Uncorrected proof for Journal of Automata, Languages and Combinatorics 23 (2018) 1-3
Final version created on April 3, 2018

THE OUTPUT SIZE PROBLEM FOR
STRING-TO-TREE TRANSDUCERS

MARTIN BERGLUND(®) FRANK DREWES®’ BRINK VAN DER MERWE"

) Department of Computer Science, Stellenbosch University
7600 Stellenbosch, South Africa

abvdm@cs.sun.ac.za

(B) Department of Computing Science, Umed University
901 87, Umed, Sweden
drewes@cs.umu.se

() Department of Information Science and Center for AI Research (CSIR)
Stellenbosch University, 7600 Stellenbosch, South Africa
pmberglund@sun.ac.za

ABSTRACT

The output size problem, for a string-to-tree transducer, is to determine the asymptotic
behavior of the function describing the maximum size of output trees, with respect to
the length of input strings. We show that the problem to determine, for a given regular
expression, the worst-case matching time of a backtracking regular expression matcher,
can be reduced to the output size problem. The latter can, in turn, be solved by de-
termining the degree of ambiguity of a non-deterministic finite automaton.

Keywords: string-to-tree transducers, output size, backtracking regular expression
matchers, NFA ambiguity

1. Introduction

The complexity of determining the asymptotic behavior of the maximum output size
for trees produced by a given top-down tree transducer, as a function of the size of
input trees, was initially studied in [5]. It was shown that the exponential output
size problem is NL-complete for total top-down tree transducers, and DEXPTIME-
complete for top-down tree transducers in general. Naturally, this problem asks
whether the size of the output trees grows exponentially in the size of the input
trees. We investigate the output size problem for string-to-tree transducers, and con-
sider in particular the complexity of determining the degree of the polynomial, in
cases where the maximum output size is polynomial in the size of input strings.

The motivation for this research is provided by the observation that the problem
of determining the worst-case matching time of a backtracking regular expression
matcher [2 3] in terms of the length of the input string, can be reduced to an output

2 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

size problem, by constructing a transducer producing as output the computation tree
of the matcher in question, for a given input string to the matcher. Thus in this
case, the maximum output size provides the worst-case matching time behavior of a
backtracking regular expression matcher, for a given regular expression.

Another motivation for this research, although not pursued in this paper, is pro-
vided by the fact that ETOL languages are precisely the yield of output languages
of string-to-tree transducers ([0l [7]). Intuitively, the states of the transducer are the
nonterminals of the ETOL system and the input alphabet of the transducer consists
of labels for tables of an ETOL system. Also, each transduction step corresponds to a
derivation step in the ETOL system which uses the table labeled by the input symbol
consumed by the transducer. The problem of determining the asymptotic behavior
of the maximum length of words in ETOL systems, as a function of the number of
derivation steps used, can thus be reduced to the output size problem for string-to-
tree transducers. A particular instance of growth of ETOL systems that has been
well studied, is the growth function for DOL systems (see for example the section
on L growth in [I1, Chapter 5]), which corresponds to the output size problem for
deterministic string-to-tree transducers with input strings from a unary alphabet.

In this paper, we determine the complexity of the output size problem for string-
to-tree transducers by relating it to the problem of determining the degree of am-
biguity of non-deterministic finite automata. In this way, we show that all output
size problems we consider are NL-complete for total string-to-tree transducers and
PSPACE-complete for string-to-tree transducers in general.

The outline of the paper is as follows. In the next section we introduce the required
notation and definitions. This is followed by an outline of the regular expression
matcher application. After this, we describe the complexity of deciding various am-
biguity problems for non-deterministic finite automata (NFA), followed by a section
describing how output size problems can be reduced to deciding ambiguity in NFA.
We finally provide conclusions and describe possible future work.

This article is a revised and extended version of [12].

2. Definitions

In this section, we introduce the notation and some of the definitions required for the
remainder of the paper.

For an alphabet ¥, we denote the set of all strings (or sequences) over X by ¥*. In
particular, ¥* contains the empty string e. We assume that € ¢ ¥ and let ¥, = JU{e}.
The length of a string w is denoted by |w|. We use N for the positive integers
and N = N3 U {0}. Although ¥ is henceforth only used to denote finite alphabets,
we use N} to denote the set of strings over the infinite alphabet N.

A tree, with labels in a finite set A, is a function ¢: tp — A, where tp C N is a
non-empty, finite set of vertices (or nodes) such that

(1) tp is prefix-closed, i.e., for all v € N* and i € N, vi € tp implies v € tp, and
() tp is closed to the left, i.e., for all v € N§ and ¢ € Ny, v(i +1) € tp im-
plies vi € tp.

The Output Size Problem for String-to-Tree Transducers 3

The vertex ¢ is the root of the tree and vertex vi is the i-th child of v. We assume
that A is a ranked alphabet, i.e., A is a union of (not necessarily disjoint) sets

A GAD GAG@ (...

(with only finitely many of the A(®) being non-empty). When f € A% we say f has
rank k, and we allow symbols in A to have more than one possible rank, which is
convenient for our application to regular expressions. If we want to indicate explicitly
that we consider f as a rank k symbol, we denote f by f*). Also, all trees are ranked,
thus if v € tp, then there exists a k € N, where k is one of the possible ranks of ¢(v),
such that vk € tp but v(k + 1) ¢ tp. A node v such that vl € tp, is a leaf.

