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Abstract—The modelling of military systems of systems 

invariably involves the incorporation of existing, often shared, 
models into larger and more complex simulations.  The sharing 
of models between simulations has long been the goal of the 
simulation community and although the resulting simulations 
expand the application domain of the models it comes at a cost.  
In this paper the authors highlight one of the issues faced, namely 
the use of different coordinate frameworks on performance and 
quantifies the errors that could be introduced into the simulation.  
It starts by providing an overview of the most commonly used 
coordinate frameworks and then elaborates on some of the 
experiences gained through its application in the Virtual Ground 
Based Air Defence System (GBADS) simulator.  The focus is on 
the mixing of flat earth convention and spherical earth 
convention.  The authors conclude with further motivation why a 
common earth reference model should be used for all simulation 
entities and, more importantly, why it should be a “real world” 
earth reference model. 
 

Index Terms— Coordinate reference frame, earth reference 
model, modelling & simulation, model application domain 
 

I. INTRODUCTION 
he modelling of a complex simulator, that consists of a 

number of systems and sub-systems, often requires the use 
of models that were developed for different application 
domains.  This is because it is more economically viable to re-
use existing models and because it is often desirable to use a 
model supplied by the Original Equipment Manufacturers 
(OEMs).  As a result the developers and users of the 
simulators end up with a mixture of models with different 
fidelities and performances.  

Organisations such as the Simulation Interoperability and 
Standards Organisation (SISO) have strived to develop 
frameworks to alleviate this problem.  Not withstanding these 
efforts, in practice it still occurs.   

In this paper one aspect, namely the mixture of coordinate 
reference frameworks is explored.  The issues surrounding 
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coordinate reference frameworks and the translation between 
these are not new and are widely discussed in the literature 
([1], [2], [3], [4] and [5]).  The authors felt, however, that 
benefit could be gained by quantifying some of the errors as 
discovered in the Virtual Ground Based Air Defence 
(GBADS) Simulator, specifically; the impact of converting 
between flat earth and spherical earth reference models is 
discussed with some suggestions for the mitigation thereof. 

II. EARTH REFERENCE MODEL 
A coordinate reference frame is a description of the 

coordinate axis and reference point required for the 
specification of position, relative direction and orientation.  
For a coordinate reference frame to be useful for geo-
positioning and orientation it must include a spatial reference 
model of some kind for the earth. 

An Earth Reference Model (ERM) represents an 
approximation to the geometrical shape of the earth and the 
gravitational potential associated with the earth.  Different 
ERMs exist of which the most commonly used are flat and 
spherical earth.  Another well known ERM is the World 
Geodetic System from 1984 (WGS84).  For the purposes of 
this paper the authors however focus on the simpler flat and 
spherical earth models with example coordinate reference 
frames.

 
A flat ERM (as depicted in Fig. 1) consists of a plane on 

which longitude and latitude lines may conceptually be drawn.  
The latitude and longitude lines are parallel lines on a plane 
that represents the mean sea level.  The altitude of a 
coordinate is the distance above or below this plane with the 
gravity vector being normal to it and pointing down. Such a 
system can be called an augmented ERM as it has no real 
physical basis. It distorts the geometrical properties of the real 
ball-like earth.  Due to this distortion the conversion from 
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latitude and longitude angles to North and East in meter is an 
arbitrary linear one based on the earth’s equatorial 
circumference.  In effect the latitude circles become all of 
similar length and equal to the longitudinal (polar) great 
circles. 

A spherical ERM (as depicted in Fig. 2) consists of a 
perfectly spherical earth with a gravity vector always pointing 
towards the centre of the earth.  This ERM ignores the 
flattening of the real earth at the poles. In other words, the 
equatorial and pole to pole diameters of the earth, as modelled 
in this ERM, are equal. This paper will use the term ‘real 
world’ ERMs to refer to spherical, WGS84 and better ERM 
approximations. 

A. The Earth-Centred, Earth-Fixed, Cartesian Reference 
Frame  
The Earth-Centred, Earth-Fixed (ECEF) reference frame (as 

depicted in Fig. 2) is a Cartesian coordinate system that 
represents a position as a point in X, Y, Z space, measured in 
meters along each axis.   

The ECEF Cartesian coordinate (0,0,0) represents the centre 
of the earth.  The Z-axis represents the earth’s rotation axis 
with north being in the direction of positive z. The X- and Y-
axis both rotate with the earth and always go through latitude 
and longitude (0˚, 0˚) and latitude and longitude (0˚, 90˚East) 
respectively. 

