
A Comparative Evaluation of the Performance of

Popular SDN Controllers

Lusani Mamushiane, Albert Lysko, Sabelo Dlamini
CSIR

Pretoria, South Africa

(lravhuanzwo, Alysko, SDlamini1)@csir.co.za

Abstract— Software Defined Networking (SDN) is an

architecture that decouples the routing intelligence from the
forwarding functions, using an entity called “controller”. It is
paramount that the performance of the controller is thoroughly
understood prior to its deployment. However, the rapid
introduction of many new controllers in the research
community makes it difficult to choose a suitable controller.
This paper studies and evaluates the performance of several
popular open source controllers such as ONOS, Ryu,
Floodlight and OpenDayLight in terms of latency and
throughput using an OpenFlow benchmarking tool called
Cbench. Additionally, a feature-based comparison of the
controllers is presented. These experimental tests provide a
decision making guideline when selecting a controller.

Keywords—Software Defined Networking (SDN); OpenFlow;

controller; Ryu; Floodlight; OpenDayLight; ONOS

I. INTRODUCTION

Software Defined Networking (SDN) has emerged as a
paradigm that advocates separation of the control plane and
data plane. This paradigm shift promises to simplify network
management and configuration and to deliver unprecedented
scalability benefits. With SDN, the idea is to centralize the
routing logic for many switches in a separate entity called a
“controller”. Based on its global view of the network, the
controller optimally programs the forwarding behavior of the
data plane. To date, several SDN controller implementations
have been developed and deployed in both industry and
academia. These controllers have diverse programming
languages, and feature sets. Almost all these controllers have
support for the OpenFlow protocol used to program routing
instructions on the data plane via a secured southbound
channel.

SDN controllers are predominantly used for large scale
networks (e.g. SD-WAN) where performance is a critical
metric. Two of the most important questions frequently asked
are (a) how fast can a controller respond to PACKET_IN
messages? (PACKET_IN requests are sent by the switch to the
controller whenever there is no matching entry in the flow table
of a switch and the controller then needs to make a decision);
and (b) how many PACKET_IN messages can a controller
handle per second? To answer these questions, it is paramount
to quantitatively and qualitatively evaluate the performance of
SDN controllers to understand their merits and faults so as to
provide a clear guideline for selecting the most appropriate
controller for a given scenario. This can be achieved by

benchmarking the different choices of SDN controllers against
various key performance indicators, such as latency,
throughput and resiliency.

In this paper, we evaluate and compare the performance of
open source controllers based on throughput and latency
utilizing an open source benchmarking tool called Cbench. The
controllers selected for this performance test are: Ryu [1],
Floodlight [2], ONOS [3] and OpenDayLight [4]. These
controllers were chosen based on their popularity.

The paper is organized as follows: Section II discusses the
previous work on comparison of SDN controllers, Section III
highlights our contribution, Section VI describes the features of
the selected SDN controllers, Section V presents the test
environment and the methodology used in the evaluation as
well as the evaluation results and discussion. Lastly, Section
VI concludes the paper.

II. STATE OF THE ART

To date, there have been a number of works on

benchmarking various SDN controllers. The work done by

Tootoonchian et al. [5] was one of the first to carry out a

performance evaluation of SDN controllers (NOT-MT,

Beacon and Maestro). However, these controllers are no

longer used in most SDN implementations and have been

replaced by other controllers such as OpenDayLight, ONOS,

Ryu, Floodlight and POX. Khondoke et al. [6] presents a

feature-based comparison of five topmost controllers (Ryu,

Pox, Trema, Floodlight and OpenDayLight). To do this

authors collect properties of each controller under evaluation:

southbound interfaces, virtualization, GUI, REST API

support, productivity in terms of coding speeds, programming

language, modularity, operating system, TLS support,

maturity, OpenFlow version supported, and OpenStack

Neutron support. To carry out the comparison, authors used a

Multi Criteria Decision Making (MCD) method called

Analytical Hierarchy Process (AHP). In this method users

have the liberty to define pairwise priorities of their desired

features using a predefined scale. Based on the requirements

of Khondoke et al, “Ryu” was selected to be the best

controller. However, using this approach leads to subjective

results since it is entirely dependent on the features the user

prioritizes the most. Thus changing the priorities would lead to

different results.