Definition 1. The size of a tree t: tp — A is defined as |tp|, and denoted by |¢|.
We denote by
tls =[{vetp|tv)eS},

for S C A, the number of occurrences of symbols from S in ¢. Moreover, t/v (v € tp),
denotes the tree t/, with

th ={weN, |owetp},
where t'(w) = t(vw) for all w € t}5. Given trees t1,...,t; and a € AF) we let
Oz[tl,...,tk]

denote the tree t with ¢(¢) = o and t/i = ¢; for all ¢ € {1,...,k}. The tree [] that
consists only of a leaf labeled o may be abbreviated as a.

The yield of a tree t = «[ty,...,tx], denoted by yield(t), is the concatenation of
the labels of the leaves from left to right, i.e.,

. 1o ifk=0
yield(t) = 4 : .
yield(¢y) - - - yield(tg) if & > 0.

Trees t with t(v) € A UAD for all v € tp, may be written as ajas ... o,
(instead of oy [aa]. . . [arn]]]), where a; € AD for i < n and a,, € A®). Given a ranked
alphabet A, the set of all ranked trees t: tp — A is denoted by TA. Moreover, if Q)
is an alphabet disjoint from A, we let

TA(Q) == Tauq

where the symbols from @ appear only at the leaves.

In our NFA definition, given next, the transition function § is defined to allow for
parallel transitions on the same symbol between a pair of states. Thus, it is of the
form

0: Q x 3. xQ — N

where §(p, , ¢) = i indicates that there are 4 transitions on « between p and gq.

4 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

Definition 2. A non-deterministic finite automaton (NFA) is a tuple
A = (Q7 E? I7 5’ F)

where
(1) Q is a finite set of states;
(1) X is the input alphabet;
() I C Q is the set of initial states;
(1v) the partial function §: @ x X, x @Q — Ny is the transition function; and
(v) F CQ is the set of final states.
Also, [A]g = [Q|and |A[; :== 3
sizes of A respectively.

112 €0.0ES. 0(q1, @, g2) are the state and transition

Next we define (accepting) runs and the language accepted by an NFA.
Definition 3. For an NFA A = (Q,X, 1,6, F) and w € ¥*, a run on w is a string
r=s0a1(j1)s1 " Sn—1n(jn)sn,
with sg € I, s; € Q, o; € ¥ and j; € Ny such that
0(8i, Qig1,Si41) = Jit1

for 0 <4 < n,and w = a7 ---a, (where € is interpreted as the empty string rather
than as a symbol). A run is accepting if s, € F, and w € ¥* is accepted by A if there
is an accepting run of A on w. The language accepted by A is

L(A) ={weX*|wis accepted by A }.

We say that A has a path from p € Q to ¢ € @ labeled w € ¥*, and denote this
by p 24 q, if w € L(A) with A’ = (Q, 3, {p},d,{q}). A state q is useful if ¢ >4 q
and ¢ =4 gr for some w,v € ¥*, q; € I, and ¢qp € F.

By writing p M q, where 1 < j < d(p, a, q), we refer to the j-th-transition on «
from p to ¢, but we also write p = ¢ if the specific choice of j is not important.
Although parallel transitions do not influence the language accepted by an NFA, they
do influence the number of accepting runs of a given input string, and thus play a
role in our setting.

Remark 4. Instead of our definition of NFA, one could also use weighted automata
over the semiring N, thus interpreting d(p, o, q) as the weight of a single transition
from p to ¢ under a. We prefer the view above, to keep Definition [[2} in Section [5]
as close as possible to the corresponding definition from [I].

We now recall string-to-tree transducers, followed by the definition of its set of
output trees, when applied to a given input string.

The Output Size Problem for String-to-Tree Transducers 5

Definition 5. A string-to-tree transducer (or transducer, for short) is a tuple
td = (Q7P7Aa‘[7 5)7

where

e I'=T0 and A are the finite ranked input and output alphabets, respectively
(with all input symbols having only rank 1),

e () is a finite set of states disjoint with A,

e [C (@ is the set of initial states, and

e JC(Q@x{$} xTa)U(Q x) x TA(Q)) is the transition relation.
When (g, a,t) € §, we also say that § contains a rule ¢ = t. Also,

tdls = D il

(g,a,t)€d
is the transition size of td.
For w € T'*, the set of output trees, when applying ¢d to w, is denoted by
td(w) C Th,

and defined as follows. We have that ¢t € td(w) if w can be written as a;g - -y,
with «; € T'¢ for i < n, such that there exists a sequence of trees tg,...,t, € Ta(Q)
with tg € I and for every i € {1,...,n}, ¢; is obtained from ¢;_; by replacing every
leaf v for which ¢;_;(v) € Q with a tree ¢’ such that t;_1(v) =% ¢/, and similarly, ¢ is
obtained from ¢, by replacing every leaf v for which ¢,(v) € @ with a tree ' € Tx
such that ¢, (v) 2 ¢/,

We now define when transducers are total and deterministic. The presence of e-
input rules leads to non-standard definitions. According to the following definition, a
transducer td is total if ¢d,(w) # 0 for all ¢ € Q and w € I'* (where td, is td with its
initial state replaced by ¢), and deterministic if, in each situation, at most one rule
applies.

Definition 6. A transducer
td=(Q,I', A, I,6)

is total if ¢ € Q, a € T implies td,(a) # 0 and td,(g) # 0, where
tdg = (Q,T,A,{q},9).