 
B. The ECEF Latitude-Longitude-Altitude Reference Frame 
The Latitude-Longitude-Altitude (LLA) reference frame (as 

depicted in Fig. 3) indicates that a point’s position is specified 
using spherical coordinates with an altitude equal to the height 
above mean sea level in meter.  Latitude 0˚ refers to the 
equator and longitude 0˚ refers to the semi-great circle going 
through the Greenwich meridian.  The latitude of a point is 
measured as the offset from the equator and longitude as the 
offset from the Greenwich meridian.  

 
C. The ECEF North East Down Reference Frame 
The North-East-Down (NED) reference frame (as depicted 

in Fig. 4) indicates a point’s position by measuring the 
distance north (measured on a mean earth radius circle) and 
the distance east (measured on the relevant line of constant 
latitude) relative to some reference point which is usually 
ECEF LLA (0,0,0).  Down is equal to the negative of the 
altitude. 

 
D. The Local-Level, Local-North (LLLN) NED Reference 
Frame 
The LLLN NED reference frame (as depicted by Fig. 5) 

indicates that there is a local reference frame (local to the 
reference point) and that it is a Cartesian system, on a flat 
plain. The Cartesian system’s axes are rotated such that the 
North axis is a tangential to the circle through the reference 
point, towards positive latitude.  The Down axis points 
towards the earth’s centre and the East axis is tangential to a 
line of constant latitude through the reference point, towards 
the positive longitude.  It is required to fix a LLLN NED 
system to some ECEF reference coordinate before it is usable 
in a simulation. The reference coordinate is often specified in 
ECEF LLA. 
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Fig. 4.  The ECEF NED coordinate reference frame for a spherical ERM. 
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Fig. 2.  The ECEF Cartesian coordinate reference frame for a spherical 
ERM 
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E. The LLLN Azimuth, Elevation and Range Reference 
Frame 
The LLLN Azimuth, Elevation and Range (AER) reference 

frame (as depicted in Fig. 6) is a coordinate system that 
indicates the local direction and range (within LLLN; Fig. 5) 
from the reference point to some other position.  In the case of 
a radar sensor the azimuth, elevation and range values of 
detections are calculated using the sensor’s position as the 
reference point in the LLLN NED coordinate reference frame.  
Azimuth represents the position of the direction vector around 
the down axis relative to North and positive towards East.  
Elevation represents the direction vector’s angle above the 
local level and range is the slant range. 

 

III. THE VIRTUAL GBADS SIMULATOR 
The Virtual GBADS Simulator is a system of systems 

simulator developed to support the acquisition of a Ground 
Based Air Defence System (GBADS) by the South African 
National Defence Force (SANDF).   

The simulation architecture provides a generic distributed 
communication backbone that provides simulation time and 
frame synchronisation services only.  The architecture consists 
of a number of different nodes, with each hosting a number of 
models.   

A. Models 
The convention used in the GBADS simulator was that all 

models should accept and give exact model position 
information in spherical ECEF LLA and modelled sensor 
observations in LLLN AER with the observer as the reference 
ECEF LLA coordinate.  Coordinate conversion from LLA and 
AER to the model’s internal coordinate reference frame and 
back is therefore the model’s responsibility. 

As the coordinate conversion is the model’s responsibility, 
each model can ‘operate’ in any internal coordinate reference 
frame as long as they properly convert information to and 
from this internal representation.  This standardized model 
interface also allows models with different internal ERMs to 
be used together.  Problems experienced with mixing ERMs 
are addressed in the section titled ‘Flat Earth Conversions 
Used On Spherical Earth’. 

B. Simulator Viewers 
Two types of viewers are used in simulator namely a 3D 

viewer with terrain, making use of an internal spherical ERM, 
visibly curved horizon, etc., and a plan view (2D) viewer with 
a flat augmented ERM.  Viewers are often used as developer 
tools when designing and debugging a simulation, but are also 
used during feedback sessions or for capturing video 
sequences of simulation runs. 

Inaccuracies when using different ERMs in the simulation 
viewers and the simulation is as problematic as between the 
simulation and models if not more so.  Confidence in a 
simulation is quickly lost when the visual feedback shows 
even small errors in spatial referencing such as target tracking 
or model positioning.  Inaccuracies when mixing ERMs in the 
context of simulation viewers are discussed further in the 
section titled, ‘Integration of Plan View and 3D Viewers’. 