Shah et al. [7] presents architectural guidelines that can be

used to improve current controller implementations or to

design a new controller. Two architectures were considered:

static batching (used by Floodlight, Beacon and NOX) and

adaptive batching (used by Maestro). Authors benchmark the

key architectural components of several SDN controllers

(Beacon, NOX, Maestro and Floodlight) under various

performance metrics (latency, switch scalability and thread

scalability) in a customized testbed. The evaluation results

show that Beacon shows the best throughput performance

results. However, in latency mode, Maestro presented better

results, as compared to the other controllers.

In [8], Fernandez et al. compares the performances of

different SDN controllers (NOX, POX, Trema and Floodlight)

in reactive and proactive mode. For all evaluated controllers,

the results showed that the best performance is achieved when

the controller is operating in proactive mode. This is likely

because forwarding rules are installed on the switch in

advance unlike in the reactive mode where rules are installed

upon receipt of new PACKET_IN requests. While this

comparison raises awareness on the importance of controller

mode of operation, it is not enough to make a decision

regarding the best featured controller.

Rowshanrad et al. [9] evaluates and compares the

performances of Floodlight and OpenDayLight under different

QoS parameters including delay and loss in various topologies

(single, linear, tree topology) and traffic loads (low, medium

and heavy load). The results show that OpenDayLight has the

best latency results under low traffic loads and also for tree

topologies under medium traffic loads. However, Floodlight

exhibit the best packet loss results under high traffic volumes

for tree topologies and the best latency results in linear

topologies.

Shalimov et al. [10] evaluates the perfomrmances of SDN

controllers (NOX, POX, Beacon, Floodlight, MuL, Maestro,

Ryu) based on latency, throughput, scalability, reliability and

most importantly, security. To evaluate controller security,

malformed packets are sent to the controller to check how it

handles them. From this analysis, authors conclude that

sending malformed packets can terminate TCP sessions with

switches or even shutdown the controller resulting in a failure

of a network segment or even of the whole network.

Reliability analysis show that NOX, POX, Beacon, Floodlight

and Ryu can endure long-term testing under average traffic

load unlike MuL and Maestro controllers. Authors stress the

need to improve the above mentioned controllers for

production SDN deployments.

Erickson et al. [11] argues that the programing language

used by an SDN controller has a significant impact on its

performance. The author claims that Java is a good choice

because it runs cross-platforms and supports multithreading.

Python was ruled out because of its inability to support

multithreading whilst the interpreter for C# lacks compatibility

with other operating systems other than Windows. C/C++ was

also ruled out because of its long runtimes (>10 minutes) and

poor memory management. The author then evaluates the

performances of several SDN controllers (Trema/C,

POX/Python, Ryu/Python, Maestro/Java and Floodlight/Java)

and concludes that Beacon which is Java-based has the best

performance.

In [12], Salman et al. carries out a qualitative assessment of

open source SDN controllers (MUL, Beacon, Maestro, ONOS,

Ryu, OpenDayLight, Floodlight, NOX, IRIS, Libfluid-based,

and POX). The metrics assessed are latency and throughput

performances under varying number of switches and varying

number of threads binding to the controller instance. The

results obtained suggested that Mul and Libfluid have the best

throughput performance while Maestro showed the best

latency performance.

Most of these works focused on benchmarking their

proposed SDN controllers to verify their advantages over

others. However, the dramatic introduction of improved

versions of SDN controllers renders past evaluations obsolete.

Today most controllers are matured enough in their

development necessitating the need to re-evaluate their

performances. In this work we will re-evaluate and compare

the performances of the most prominent open-source SDN

controllers (Ryu, Floodlight, ONOS and OpenDayLight)

considering latency and throughput as the key performance

metrics. Additionally, since controllers are constantly evolving

in terms of supported features, we will also present a feature-

based comparison of the aforementioned controllers.

III. CONTRIBUTION

This work is an extension of the recent work presented by

Salman et al. [12]. Instead of just evaluating the effect of

thread count and switch number on controller performance,

this work also evaluates the effect of network load on the

performance of Ryu, Floodlight, ONOS and OpenDayLight.

Moreover, our evaluation is more up-to-date in that it features

the latest versions of the open-source SDN controllers as well

as an up-to-date feature based comparison of the controllers.