Also, td is deterministic if for all ¢ € @ and « € T'U {$}, there is at most one rule of
the form ¢ = ¢ or ¢ =t/ in 6.

Next we give the output size definition from [5], and also an output size definition
based on the length of the yield of output trees.

6 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

Definition 7. The full output size and the yield output size of a transducer td are
given by functions osl}, 0s¥;: N. — (N U {oc}), respectively, such that

osty(n) =sup{ |t| | t € td(s) and |s| < n } (with sup @ = 0), and
0s1,(n) = sup{ |yield(t)| | t € td(s) and |s| <n }.
The exponential output size problem is to decide if osf; has exponential rate of

growth, and the polynomial output size problem is to determine the degree of the
asymptotic polynomial growth of osf, and os); (if it is polynomial).

Note that since we allow e-input transducer rules, it may happen that output trees
of arbitrary size are produced for input trees of a given fixed size.

In the following example, transducers with exponential and with polynomial output
size (of arbitrary degree), are given.

Example 8. First we define transducers tdj with osf;k (and os%;k) exponential. Let
tdk = (Qa Fv Aka {qo}a 5]@)
with

Q = {QO},

r={r}
A = {0(0),g(k)}, for some fixed integer k > 2, and
Ok = {qo EN g0, - - 0], 00 > o}

Then tdi(f™) is a perfect k-ary tree of height n, and |tdg(f™)| is thus exponential,
with base k, in n. o
Next we give transducers tdy, for k£ > 1, such that

F Y
0534, and 0833,

are polynomials of degrees k and (k — 1), respectively. In general, in the polynomial
case, the degree of 0sf} is at most 1 larger than that of osY,. We let

wk‘ = (Qk7F7Aa {qk}vék)
with
Qk = {CIL cee 7qk}7

r={r}
A= {0(0)’]0(1)"9(2)}’ and

or = {q i) glgi—1,q] for 1 <i <k}U{q i) flaa)} U A{a 3, ¢ for 0 <i<k}.
We have that
0sty(n) = |tdp(f™)] € ©(n")

The Output Size Problem for String-to-Tree Transducers 7

and

osy; (n) = |yield(tdy,(f"))| € ©(n*"1),

tdy

which is obtained by induction, using

tdy,(f") = gltdp-1[f" 1), tdi[F]

for £ > 1, and thus

n—1
[tk (f™) = (n+ 1)+ Y [tde1(f")]
i=0
and
n—1
[yield(tdi (f™)] = 1+) _ [yield(tdx—1(f*))],
i=0

with [td1 ()| = (i + 1) and |yield(td;(f?))| = 1.

3. Regular Expression Matching Motivation

In this section, we provide more detail on the application of the output size problem
to the worst-case matching time of backtracking regular expression matchers (regex
matchers). We start by recalling the definition of a prioritized non-deterministic
finite automaton (pNFA). In a pNFA, priorities are placed on e-transitions from a
given state, in contrast to NFA, and input is matched by doing an input directed
depth first search on the pNFA, using the specified priorities.

Definition 9 [3]. A prioritized non-deterministic finite automaton (pNFA) is a tu-
ple A= (Ql, QQ, E, %,51, 52,F), where if Q = Ql @] Q27 we have

) @1 and Q4 are disjoint finite sets of states;

) X is the input alphabet;
(1) qo € Q is the nitial state;

) 01: Q1 x X — @ is the deterministic, but not necessarily total, transition func-
tion;
(V) 02: Q2 — Q* is the non-deterministic prioritized transition function; and
(vi) F C Q) is the set of final states.

Note that the transition function ds: Q2 — @Q*, in the definition above, places
an ordering on the outgoing e-transitions for each state ¢ € @Q)s, i.e., the order they
have in the sequence d5(q) € Q*. Acceptance in pNFA is defined the same as in NFA.
However, the prioritization makes it possible to assign to each accepted string a unique
accepting run, namely the run among those ending in a final state that has the highest
priority (not considering runs that use the same e-transition twice in any consecutive
sequence of e-transitions).

8 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

In a regex matcher, a modified Thompson construction is used to convert a regular
expression R to a pNFA A, instead of an NFA [2]. To simplify our discussion, we only
consider pNFA without ds-loops, i.e., when ignoring the priorities of do-transitions,
an NFA without e-loops is obtained. Regular expression matchers perform a depth-
first search for accepting runs in the order of priority. They keep track of which e-
transitions were used since the last input symbol was consumed, and disable an e-
transition once it is used, until the next input symbol is consumed. This behaviour
ensures that a matcher avoids infinite loops. A procedure, called flattening, which in
effect performs a depth first search on all e-transitions from each state in @2, and
replaces a sequence of e-transitions by a single e-transition while keeping the order
information encoded by ds-transitions intact, is described in [4, Section 5], and can
be used to remove e-cycles while only affecting the matching time up to a constant
factor. A regex matcher attempts to match an input string w by doing a preorder
traversal on td4(w), where td 4 is a transducer (defined next — simplified from [2] by
using e-input rules) constructed from A. The idea is to use two states, a, and f,, for
every state g of A, to implement a guess-and-verify strategy. The states a, are used to
“guess” the first accepting path of A for the given input, spawning sub-computations
in states f, that verify that that no prior paths in A with that input are accepting.