IV. FLAT EARTH CONVERSIONS USED ON SPHERICAL EARTH 
In the interaction with model developers contributing to the 

Virtual GBADS Simulator it became apparent that the 
misconception exists that the differences in spatial referencing 
results between a flat earth LLA ERM and a spherical earth is 
purely range dependent and usually negligible.  This may well 
be the case for scenarios near the equator, but for cases where 
scenarios play out in other locations, the difference is 
significant.  Around 0˚North the latitude circles have 
approximately the equatorial circumference, but at latitudes 
closer to the poles this is definitely not the case and the flat 
earth LLA ERM becomes severely inaccurate for spatial 
referencing. 

For example, the systematic (not random or Gaussian) 
target designation error of a flat earth radar sensor model 
located at 0˚N and 0˚E on a spherical earth is shown in Fig. 7, 
Fig. 8 and Fig. 9 below.  These errors are introduced when 
converting from LLA to the sensor’s local Cartesian 
coordinate reference frame, without applying corrections for 
the spherical ERM. 

The figures show the sensor errors relative to the position of 
the sensor.  The sensor is indicated by the radar icon, and a 
low altitude target is positioned as an example at a randomly 
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Fig. 5.  The LLLN NED coordinate reference frame for a spherical ERM.  
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selected position relative to it, indicated by the ‘+’.  The 
sensor is therefore located at the origin of the figure which is 
showing a top view of the earth north (y-axis) and east (x-axis) 
of the sensor. 

 
The errors that are present represent the best case (smallest 

achievable errors) of a flat earth approximation to a spherical 
ERM.   

 
For example, the measurement located at the ‘+’, which can 

be read from the graph to be 4km North and 7km east of the 
radar and at a distance of approximately 8km, has systematic 
range, azimuth and elevation errors of 0.12km, 0.9˚ and 0.04˚ 
respectively. 

As a second example, a flat earth radar sensor model is 
located at Overberg Test Range in South Africa and positioned 
at 30˚S and 23˚E.  The systematic target designation error of 
the flat earth LLA sensor model when used in a spherical 
ERM, without correction, is shown in Fig. 10, Fig. 11 and Fig. 
12 below. 

An interesting point to note from Fig 11 is that the azimuth 
error is a function of the target’s azimuth and the sensor’s 
latitude.  In both flat and spherical earth a target directly East 
of a sensor has been defined as having an azimuth of 90˚ and 

similarly a target directly North would be at an azimuth of 0˚.  

 

 
 

The azimuth error thus approaches zero towards North-
South and East-West with the maximum error being 
dependent on the sensor latitude as already explained.  The 
azimuth error is also clearly more dependent on target azimuth 
than it is on target range which is contrary to the original 
misconception mentioned earlier. 

For an example measurement located at the ‘+’, which can 
be read from the graph to be 4km North and 7km east of the 
radar, the systematic range, azimuth and elevation errors are 
1.2km, 3.5˚ and –0.2˚ respectively.  It is clear that such 
measurements are not accurate enough for a tracking radar 
model that’s part of an automatic gun system model where 
accurate target measurement is essential. 

 Fig. 9. Elevation error in degrees made by a flat earth sensor over a 0.1 by 
0.1 degree grid. Sensor located 0˚S and 0˚E. 
  

Fig. 10. Range error in meter made by a flat earth sensor over a 0.1 by 0.1 
degree grid. Sensor located 30˚S and 23˚E. 

 Fig. 8. Azimuth error in degrees made by a flat earth sensor over a 0.1 by 
0.1 degree grid. Sensor located 0˚S and 0˚E. 
  

 
 Fig. 7. Range error in meter made by a flat earth sensor over a 0.1 by 0.1 
degree grid. Sensor located 0˚S and 0˚E. 
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V. USING A FLAT EARTH MODEL IN A SPHERICAL EARTH 
SIMULATION 

From the previous section it is clear that merely using a flat 
earth model’s existing LLA to LLLN conversion without 
correction in a spherical earth simulation results in 
unacceptable errors.  In the following paragraphs it is shown 
that the required spherical earth correction can be added to a 
legacy model.  Such a correction must be prescribed to the 
developer responsible for encapsulating the model in the 
simulator. 