This work is offered to researchers and industry as a guideline

in making decisions on the appropriate controller for their

desired use case(s).

IV. FEATURE-BASED COMPARISON

This section gives an overview of the basic features of an

SDN Controller and presents a feature-based comparison of

Ryu, Floodlight, ONOS and OpenDayLight (recorded in Table

1). This table is an updated version of the table presented in

[6] and [12], taking into account that new features are

constantly being added to SDN controllers. This evaluation is

useful to facilitate decision making on the controller that best

meets the desired feature criteria. To generate the properties of

each controller, a combination of online sources such as

journals, conferences, workshops and official websites of

controllers were used.

To verify each property, information from different sources

was compared against the same property to avoid biased

information from the developers. Where there were

discrepancies, that feature was eliminated from the

comparison altogether.

This feature-based controller comparison does not include

other controller implementations like MUL, NOX, POX,

Maestro, Beacon and Trema largely because they are poorly

documented and not fully matured in their development.

The selection criteria set for the controllers under

evaluation includes: Southbound interfaces, REST API,

Graphical user interface (GUI), Modularity, Orchestrator

support, operating system (OS) supported, Partnership,

Documentation, Programming language, Multi-threading

support, TLS support, Virtualization, Application domain and

architecture.

A. Southbound API

Southbound APIs are used to dynamically enforce

forwarding rules and policies on the data plane devices

(switches and routers). While OpenFlow is the most popular

southbound protocol, it is not the only one available or in

development. There have been efforts both in academia and

industry to develop other southbound protocols to address the

limitations of OpenFlow, such as lack of management

functions and support for hybrid SDN, to ensure a smooth

migration from the traditional network model to SDN. These

include but not limited to NETCONF/YANG, OF-Config,

PCEP, BGP/LS, and LISP. As shown in Table 1,

OpenDayLight followed by Ryu support the most southbound

interfaces compared to other controllers. Floodlight

exclusively supports OpenFlow. This restricts its

implementation to pure SDN deployments.

B. Northbound API

Northbound APIs are used by applications or higher layer

control programs running on top of the controller to

communicate with the controller. The application layer is an

integral part of the SDN technology since the value of SDN is

pinned to the innovative applications it can potentially enable.

Northbound APIs are also used to integrate the controller with

cloud orchestrators such as OpenStack and CloudStack used

for cloud management. Currently REST API has been the

most used API [14] and most controllers (including RYU,

Floodlight, ONOS and OpenDayLight) support it.

C. Controller Efficiency

Controller efficiency defines the metrics such as

performance (e.g. latency and throughput), reliability and load

balancing. The centralization of the control plane presents

formidable challenges in terms of the aforementioned metrics.

Therefore, the distributed framework supported by some

controllers aims to address this issue. To date only ONOS and

OpenDayLight support the distributed scheme, among the

evaluated controllers. This makes them suitable for application

across various domains (e.g. campus networks, data center

networks, and wide area networks (WANs)).

D. Partnership

To ensure maintenance and quality contributions to

improve an SDN controller, it is paramount that the controller

is being developed under good and reputable partnership [8].

The financial capacity (coupled with the experience in the

networking domain) is the key factor that stimulates trust and

consumption of products. Cisco, Huawei, Ericsson, Linux

Foundation, etc. are in the list of organizations entering the

SDN market and actively contributing to controllers’

development. Among the evaluated controllers,

OpenDayLight has the most partners. Following

OpenDayLight is ONOS. The controllers with the least

partners are Floodlight and Ryu.

E. Feature Comparison Discussion

In summary, it is clear that OpenDayLight and ONOS are

the most feature rich controllers. Both these controllers can

run cross-platforms. Leveraging OSGI, these controllers are

highly modular and have excellent runtimes for loading

bundles. Moreover, they both have a user friendly GUI for

application developers. They also have an active and reputable

community that consistently contributes new improvement

ideas. Their distributed architecture makes them ideal for

realistic SDN deployments. Lastly these controllers support

southbound interfaces designed for hybrid SDN and are thus

suitable for such application scenarios. However, ONOS does

not support cloud orchestration (e.g. OpenStack) which is

imperative for virtual resource management.