Definition 10. For a pNFA A = (Q1,Q2,%, qo, 01,92, F), the backtracking trans-
ducer

tdA == (Q7 Fa Aa {aqoa fqo}? 6)

is defined as follows:

Q:{aq7fq|q€Q1UQ2}a
I' =% (we assume $ ¢ 3), and

A=Q1UQs.

Furthermore, ¢ consists of the following transitions:
(1) Forge @ and o € X
(A) If 61(q, @) = ¢, let a, = qlay] and f, = q[f,].
(B) If 61(q,) is undefined, f, = q.
() For g € Qo, if 02(q) = q1 -~ qn, then ag — q[fq,, ..., fg;5 g,]
where 0 < ¢ <n—1,and f; = q[fq,---, fa.]:
(11) Finally, if ¢ € F, then a4 LA ¢, whereas when ¢ € Q1 \ F, then f, 3, q.

It should be clear that there is a bijective correspondence between the root-to-leaf
paths in td4(w) and the runs in A on w that are of priority higher than or equal to
the priority of the accepting run of A if A accepts w, and the set of all runs of A on w
otherwise. It thus follows that the output size problem can be applied to determine
the worst-case matching time of regex matchers.

Example 11. A pNFA A, for the regular expression R = a*a*, is given in Figure

The Output Size Problem for String-to-Tree Transducers 9

0

Figure 1: The prioritized non-deterministic finite automaton for the regular expres-
sion a*a*. For states with multiple outgoing e-transitions (¢1 and g3 here) the lower-
priority one is indicated by the dashed arrow.

Since a regex matcher will try all possible ways of dividing the prefix a™, in the
input a™b, between the two a* subexpressions, the matcher will have quadratic (at-
tempted) matching time on input a™b. We have that tda = (Q,T', A, {ag,, f4},9),
where A = {qo,91,42,93,44,¢5}, I = {a,b}. The transition rules are:

ag, = qolaq,]; fao = @lfal
Qg — Q1[aq2]a Qqy — q1[fq2;aq3] fq1 — Q1[fq2’f%]§

a b $
Qgy — qQ[ath]’ fqz s Q2[f] fqz — g2, fqz — q2;
Qg — q3[GQ4]7 Gqs — Q3[fQ4’atJ5] fQ3 — Q3[fQ47fQS];

a b 3
Qg ? Q4[aq3], fQ4 —> q4[f] fQ4 7 44, f(I4 — qa;
Qg5 — (s, Jas % g, Jos = G5-

An alternative interpretation of the transition rules of td 4 is given in Figure [2] from
which one can argue by induction that |td 4(a™b)| is quadratic in n.

tdg(a"_lb)

Figure 2: The transducer td4, as presented in Example[T] defined in terms of transdu-
cers tdy and td2, where tdi is tda but with initial states {aq,, fq, }, and similarly, tda
has {agq,, fq3 } as initial states.

10 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

To aid in the understanding of the above given transducer rules, ¢d (aab) is given
in Figure [

Figure 3: The output tree obtained when applying tda, as defined in Example to
the string aab. Iterating the steps further, as would happen on a string with additional
leading as, reveals quadratic growth.

4. NFA Ambiguity Testing

In this section, we recall and extend results, from [I], on ambiguity of NFA. This will
be used in the next section to determine the degree of growth of the output size of
transducers. We begin by introducing definitions related to NFA ambiguity.

Definition 12. The degree of ambiguity for w € ¥*, with respect to the NFA A,
denoted by d4(w), is the number of accepting runs on w in A. Let

ma(n) = sup da(w),
weT*, |lw|<n
that is, the least upper bound of the ambiguity over all strings of length at most n,
in the following.
e A has an infinite degree of ambiguity (IDA) if ma(n) ¢ O(1) (that is, ma(n) is
not bounded by any constant),
e A has an exponential degree of ambiguity (EDA) if ma(n) € 2% (that
is, ma(n) grows at least exponentially),
e A has a polynomial ambiguity of degree at least d (IDAs,) if ma(n) € Q(n?)
(that is, ma(n) grows at least as quickly as some polynomial of degree d), and
e A has a polynomial ambiguity of degree d (IDA_,) if ma(n) € ©(nd).

The Output Size Problem for String-to-Tree Transducers 11

Note that, following [I], IDA actually means that A has unbounded ambiguity rather
than m4(n) = oo for some n, as one might believe. In fact, throughout the remainder
of this paper we shall assume that m(n) # oo for all n, i.e., A does not contain
any e-cycles on useful states. We make this assumption because the case where it is
not fulfilled is of little practical interest, and it is easy to check whether A contains
such a cycle.

Moreover, although our NFA may contain parallel transitions for modeling reasons,
we assume in the remainder of this section without loss of generality that there are no
parallel transitions, i.e., 6(p, «, q) € {0, 1} for all p,q € Q and « € 3. This can easily
be achieved without affecting m 4(n) by replacing every transition by a transition on
the same symbol followed by an e-transition, with a fresh state in between.

Lemma 13. An NFA A has

o IDA if and only if there exists two distinct useful states p and q and a non-empty
string w such that p ~3>A p, p —4 q, and ¢ — 4 q,

e EDA if and only if there exists useful states p, q and ¢’ (with ¢ # ¢') and
strings w and w' such that

P4q p-—>aq, q—ap, and ¢ ~>4 p,

note that this implies IDA (the string is w'w and the two states are q¢ and ¢’),
and

o IDA>q if and only if there exists wuseful states pi,q,...,Pd,q4 and
strings vy, . .., Uq, Ua, - . ., Uq, With the strings v; non-empty, such that

V; V; Ui
Di # Qs Pi —>A Pis Pi —A G, and q; —>A G;
forallie{1,...,d}, and gi_1 54 p; foric{2,...,d}.

