Sensors and Actuators B: Chemical

Ultra-high sensitive and selective H_2 gas sensor manifested by interface of n–n heterostructure of CeO₂-SnO₂ nanoparticles

Motaung DE; Mhlongo GH; Makgwane PR; Dhonge BP; Cummings FR; Swart HC; Ray SS

Abstract:

Detection of toxic and explosive gases in a selective manner and with higher sensitivity in industries and homes remains very challenging. Therefore, herein, we report on the ultra-high sensitive and selective hydrogen gas sensing using CeO₂-SnO₂ mixed oxide heterostructure synthesized by a simple hydrothermal method. The BET, photoluminescence, X-ray photoelectron spectroscopy and electron paramagnetic resonance analyses demonstrated that the CeO₂-SnO₂ heterostructure comprehends a high surface area and a large number of defects related to oxygen vacancies. The formation of heterojunction in CeO₂-SnO₂nanostructures was confirmed by the non-linear behaviour I–V curve. The gas-sensing characteristics of the CeO₂-SnO₂ heterostructure showed shorter response and recovery times of approximately 17 and 24s, respectively, together with high sensitivity (19.23 ppm⁻¹) to 40.00 ppm H₂ gas at 300°C. The improved H₂ gas sensing response of 1323 at 60 ppm H₂ gas is correlated with the higher surface area, pore diameter, surface defects and CeO₂-SnO₂heterojunction emerging at the interfaces between the CeO₂ and SnO₂ serves as additional reaction sites and as well as exposed facets creating the surface to be extremely reactive for the adsorption of oxygen species. The high H₂ gas selectivity observed for the CeO₂-SnO₂makes them possible candidates for monitoring H₂gas at low concentrations (ppm levels).