Ryu has a fair number of features making it ideal for small

scale SDN deployments. Its medium modularity, use of

Python, centralized architecture and exclusive support for

Linux OS limits its deployment to small scale networks.

From the feature comparison results, it is clear that

Floodlight has the least features. One of the most important

yet limited feature is the number of supported southbound

interfaces. Floodlight only supports OpenFlow. Moreover,

Floodlight lacks in modularity, does not support the

distributed scheme and has no support for cloud orchestration.

All these shortcomings likely make it suitable only for small

scale applications.

Table 1: Feature-bade comparison of SDN controllers

V. PERFORMANCE EVALUATION

Our evaluation only considers Ryu, Floodlight, ONOS and

OpenDayLight. The performance metrics considered are:

latency and throughput. The main goal is to investigate which

controller gives the highest throughput and lowest latency

under various workloads. The evaluation is carried out using

Cbench [13], a performance measurement tool to benchmark

OpenFlow-compatible controllers. Cbench has two modes of

operation: latency mode and throughput mode.

A. Test Environment

Both Cbench and controllers were implemented on the

same machine (Intel® Core™ i7-5600U CPU @ 2.6GHZ (4

cores)) to overcome the Ethernet interface speed limitations. 8

GB of memory was available. The system was running

Ubuntu 16.04 LTS-64 bit.

B. Methodology

The experiment setup was as shown in Figure 1 below.

Cbench was used to emulate different number of switches (1,

4, 8, 12, 16, 20, 24, 28, and 32) which connect to the

controller under test (CUT), send PACKET-IN messages and

count the number of responses (PACKET-OUTs) received per

second as well as the latency. Here the number of unique

MACs (hosts) was kept at 1000 MACs while varying the

number of emulated switches. Each test was repeated 10 times

and an average was used as the result for both modes of

operation (latency and throughput). The number of worker

threads was kept at 4. The purpose of this test was to

investigate the impact of increasing the number of emulated

switches on the controller’s southbound performance.

Figure 1: Experiment setup

 The second test involved varying the number of MACs (1K,

10K, 100K, 1000K, 10000K) with the number of switches

fixed at 16 both in throughput and latency mode. Having a

large number of unique source MAC addresses results in a

write-intensive workload. Thus this test was done to determine

the effect of the number of end hosts on controller

performance. Each test was repeated 14 times, each lasting for

10 second. The first 10 seconds (first two loops) are

considered controller warm-up and their results are ignored.

The number of worker threads was kept at 4. The following

example command was used for running tests:

./cbench –c localhost –p 6633 –l 14 -m 10000 –M 1000 –s 8 –t

 where the command line parameters are named as follows:

• c is the controller (IP or hostname);

• p is the controller port number;

• l is the number of loops per test;

• m denotes the test time per s;

• M is the number of mac addresses per switch;

• s is the number of switches;

• t means cbench is running on throughput mode;

C. Results of Analysis

This section presents the results obtained after running the

tests described above.

Throughput: The throughput evaluation results shown in

Figure 2 show that Floodlight and OpenDayLight are

drastically affected by an increase in the number of active

switches. This is because having a large number of switches

causes contention at the data layer which demands high

processing power. Ryu’s throughput performance is the

poorest and remains constant independent of the number of

switches emulated. ONOS exhibit the best throughput

performance. This is likely because of its inherent support for

very large scale networks.

Figure 2: Average number of responses per second under varying number of

switches (MACs =1000, threads=4)

Latency: When operating in latency mode, the results shown

in Figure 3 suggest that Ryu and OpenDayLight have the best

latency. ONOS and Floodlight show the worst latency results

as the number of switches are increased.

Figure 3: Average latency under varying number of switches (MACs=1000,

thread=4)

Scalability: As presented in Figure 4, OpenDayLight, Ryu

and Floodlight are significantly affected by the workload

resulting from large number of MACs. However, ONOS does

not show a similar behavior. The throughput performance of

ONOS is almost constant starting from 10K switches. That is

likely because ONOS’s switch application manages contention

between MACs by dividing the network’s MAC address table

among a collection of hash tables selected by the hash of the

MAC address.