Proof. Lightly adjusted restatement from [I]. O

Remark 14. Note that, as it should, EDA implies IDA>, for all d, as one can take
the states p,q,q" implied by EDA, let p; = --- = pg =qand ¢ = --- = g4 = ¢,
and v; = - = vy = uy = -+ = ug = ww. Also, if any two states are the same
in IDA >4, for example if p; = p;4x for £ > 0, then we have EDA, since the loops on p;
and ¢; (on the same string that can also be used to go from p; to ¢;), can be used to
construct two distinct paths from p; to p;1r = p; on the same input string.

Note that this means that IDA >, implies EDA for d > |@Q|. Hence, in the following
we will generally assume that d < |Q)|.

In [I] the properties above are used to prove the following lemma.

Lemma 15. Let A= (Q,%,1,0,F) be an NFA.
(1) It is decidable in time O(|A|§) whether A has EDA.
(1) If A does not have EDA, then it has IDA—y4 for some d, and this d can be
L 3
computed in time O(|Aly).

12 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

We now show that Lemma [L3| can alternatively be used to decide these ambiguity
properties in nondeterministic logarithmic space.

Lemma 16. For an NFA A and a number d € N as input, it is NL-complete to
decide if A has IDA, EDA, IDA>q, IDA_.

Proof. Clearly all these decision problems are NL-hard, by Lemma [13| and the NL-
hardness of reachability on a directed graph. Thus, it remains to be shown that it
can be decided in non-deterministic logarithmic space if A has IDA, EDA, IDA >4,
or IDA_,.

For states p1,q1,- - -, Dk, Gk, Write (p1,...,pr) ~>4 (q1,-..,qx) if there is a string w
such that p; —»4 ¢; for all i. Note that, for a constant k, the existence of w can
be checked nondeterministically in logarithmic space. (For k = 1, this is just graph
reachability.) From this fact, the EDA and IDA parts of the lemma obviously follow.
For example, to confirm that A has IDA, nondeterministically select p and ¢, then
check that p is reachable from an initial state, and that (p,p,q) ~>a (p,q,q). Finally
check that final states are reachable from p and ¢ (to establish their usefulness).

For checking IDA>4 (d < |Q)|), we use a loop over ¢ = 1,...,d. (Note that i can
be stored in logarithmic space.) Initially, choose p (which will correspond to p; in
Lemmal(13]) and check that it is reachable from some initial state. Now, fori =1,...,d,
select some ¢ # p and p’ (corresponding to ¢; and p;11), and verify nondeterministi-
cally that (p,p,q) ~4 (p,q, q) and that ¢ ~4 p’. Then set p < p’, choose new q # p
and p’, and repeat. In the last step (for ¢ = d), additionally make sure that p’ is a
final state in order to guarantee usefulness.

Finally, note that A has IDA_; if it has IDA>4 but not IDA> 441, which can be
decided by the previous paragraph since NL is closed under complement [9]. O

In the following section we use these results to determine the complexity of decid-
ing the output size of non-total transducers, where an algorithm to turn non-total
transducers into equivalent total transducers at the expense of obtaining an exponen-
tial blowup in state complexity, is combined with ambiguity algorithms in logarithmic
space to achieve a polynomial space algorithm for deciding output size for transducers
in general.

5. Linking Output Size to NFA Ambiguity

In this section, we show how the decision procedures for ambiguity of NFA (discussed
in the previous section) can be used to determine the degree of osf; and osfd, first
when td is total, and finally in the general case when td is not necessarily total.

With every total deterministic transducer td = (Q,I',A,I,d), we associate
NFA nfaf;l and nfa%;, for which the ambiguity of a given input string w is equal
to |td(w)| and |yield(td(w))|, respectively. If ¢d is not total, the ambiguity values only
provide upper bounds for [td(w)| and |yield(td(w))].

The NFA nfa}, and nfal, are constructed in very similar ways. Their input al-
phabet is I'. The set of initial states I is the same as for td and the set of states
is QU {qp, g}, where ¢, and ¢y are fresh states with gs the only final state. The

The Output Size Problem for String-to-Tree Transducers 13

transition functions dy and d of nfazfi and nfaf;l are built according to the following
intuition: If ¢d processes a symbol of rank 1 in a state ¢, producing the partial out-
put ¢, then one “process” g, is spawned for each occurrence of a symbol in A©) in the
case of nfay,;. In the case of nfal,, the same is done for each occurrence of a symbol
in A. Each of these will give rise to a single accepting computation without branch-
ing any further. Hence they contribute 1 to the ambiguity, in this way counting the
output symbol of ¢td that gave rise to the instance of ¢,. In addition, each occurrence
of a state in ¢ gives rise to a corresponding sub-computation of nfa%; and nfaf:i, resp.
Formally, we define

Or(gp, @, gp) = 0y (gp, ,qp) =1 for @ € T and
6r(ap,€,qf) = 0y (gp. €, qr) = 1.

Moreover, if F(t) = |t|a and Y (t) = |t|a© for t € TA(Q), then we let, for E € {F, Y},
¢,¢ €Q, a el and t € TA(Q),

5E(Qa a, q/) = |t|{q’} if (q7 aat) € (5;
o=(q, o, qp) = E(t) if (q, 0, t) € 5
0=(q,€,q7) = E(t) if (¢,8,t) €6.