By decree the simulation infrastructure communicates 
model positions in the external (external to the model) 
coordinate reference frame EF  which is, as mentioned, LLA 
coordinates in a spherical ERM.  All model position interfaces 
will therefore be expected to interact with the simulation in 
LLA and the model must convert EF  coordinates to its own 
internal ERM and coordinate reference frame IF  with its 
internal conversion procedure IC .  In effect IIE FCF =⋅ .  In 
a legacy model, such as a flat earth sensor model, IC  

unfortunately incorrectly converts between flat earth LLA and 
IF  instead of between spherical earth LLA and IF .  A 

spherical earth correction must thus be applied to the model 
for it to be usable in the simulation. 

IF  is a modelling assumption and must be known.  An 
external conversion procedure EC  may be created to convert 

EF  directly to IF .  The model is then wrapped in a 

compound conversion 1−
IECC  to convert EF  to a coordinate 

reference frame which the flat earth model expects the 
external reference frame to be., which is flat earth LLA.  In 
effect ( ) IIIEE FCCCF =⋅ −1 .  It may be noted that IC and 1−

IC  
are the inverse of one another which reduces the coordinate 
conversion to the desired IEE FCF =⋅ , but with no internal 
modification to the original legacy model. 

Taking a flat earth legacy sensor model as an example, the 
added correction procedure 1−

IECC  (shown in Fig. 13) can 
then be done by applying the inverse of the model’s LLA to 
internal LLLN conversion, thus converting the intermediate 

IF  LLLN north, east and down distances to flat earth LLA for 
use by the model.  These conversions and their inverse 
conversions are often provided with the model in directly 
accessible utility classes resulting in very short development 
and debugging times.  This newly calculated flat earth LLA 
position can then be used as input to the original model. 

 

 
Doing the described correction (shown in Fig. 13) for a flat 

earth sensor model results in a LLLN spherical ERM sensor 
model and solves the flat to round earth conversion errors as 
shown in Fig. 14, Fig. 15 and Fig. 16. The errors for the 
measurement at ‘+’ is now negligible compared to the 
uncorrected case.  The remaining errors are due to floating 
point round off errors. 
 

The flat ERM approximation for the gravity vector, 
unfortunately, cannot be corrected for so easily and will still 
be normal to the local level of the model.  The impact of 

Fig. 11. Azimuth error in degrees made by a flat earth sensor over a 0.1 by 
0.1 degree grid. Sensor located 30˚S and 23˚E. 

 
 
Fig. 13. Range error in meter made by a corrected flat earth sensor over a 
0.1 by 0.1 degree grid. Sensor located 30˚S and 23˚E.  

Fig. 12. Elevation error in degrees made by a flat earth sensor over a 0.1 by 
0.1 degree grid. Sensor located 30˚S and 23˚E. 
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gravity vector errors is most prominent on the modelling of 
physical entities such as long-range projectiles.  The parabolic 
like flight path in a flat ERM, for example, is behaviourally 
correct, but in a spherical ERM an elliptical flight path is 

required. 

 
 
The simulator architect or developer therefore still has some 
responsibility in deciding whether a model that behaves 
correctly in flat earth can be used in a local level coordinate 
reference frame on a spherical ERM.  Depending on various 
aspects, such as the type of model and the approximations 
made, modifications and/or additional correction techniques 
might be required.  The complexity of this problem merits 
additional work to be done on finding appropriate correction 
techniques for all situations. 

 

VI. SUMMARY OF CONVERSION ERRORS 
The findings about the above mentioned conversion errors are 
summarised in Table I.  The error values are rounded to the 
same number of decimal places for easy comparison. 

 

VII. INTEGRATION OF PLAN VIEW AND 3D VIEWERS 
A viewer’s internal representation of data can also be a real 

earth or a ‘flat’ augmented ERM.  If a 2D viewer uses a flat 
ERM internally the simulation builders are faced with a 
problem.  Even though LLA positions may be converted to flat 
earth easily enough (by scaling and drawing latitude and 
longitude directly), Azimuth, elevation and range from a 
sensor to a target can’t always be realistically drawn.  

A direction line (fixed length arrow pointing in the required 
direction) on a 2D viewer making use of a flat ERM must be 
drawn as a curved line for the same reason that the longitude 
and latitude lines on a map of the world are drawn curved.  
Drawing the direction line curved looks intuitively wrong 
though.  Observers mentally extend direction lines expecting 
them to intersect the target position and extending curved lines 
does not come naturally to most observers.  

