressions in the obvious way.

For a finite automaton A, over alphabet £, and n € N, we define an automaton C'y ¢ ,,, which will
be used to determine if L(A)NL(E), for E € REb, is non-empty. To simplify our constructions,
and since it will not make our results less general, we assume that A has no e-transitions. Recall
that we use L to denote the partial function with empty domain.

Definition 6.3 For X¢ and n as in Deﬁmtion and an automaton A = (Q, %, qo, 6, F'), let
Caon=(Q,Xs,q),0d, F') be the automaton where Q' = Q x (& — 29%9) x ((® x [n]) — 29*Q),
g0 = (qo, L, L), F'={(¢,C,M) € Q| qe F}, and ((¢q,C,M),a,(¢',C",M")) € &' if one of the
following holds:

° (¢.a,q)€d, C"=C, and M" = {(¢. 1, (p,p")) | (0.4, (p,) € M, (p', 0, p") € 6},
1 q=¢, " =C, and M" = M[(¢,7) = {(p,p) | p € Q}],
ea=\,, q=q, M = M[(¢,i) —~ L], and C" = Clp — M(¢,1)] or
e a=1y (¢,¢) € C(p), C"=C, and, for all p € ® and i € [n] we have M'(¢,i) = {(p,p") |
(p,1') € M(¢,4), (¢, p") € C(9)}-

°O‘:[f;s

In the next result we extend £ to be also applied to a set of expressions, and to denote the
union of languages defined by the expressions.

Lemma 6.4 Let A be an automaton, E € REb, and n € N, with n equal to the the maz-
imum number of capturing expressions on the same capturing symbol, in E. Then we have

Lo (L(Capn) N L(o(E)))) = LIA) N L(E).

Proof (sketch). For w € L(c(FE)), note that L(o~(w)) is a single string in L(E) (as o~
recovers the captures and backreferences, and £ then evaluates them). Cy4 ¢, running on w,
simulates A running on £(o~!(w)). This can be demonstrated by induction on the length of w.
If Ca0,n reaches (q,C, M) on a prefix of w, then A can reach ¢ on the corresponding prefix of
L(c7 (w)), and (q,q") € C(¢) if and only if A can go from state ¢ to the state ¢’ on the string
captured by ¢ € ® (allowing the simulation of A on a 1, corresponding to a backreference).
This follows from the way M is built as a parallel simulation of A, starting in any state, on all
the currently ongoing captures (i.e. M(¢,7) simulates A on a partial capture and C(¢) records
a completed capture). O

Theorem 6.5 The emptiness of L(E) N L(A), for E € REb and A a finite automaton, can be
decided in PSPACE.

Proof. As L(o(FE)) and L£(Cas,) are regular languages, a standard product automaton can be
constructed for L(o(E))NL(Cae,n). While C4 ¢, is potentially large, emptiness can be decided
in polynomial space by performing a nondeterministic search (as nondeterministic polynomial

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 15

space equals polynomial space) for an accepting computation by incrementally constructing
each, polynomially sized, state as it is visited, forgetting it again in the next step. O

Theorem 6.6 The uniform membership problems for t-REbt and fl-REbt (both over FST) are
PSPACE-complete.

Proof. For t-REDbt (and thus for fl-REDbt) hardness is established in Corollary [6.1 To see
that uniform membership for t-REbt is in PSPACE, consider an expression E = ¢(F'), for
t € FST and F' € REb. To check whether w € L(FE), construct a finite automaton A with
L(A) ={v| (w,v) € L(t)} (this can be done with standard techniques, producing an automaton
A, polynomial in size in [¢| - |w]). Then if L(A) N L(F) # 0, we have w € L(E), which we can
check in polynomial space by Theorem [6.5] This procedure extends to fl-REbt by additionally
constructing T ., as in Corollary in an incremental fashion. a

A uniform membership problem in PSPACE improves vastly on the unrestricted case, and the
top-level transducer appears to be a very natural formalism. More importantly, fairly minor
further restrictions recover the easier membership problems established for REDb.

Theorem 6.7 The uniform and non-uniform membership problem for nt-REbt is NP-complete.

Proof. Take E = t(F) € nt-REbt and let w be the input string. Since ¢ is nondeleting,
|t] - Jw| > max{|v| | (w,v) € L(t)}, so we can nondeterministically choose a v with (w,v) € L(¢)
and apply Lemma to check in nondeterministic polynomial time if v € £L(F"). NP-hardness
in the non-uniform case is established by Lemma [4.§] (see Remark [5.10)). O

7. Summary and Future Work

Summary. We have (i) proposed an extension of regular expressions with backreferences by
additional transducers; (ii) established that this makes membership testing intractable; and
(iii) explored various restrictions to form a practical basis for use in software. By Example [2.3
all restrictions can match Lgrp, Lya, and Lea, but offer different levels of membership testing
complexity and expressiveness. For immediate integration in an existing backtracking matching
engine the restriction in Theorem appears to be the obvious choice, with no transducer
preimage ever captured, the matching procedure is largely the same as for REb.