Note that the resulting automaton is up to a constant no larger than the transducer
under consideration.

Lemma 17. Let 6, 0 and dy be the transition functions of td, nfaf; and nfafd,
respectively. Then |nfal,|s, < |nfal|s, < |td|s +|T| + 1.

Proof. By construction, at most one rule is added to the automaton for every node
in the right hand side of a rule in td, with the exception of the additional transitions
from g,. O

With this construction in place we are prepared to establish the equivalence of the
output size function of the transducer and the ambiguity of the constructed automa-
ton.

Lemma 18. Let td be a deterministic transducer. Then
dnfaf; (w) = osfd(w) and dnfaz (w) = osé(w)
forw e '™,

Proof. The proof is a straightforward induction on the length of the string w, verifying
the following invariant for each step:

(1) The multiset of states in the current output tree matches the multiset of states

(excluding ¢, and ¢y) which computation paths in the automaton have reached.

(11) Using that (1) holds: after any number of steps the number of output symbols (or

output leaves in the case of Y') produced by the transducer so far is equal to the

number of different computation paths currently in state g, in the automaton.

14 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

Then simply note that after processing w, all paths currently in g, take the e-transition
to ¢y, thus counting in terms of ambiguity all symbols (or leaves) outputted by td
in earlier steps, and to this is added the count of all symbols/leaves produced by td
when applying rules of the form ¢ 3, ¢ in the terminating step, by using o7 (g, €, ¢f)
(or dy (g, €, qf) respectively). O

Example 19. In Flgure we show nfatd2 and nfatd , with tds and tds as in Exam-
ﬁ Clearly, both nfam2 and nfa— has IDA, and nfatd has EDA, whereas nfa—rs is

polynomlally ambiguous of degree 2. Thus tdy has exponential full (and yield) output
size, and the yield output size of tds grows quadratically.

Figure 4: (a) nfaj;, and (b) nfa X with tds and tds as in Example (omitting the
unreachable state g, in the latter)

From [B, Lemma 3.2] it is known that, for every transducer ¢d, one can construct
a deterministic transducer td’ such that, for some constant a € N, both

osf;(n/a) < osf;,(n) < osf;(n) and os%fi(n/a) < osz;,(n) < os%;(n)

for all n € N. The construction preserves totality, can be carried out in logarithmic
space, and increases the number of transitions at most quadratically. Although this
lemma is only stated and proved for full output size and transducers without e-input
rules, it is straightforward to extend the result to our more general setting. Thus,
Lemma [18| can also be used in the case where t¢d is nondeterministic. (Alternatively,
the construction used in [5] can easily be incorporated into the way nfaz; and nfaf; are
built, thus avoiding the need to modify td.) Together with Lemma we immediately
obtain the following result on full and yield output size for transducers.

Theorem 20. Let td be a total transducer. Then:
(1) It is decidable in time O(\td|§) if td has exponential full (and yield) output size.

(1) If the full (and yield) output size of td is not exponential (and not co, by our
general assumption), then it is polynomial, and the degree of the polynomial
growth of the full and yield output size of td can be computed in time O(|td|g),

The Output Size Problem for String-to-Tree Transducers 15

Remark 21. Notice since nfaf:i (and nfatY;i) can be constructed in logarithmic space,
the decision problems in Theorem [20] are in NL by applying Lemma [T6] NL-hardness
for any of the output size problems (for total transducers) in Theorem [20|is obtained
as follows. Let td’ be a total string-to-tree transducer with any output size property
we want to show is NL-hard to decide. Take a directed graph G for which we want
to decide if we can go from node p to ¢ (i.e., an instance of the NL-hard graph
reachability problem). Now let td be a transducer which first traverses edges in G
starting at p, one edge for each rank 1 input symbol consumed, until ¢ is reached.
While traversing G, td simply deletes input symbols. Also, td produces $(°) as output
if the input string is consumed before ¢ is reached. Once ¢ is reached by td, it starts
behaving like ¢td’. Thus td either produces only $(°) as output, or if ¢ is reachable
from p, will have the same output size behaviour as td’. Thus the decision problems
in Theorem [20] are NL-complete.

We now turn to the case where td is not necessarily total. Given a transduc-
tion 7: I — T and a set S C I'™, let us denote the domain of 7 by dom(7), that
is

dom(t)={wel*|r(w)#0},

and the domain restriction of 7 to S by 7|s. We describe a relatively straightfor-
ward construction to turn a deterministic transducer ¢d into a total deterministic
transducer td”, such that

dom(td) C dom(td™),
th|dom(td) = td, and

0sty(n) < 0str(n) < k- osfy(n + k),

for all n € N, where k is a constant determined by td, and similarly for os¥. Thus,
let

td=(Q,T,A,I1,6) and td" = (Qr,T,A, I, or),

where Qr, It and 07 are defined below. First define §: 29 x I'. — 29 by

S(S’ Oé) = U Q¢

(g,a,t)€0,9€S

where ; denotes the set of states appearing in ¢, i.e., it is the smallest subset of @
such that t € Ta(Qy). Also, for S € 29, let

domg(td) = m dom(td,),

q€eS

16 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

where td, = (Q,T',A,{q},9). Fix ap € A(O) We let

Qr={(s,99€Q,5€2?},

It ={(¢,{¢}) g€ I}, and

07 = {((,5),.05(1)) | (g, ,t) € 6, doms(td) # 0 }
U{ ((g,S), a0) | domg(td) =0 }.

where d5(t) denotes the tree obtained from ¢ by replacing every occurrence of a
state ¢’ € Q by (¢, 4(9)).