Figure 4: Number of responses per second under varying number of MACs

(s=16, threads=4)

Latency: As shown in Figure 5, when tests were performed in

latency mode, ONOS exhibited the worse latency

performance. Ryu’s performance degradation is negligibly

small. OpenDayLight latency slightly increased with

increasing workload and Floodlight displayed better latency

performance compared to OpenDayLight when the number of

MACs was set to 100K.

Aggregate Performance: We define a figure of merit for

aggregate performance by taking a ratio of throughput

(responses/sec) to latency (sec). Figure 6 illustrates the

performance results in consideration of both latency and

throughtput under varying data plane sizes (number of

switches). This results indicate that ONOS has in overall the

best performance as the data plane size increases.

 Under varying workloads (MACs) as shown in Figure 7,

ONOS still shows an outstanding scalability, while

OpenDayLight and Ryu display comparatively the same

performance for 100 000 MACs and more. Floodlight has the

worst aggregate performance for higher workloads.

Figure 5: Average latency under varying number of MACs (s=16, threads=4)

Figure 6: Aggregate Controller Performance (MACs=1000, threads=4)

Figure 7: Aggregate Controller Performance (s=16, threads=4)

VI. CONCLUSSION

This paper presents both a feature-based comparison and

performance evaluation of widely used open source controller

implementations (Ryu, Floodlight, ONOS and

OpenDayLight). From the feature based comparison, the

merits and faults of the controllers were presented. From this

analysis, we recommend the adoption of OpenDayLight since

it is more feature rich in terms of interfaces vendor support.

 From the performance evaluation, ONOS exhibited the best

throughput results showing that it is able to respond to

requests more promptly under various traffic loads. However,

in latency mode, Ryu displayed the best latency results

making it more suitable for delay sensitive applications.

 From the above observations, our conclusion is that the

choice of which controller to use is entirely dependent on the

requirements of the user. This work provides users with

guidelines towards making informed controller selection

decisions.

 Future Work: It is our intention to evaluate the security

aspect of SDN controllers in future. This entails sending

malformed packets to the controller to investigate the impact

on the performance of the controllers. Additionally, this work

will be extended by investigating the impact of increasing

thread count on the performance of the controller.

REFERENCES

[1] “Ryu,” [Online]. Available: https :// osrg. github.io/ryu/.

[2] “Project Floodlight,” [Online]. Available: http :// www.

projectfloodlight.org/floodlight/.
[3] “Open Network Operating System (ONOS),” [Online]. Available:

https :// wiki .onosproject.org/display/ONOS/Wiki+Home.

[4] “Opendaylight,” [Online]. Available: https :// www.
opendaylight.org/.

[5] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado and R.

Sherwood, “On Controller Performance in Software-Defined
Networks,” Hot-ICE, vol. 12, pp. 1-6, 2012.

[6] R. Khondoker, A. Zaalouk, R. Marx and K. Bayarou, “Feature-based

comparison and selection of Software Defined Networking (SDN)
controllers,” in Computer Applications and Information Systems

(WCCAIS), 2014.

[7] S. A. Shah, J. Faiz, M. Farooq, A. Shafi and S. A. Mehdi, “An
architectural evaluation of SDN controllers,” in Communications

(ICC), 2013.

[8] M. P. Fernandez, “ Comparing openflow controller paradigms
scalability: Reactive and proactive,” in Advanced Information

Networking and Applications (AINA), 2013.

[9] S. Rowshanrad, V. Abdi and M. Keshtgari, “Performance evaluation
of SDN controllers: Floodlight and OpenDayLight,” IIUM

Engineering Journal, vol. 17, no. 2, pp. 47-57, 2016.

[10] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov and R.
Smeliansky, “Advanced study of SDN/OpenFlow controllers,” in

Proceedings of the 9th Central & Eastern European Software

Engineering Conference, 2013.
[11] D. Erickson, “The beacon openflow controller,” in Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined

networking, ACM, 2013.
[12] Salman, O., Elhajj, I.H., Kayssi, A. and Chehab, A., 2016, April.

SDN controllers: A comparative study. In Electrotechnical

Conference (MELECON), 2016 18th Mediterranean (pp. 1-6). IEEE.
[13] “What are SDN Northbound APIs,” Sdxcentral, [Online]. Available:

https :// www .sdxcentral.com/sdn/north-bound-interfaces-api.