Further, the relative tractability of the nondeleting class demonstrates that one source of in-
tractability is the ability gained by an unrestricted use of transducers to erase every trace of
an arbitrarily complex computation that has been made. However, the reduction of fl-REbt to
t-REbt shows that the latter, despite being very simple, can capture many natural situations.
Small additional restrictions can then be applied to obtain highly tractable subclasses.

Future work. The precise expressiveness of the classes should be considered, several gaps
exist beyond what follows naturally from what we have done here; f-REbt = REbt; fl-REbt =
t-REbt; n-, fl-/t-REbt all being strict subclasses of f-REbt /REbt and strict superclasses of REb.

16 Martin Berglund, Frank Drewes, Brink van der Merwe

There are further some gaps on the computational complexity (e.g. non-uniform membership
for t-REDbt), and relative succinctness should be considered.

References

[1] A. AHO, Algorithms for Finding Patterns in Strings. In: J. VAN LEEUWEN (ed.), Hand-
book of Theoretical Computer Science (Vol. A). 1990, 255-300.
http://dl.acm.org/citation.cfm?id=114872.114877

2] M. BERGLUND, B. VAN DER MERWE, On the semantics of regular expression parsing
in the wild. Theoretical Computer Science 679 (2017), 69-82.

[3] M. BERGLUND, B. VAN DER MERWE, Re-Ezamining reqular expressions with backref-
erences, 2018. Preprint.

[4] C. CAMPEANU, K.SALOMAA, S.YU, A Formal Study of Practical Regular Expressions.
International Journal of Foundations of Computer Science 14 (2003) 6, 1007-1018.

[5] J. DASSOW, G. PAUN, Grammars with controlled derivations. In: G. ROZENBERG,
A. SALOMAA (eds.), Handbook of Formal Languages: Volume 2. Linear Modeling Back-
ground and Application. 2010.

(6] D. KOZEN, Lower Bounds for Natural Proof Systems. In: 18th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society, 1977, 254—266.
https://doi.org/10.1109/SFCS.1977.16

[7] D. MAIER, The complexity of some problems on subsequences and supersequences. Journal
of the ACM 25 (1978) 2, 322-336.
[8] W. SAVITCH, Relationships between nondeterministic and deterministic tape complexities.

Journal of Computer and System Sciences 4 (1970) 2, 177 — 192.
http://www.sciencedirect.com/science/article/pii/S002200007080006X

[9] M. SCHMID, Characterising REGEX languages by regular languages equipped with factor-
referencing. Information and Computation 249 (2016), 1-17.
http://www.sciencedirect.com/science/article/pii/S0890540116000109

http://dl.acm.org/citation.cfm?id=114872.114877
https://doi.org/10.1109/SFCS.1977.16
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://www.sciencedirect.com/science/article/pii/S0890540116000109

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 17
Appendix

The language a"0" is not in REb

Lemma 7.1 There exists no E € REb with L(E) = {a"b" | n € N}.

Proof. Intuitively, capturing and backreferencing without the aid of transducers cannot keep
track of the number of as in a way which is useful in generating the right number of bs. Next
we provide the details.

We proceed by contradiction, and assume that L(E) = {a"0" | n € N}. Now, note that the
inductive definition of the matching relation in Definition implies that the left-most b in
any w = a"b" is matched using (f,b, f) € M(b), with range(f) C L(a*), but as no further
as occur in the input string, none of these captures, except possibly for empty captures, are
ever backreferenced by any subexpressions used for matching the remainder of the input string.
Since no other information reaches the second half of the match from the first half, there is no
way to represent that exactly n consecutive bs should be matched. a

Extended proof of Lemma [4.5

Proof. [of Lemma Taking £ € n-REbty, ¢ and any string w we can check whether w € L(F)
in the following way. Let {t1,...,#;} = td(E), since all ¢; are non-deleting there exists a constant
¢ > 1 such that (u,v) € L(¢;) implies |u| < clv| +c for 1 <i <k, let m = c"4E),

Now note that for £ to match w it must do so without any subexpression matching a string
longer than m(|w|+ ¢). This is the case as every subexpression is, by definition, surrounded by
at most nd(E) transducers, and each transducer shrinks the string by at most a factor of ¢ (after
deleting up to ¢ characters), meaning in total that any string matched by a subexpression is
shrunk by at most a factor m (after deleting up to ¢ characters). A string longer than m(|w|+c)
being matched by a subexpression thus results in the overall string matched being longer than
w.

Using this fact we can construct a directed graph G = (V, D) with a distinguished start state
G and a set of end states Gy such that there exists a state v € G reachable from G, if and
only if and only if w € L(E). First construct

o P = {left(E'), right(E") | E' € subexps(F)},
® Sguess = subexps(E) — {v> v | v,0" € ¥, [vv/| < m(|w| + ¢)}, and
® Seny =P — {v|veXf|v] <m(lw|+ c)} U {undefined},
and then let
o V=P x (subexps(E) — Si) x (& — %),
o Gs = (1ft(E), {(E,0w)), 1),
o Gp = {right(E)} x {f € Sguess | f[(E) = w>} X Seny-

18 Martin Berglund, Frank Drewes, Brink van der Merwe

All that remains is to construct the directed edges in D, which will implement the semantics
of E. D contains exactly the following edges (we write v — v’ to denote an edge from v to v').