If one has all three dimensions of the measured target 
position the target may be presented as a LLLN AER direction 
in the sensor’s local level reference frame.  The target position 
can then be converted to LLLN NED with the sensor as 
reference and then to ECEF LLA.  One then draws a ‘straight’ 
direction line between the 2D flat earth latitude and longitude 
of the sensor and the latitude and longitude of the just 
calculated target position.  Following this new ‘straight’ 
direction line from the sensor will then exactly intercept the 

Fig. 16. Elevation error in degrees made by a corrected flat earth sensor 
over a 0.1 by 0.1 degree grid. Sensor located 30˚S and 23˚E 
 

Fig. 15. Azimuth error in degrees made by a corrected flat earth sensor over 
a 0.1 by 0.1 degree grid. Sensor located 30˚S and 23˚E. 
 

TABLE I 
SUMMARY OF CONVERSION ERRORS 

Error 
Dimension 

Uncorrected 
Conversion 
@(0˚S, 0˚E) 

Uncorrected 
Conversion 

@(30˚S, 23˚E) 

Corrected Conversion 
@(30˚S, 23˚E) 

Azimuth 0.9000˚ 3.5000˚ 0.0000˚ 
Elevation 0.0400˚ -0.2000˚ 0.0000˚ 
Range 0.1200km 1.2000km 0.0000km 

 

Fig. 14. Range error in meter made by a corrected flat earth sensor over a 
0.1 by 0.1 degree grid. Sensor located 30˚S and 23˚E.  
 



 7

measured target position.  The drawback of course being that 
such a direction line can now no longer be used for doing LOS 
evaluation for example.  The ‘straight’ direction line is only 
valid at its beginning and at its end, while the original ‘curved’ 
direction line would be spatially accurate along its entire 
length. 

If one or more of the components of the target position are 
not known, as is the case for a 2D Az-El sensor for example, 
the unknown dimension(s), range in this case, must be 
estimated in order to draw a ‘straight’ direction line, 
decreasing its accuracy and value to the observer. 

VIII. FUTURE MODEL AND VIEWER DEVELOPMENT 
CONSIDERATIONS 

The authors propose that when a model is developed it 
should always be done for a real world ERM and not an 
augmented flat ERM.  The model may still use any convenient 
coordinate reference frame for the chosen ERM.  If 
performance is a problem the modelling equations may be 
approximated within the real world ERM, but the 
approximations must be apparent in terms of gravity vector 
direction for LLLN coordinate reference frames.  Such a 
modelling approximation made in a real earth ERM would 
give approximate results within the model’s application 
domain, but the model will have an application domain of all 
real world ERMs instead of one specific augmented ERM as is 
the case for a flat earth model.  A real world ERM ensures 
realistic interaction of models in current and future system 
simulations that operate over a number of application 
domains. 

The authors propose that ALL viewers should use a real 
world internal representation for positions of objects and 
direction lines.  To calculate the actual screen positions of 
objects and direction lines an orthographic or perspective 
projection of a simulation frame may then be done by an eye-
in-the-sky looking down at a 2D map viewer or from an 
observer’s, possibly on the ground, point of view for a 3D type 
viewer.  Such a projection will also correctly display the 
latitude and longitude lines on the earth’s surface as being 
curved and not a grid of parallel lines. The required 
projections are relatively inexpensive when implemented on 
the CPU and are effectively for free when a graphics 
accelerator is used to do the drawing. 

IX. CONCLUSION 
This paper captured some of the experiences gained from 

using legacy models in a complex simulator and quantifies 
some of the errors which may result when flat ERMs are used, 
as is, in a real-world environment. 

This paper only addressed spatial error corrections and 
specifically looked at the corrections necessary when 
converting between a flat ERM and real-world ERM.  It is 
clear that a mixture of models may have significant effects on 
the results obtained.  Further work in identifying a 
representative set of coordinate reference frame and ERM 
combinations that require spatial correction would be very 

valuable.  Such a set may be applied to predict when, and 
possibly with what magnitude, referencing errors will occur. 

The considerations when developing 2D viewers were also 
addressed and the ergonomic issues when a viewer using a flat 
ERM is used to present real-world ERM data.  Selecting the 
correct map projection for easy and intuitive spatial 
referencing user interaction is a potential point for further 
study  
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