Theorem 22. The transducer td® obtained from a deterministic transducer td, de-
scribed as above, is a total deterministic transducer with

0sty(n) < 0skr(n) < k- osfy(n + k),
and
0syy(n) < 0s),r(n) < k- osyy(n+k),

for all n € N, where k is a constant determined by td. The construction can be
performed using a worktape of polynomial size (i. e., not counting the exponentially
large output tape, as usual).

Proof. We only consider

0sEy(n) < 055 (n) < k - 0sEy(n + k);

a similar argument works for os};(n) < os),r(n) < k- os{y(n + k). By induction on

the length of input strings, it can be established that if (¢1,51),..., (qk, Sk) are the
states on the leaves of a tree obtained at an intermediate step when applying td”,
then S; = --- = S = {q1,...,qx}. Note that the transduction steps on an input
string w are identical when using td and tdT if we disregard the second components
in the states (¢, S) of td”, except when an S is encountered such that domg(td) = 0. If
that happens, it shows that td(w) = (), whereas td” immediately produces a tree in Ta
when processing the next input symbol. From this follows that os},(n) < osf . (n).
Let now k' € N be such that |wg| < k' for all shortest strings ws in domg(td)
with domg(td) # 0. Then if w = w'aw” and a state (q,.5) with domg(td) = 0
is reached after processing the prefix w’a by td”, we select a string w, as short as
possible, such that ww € dom(td). We fix k € N larger than &’ and all right hand
sides of transduction rules of td. Then [td” (w'a)| < k|td(ww)|, and thus in general,

ostir(n) < k- osty(n + k).

The construction can be performed in polynomial space in a straightforward way
by implementing a loop that outputs one transition rule at a time. Simply note that,
for this, it suffices to keep a constant number variables holding states of ¢td”, and each
such state can be represented by O(]Q]) bits as it is essentially a subset of Q. O

1'We may assume that A(®) £ () because otherwise td computes the empty transduction and all
questions discussed here become trivial.

The Output Size Problem for String-to-Tree Transducers 17

With this construction in hand we can determine output size for (non-total)
transducers in polynomial space. Before that theorem however, we first restate for
clarity a folklore fact about compositions of space-bounded Turing machines.

Lemma 23. Let f: X* — A* be a function that is computable in polynomial space,
and let g: A* — {0,1} be (the characteristic function of) a decision problem in NL.
Then the decision problem g o f is in PSPACE.

Proof. Let Ty and T, be Turing machines computing f and g, respectively. By Sav-
itch’s theorem, it suffices to show how to compose T7 and T3 into a nondeterministic
Turing machine running in polynomial space.

We, without loss of generality, assume that 77 and 75 do not step outside the
useful part of their output- and input tape, respectively. Then construct T3 as follows.
First allocate room on the tape for two binary counters ¢; and co, and a single tape
symbol v. Set ¢; + 1 and ¢p < 1.

Then simulate a run of 77 to determine the output symbol at position ¢y (which,
at the same time, is the input symbol of Ty at that position). The simulation uses
the input tape as usual, but each time T7 would move the output write head, instead
update the counter ¢; accordingly (i.e., ¢; + ¢; + 1 on a step right, ¢; < ¢; — 1 on
a step left), and each time T would write to the output tape, instead save the value
in v if ¢y = ¢9, and ignore the write otherwise. That is, the output symbol which
would end up at position ¢y ends up being written to v.

Finally simulate a full run of T5, except using v as the input symbol read in each
step, and whenever T» would move the input read head instead; update co accordingly,
set ¢1 « 1, and perform a full simulation of T} as described above (up to the point
where it updates v).

In this way, T3 will produce the output T3 would have produced with the input given
by the output of T7. The total space used is the space required for one run of T} (as
it can be reused), one run of T, the two counters, the one symbol for v, and possibly
some small space for bookkeeping information. As the output of a (terminating)
Turing machine with a worktape of size s(n) can be of size at most k%) for some
constant k, a polynomial number of bits is sufficient to store ¢; and cs. Hence, T3
runs in polynomial space. O

Theorem 24. Let td be a transducer. Then it is possible to decide in polynomial
space if:
(1) td has exponential full (and yield) output size, and

(11) whether the degree of the polynomial equals d (in the case of polynomial output
size).

Proof. Apply Lemma 23] to Theorem [22] and Theorem [20] O

We complete this section by showing that the decision problems of Theorem [24] are
in fact PSPACE-complete, by a straightforward reduction from the PSPACE-complete
problem of deciding non-emptiness of intersection of a variable number of DFA.

18 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

Theorem 25. The decision problems of Theorem[2]] are PSPACE-complete.

Proof. This can be shown using a reduction from the problem of deciding whether

N L) £,
i=1
where A1, ..., A, are a variable number of DFA over a common alphabet X, a problem

which is known to be PSPACE-complete [L10].

Let tdg be a transducer over an input alphabet A disjoint with X, which ex-
hibits the output size property we wish to demonstrate has a PSPACE-hard decision
problem. Such a transducer is easy to construct — consider and modify Example
appropriately.