1. For every subexpressions F' = (G*), F = t(G), F = [4G4, F = (G- H), FF = (G| H) and
(symmetrically) F' = (H [G) we have (left(F'), Vyuess, Venv) — (1eft(G), Viyesss Veny) for all
Vuessy Venv and Voo = Viuess|G + >v| for any v.

guess

2. For every subexpression F' = o € Y. we have (left(F), Viuess; Veny) — (tight(F'), Vysessr Venv),
for Vauess(F) = pav and Voo = Viuess[F' — o).

guess
3. For every subexpression I = 1, we have (left(F), Vguess, Venv) = (1ight(F), Vi esss Venv) for
any Viuess, Veny and V:g’uess such that Viyess = v1 > 0203, Voo = Vauess|F > v102 > 03], and

guess
Venv(¢) = vy for some vy, vy and vs.

4. For every subexpression F' = t(G) we have (right(G), Véuess Veny) — (rlght(F)s Veness> Venv)
for all Vyyess, Venv, and Vg o such that Viues(G) = ub, Viwess(F) = bo, (u,v) € L(1t),
Veness = Vaguess| I+ v, for some u and v.

5. For every subexpression F' = [4,G], we have (right(G), Vguess, Venv) = (1ight(F), Vi e Ve’nv)
for all Viuess, Viyesss Venv, and Vi, such that Viues(F) = b0, Viuess(G) = v, Vy

guess
Vauess|[F' — v>], and VI = Viuo[¢ —], for some v.

env

6. For every subexpression F' = (G- H) we have (right(G), Vuess; Venv) = (left(H), VY jsss Veny)

) Vguess?
for all Viyess, Vg’uesS and Ven, such that Viuess(G) = v1>, Viuess(F) = Dujvg, Vguess =

Vauess| '+ v1 > 9], for some vy and vs.
7. For every subexpression ' = (G-H) we have (right(H), Vayess; Venv) — (Tight(F'), VY jesss Venv)

) Vguess?
for all Viuess, Venvs Vguess SUCh that Viuess(F) = v1 & v, Vauess(H) = o> and Vg, =

Viguess | F' — v1v9>] for some vy and wvs.

8. For every subexpression F' = (G| H) and F' = (H |G) (e.g. for either of the subexpressions)
we have (right(G), Vauesss Venv) = (Tight (F'), V. ess, Venv) for all Vyess, Venv, Viyess Such that

) Vguess? guess
‘/guess(F) - DU? %UQSS(G) - U[> ‘/g,uess - ‘/guess [F = UD]'

9. For every subexpression F' = (G*) we have (right(G), Vauess, Venv) = (1eft(G), Vyyessr Veny)
for all Viyess, Veny and Vg’uess, such that Vyyess(F) = v1 > 0203, Vuess(G) = vab, Vg’uess =

Vuess|[F' — v1v2 > v3)[G — pu for any vy, vs, v3 and u.

10. For every subexpression F' = (G*) we have (right(G), Vuess, Venv) — (Tight(F), Veses Veny)
for all Vguess, Venv and V.o, such that Viues(F) = 01 > v, Vauess(G) = vop, V =

guess
Vguess|[F' +— v1vap] for any vy, vs.

Then simply note that we can construct this graph incrementally, remembering only the current
state and its outgoing edges, to nondeterministically search for a path from Gg to any state
in Gg. It remains to show that such a path exists if and only if w € £(E). This can be seen
by induction on the length of the path, relating it to the tree of matching relations implied
by Definition taken in postorder. The nodes reached relate to the position in the tree
in the following way: the node (p, Vguess, Venv) records the subexpression the current position
in the tree corresponds to (p being set to left(F) when passing F' heading down in the tree,
right(F) when heading up), Veny the current environment (exactly as in Definition [2.2), and
Veuess €ncodes a guess of the strings that will be matched by the subexpressions above this
position in the tree (with the marker encoding what has already been matched). This guess
is made upon entering the subexpression, in item [I] above. For example, take items [9] and [I0]

ON REGULAR EXPRESSIONS WITH BACKREFERENCES AND TRANSDUCERS 19

for the subexpression F' = (G*) from above: item @ corresponds to G matching a prefix of the
string guessed for the parent F', and then repeating the match, whereas item [10| corresponds to
G matching all that remains of the string F' should match (i.e. moving the marker all the way
to the right in V. (F)).

guess

A single node in G uses space 2| E|+|E|-m(|w|+c)+|®|- (m(Jw|+c)+1), so the procedure runs in
nondeterministic space O(|E||w|c"™®)) (since we assumed that the space needed for evaluating
transducers fits into this bound). Thus, applying Savitch theorem [8] gives a deterministic
procedure in O(|E|?|w|?c?"F)) space. O

	1 Introduction
	2 Definitions
	3 Unrestricted Language Classes
	4 Limiting Capturing and Deletions
	5 Limiting Nesting and Non-Functional Behavior
	6 The Membership Problem for t-REbt
	7 Summary and Future Work