We want to combine tdg and (transducers corresponding to) Ay, ..., A, in such a
way that the resulting transducer ¢d retains the output size property of tdg if and
only if

() £(A:) #0.
=1

In a first step, extend each A; so that it recognizes £(A;)A*. Similarly, extend tdg
so that tdg(uwv) = tdg(v) for all u € ¥*,v € A*. (Thus, tde simply skips an initial
prefix in ¥* without producing output.)

Now, let a(®) be a rank 0 symbol in the output alphabet of tdg (which we may
assume to exist). For each 4, let td4, be a transducer such that dom(tda,) = L(A;)
and td 4, (w) = a9 if w € L(A;). Finally construct td by taking the disjoint union

tdgUtda, U---Utdy,

(defined in the obvious way) and adding a new state g, which is the only initial state
of td. Let f(®*1) be an additional output symbol and add (qo, €, f[ga, qa,;--->qa,])
to the transition relation for td, where g and g4, are initial states for tdg and td4,.
Complete the proof by observing that
n
dom(td) =0 if ﬂ L(A4;) =0,

i=1
and thus td has IDA_gy in this case. Otherwise, let u € X* be a shortest string
in N, £(A;). Then

td(wv) = { flt,a,....a] |t € tda(t) },

which means that ¢d has the same output size property as tdg if and only if

n

() £(A:) #0,

i=1
as long as we are not considering IDA>(or IDA_. For the latter cases, simply reduce
the intersection emptiness problem (rather than the non-emptiness problem) in the
same way as above, but using a tdg which has EDA. O

The Output Size Problem for String-to-Tree Transducers 19

6. Conclusions and Future Work

In [2, B] an investigation into the time complexity and semantics of backtracking
regular expression matchers was initiated. Starting from a regular expression F, the
question asked is how efficient (or inefficient) the corresponding matcher is. It was
shown that, given E, one can construct a transducer tdg such that, for every input
string w, tdg(w) represents the computation tree of the matcher. Hence, to know
the full output size of tdg is to know the running time of the matcher. Since not all
string-to-tree transducers are necessarily obtained through regular expressions, the
results in this paper can only be used to conclude that the worst-case matching time
problem for regular expressions is in PSPACE. Determining if it is also PSPACE-hard,
is left as future work. It may also be of interest to refine the results of Theorem
into lower bounds (stated in terms of, e.g., number of states and the structure of
output trees) for algorithms when assuming the exponential time hypothesis, using
analogous results from [g].

References

[1] C. ALLAUZEN, M. MOHRI, A. RASTOGI, General algorithms for testing the ambiguity of
finite automata. In: M. ITo, M. TOYAMA (eds.), Proc. 12th Intl. Conf. on Developments
in Language Theory (DLT 2008). LNCS 5257, 2008, 108-120.

[2] M. BERGLUND, F. DREWES, B. VAN DER MERWE, Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: Z. EsIK, Z. FULOP (eds.), Proc.
14th Intl. Conf. on Automata and Formal Languages (AFL 2014). EPTCS 151, 2014,
109-123.

[3] M. BERGLUND, B. VAN DER MERWE, On the semantics of regular expression pars-
ing in the wild. In: F. DREWES (ed.), Proc. 20th Intl. Conf. on Implementation and
Application of Automata (CIAA 2015). LNCS 9223, 2015, 292-304.

[4] M. BERGLUND, B. VAN DER MERWE, On the semantics of regular expression parsing
in the wild. Theoretical Computer Science 679 (2017), 69-82.

[5] F. DREWES, The complexity of the exponential output size problem for top-down and
bottom-up tree transducers. Information and Computation 169 (2001) 2, 264-283.

[6] F. DREWES, J. ENGELFRIET, Branching synchronization grammars with nested tables.
Journal of Computer and System Sciences 68 (2004) 3, 611-656.

[7] J. ENGELFRIET, Surface tree languages and parallel derivation trees. Theoretical Com-
puter Science 2 (1976) 1, 9-27.

[8] H. FErRNAU, A. KREBS, Problems on finite automata and the exponential time hypoth-
esis. In: Y. HAN, K. SALOMAA (eds.), Proc. 21st Intl. Conf. on Implementation and
Application of Automata (CIAA 2016). LNCS 9705, 2016, 89-100.

[9] N. IMMERMAN, Nondeterministic space is closed under complementation. SIAM Jour-
nal on Computing 17 (1988) 5, 935-938.

[10] K.-J. LANGE, P. ROSSMANITH, The emptiness problem for intersections of regular
languages. In: Intl. Symposium on Mathematical Foundations of Computer Science.
1992, 346-354.

20 M. BERGLUND, F. DREWES, B. VAN DER M ERWE

[11] G. ROZENBERG, A. SALOMAA (eds.), Handbook of Formal Languages, Vol. 1: Word,
Language, Grammar. Springer-Verlag New York, 1997.

[12] B. vaN DER MERWE, N. WEIDEMAN, F. DREWES, The output size problem for string-
to-tree transducers. In: A. MALETTI (ed.), Proc. 4th Intl. Workshop on Trends in Tree
Automata and Tree Transducers (TTATT 2016). 2016, 43-50.

(Received: March 8, 2017; revised: November 19, 2017)

	1 Introduction
	2 Definitions
	3 Regular Expression Matching Motivation
	4 NFA Ambiguity Testing
	5 Linking Output Size to NFA Ambiguity
	6 Conclusions and Future Work

