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Abstract—Sensor management is an important function of
any data fusion center as the output of a fusion system is
dependent on the quality of the information collected. In this
paper, the scheduling aspect of sensor management function is
implemented using Response Surface Modeling (RSM). Applying
RSM requires formulating the sensor management function as
an objective function. The benefit of RSM over prior global
optimization approaches is the simplification of the evaluation
of this objective function to find global optima. This leads to
either reduced computational requirements and/ or shorter due
times for creating sensor schedules.

This work shows the utility of RSM towards scheduling
multiple sensors, and seeks to introduce RSM to the sensor
management community. It is shown that the RSM scheduler
provides a significant improvement towards reducing the number
of missed targets in a surveillance radar network. This is com-
pared to performing a uniform scanning regime (or sequential
stepped scan) often employed. Very few iterations are required to
provide this gain. The RSM technique also quickly determines
where the most effective use of sensor resources needs to be
applied. Consequently, it spends more radar dwell time on these
beam locations.

Index Terms—Process Refinement, Sensor management,
Scheduling, Radar Networks, Surveillance, Response Surface
Modeling

I. INTRODUCTION

Sensor management is part of the Data Fusion Model
proposed by the Data Fusion Information Group (DFIG) [1].
A sensor management algorithm must perform three important
tasks: creation of suitable sensor tasks, prioritization of these
tasks and, finally, scheduling of tasks on the sensors. Prior
to formulating a sensor management solution it is important
to model the sensors and their role in the fusion system.
The approach followed in this paper is detailed in Section
II. Thereafter, a solution should be implemented, and it is
important to consider the architecture, which is the focus
of much recent work [2], [3], [4], [5] but not addressed
as part of this work. Task creation and prioritizing tasks,
while important, for this work are achieved by using simple
heuristics derived from sensor operator intuition. The focus in
this work is on presenting response surface modeling (RSM)
as a suitable multisensor scheduling algorithm.

RSM has long been used to solve challenging optimization
problems where objective functions are expensive to evaluate
[6], [7]. The taxonomy presented in [7] has recently been
popularized in the artificial intelligence community from a
Bayesian perspective by [8]. The principal premise of RSM is

to create a surrogate model of the objective function by using
as few as possible objective function evaluations. An additional
advantage of response surface methods, is that when using
Gaussian process (kriging) interpolation [9] and a suitable
acquisition function [8], the optimization algorithm balances
the optimization task (minimizing the surrogate objective
function), with the objective function sampling task (choosing
where to sample the objective function to reduce uncertainty in
the surrogate model). This allows the optimizer to balance the
task of “exploring” with “exploiting” the objective function,
while at the same time utilizing the statistical uncertainties
in the surrogate model to improve joint optimization and
sampling.

The application of RSMs to resource optimization in the
literature is scarce. The authors of [10] consider the use of an
RSM applied to resource optimization advanced manufactur-
ing application. A RSM is used to optimally allocate resources
for the improved food production in [11]. In [12], a RSM is
used for selecting an optimal set of sensors, as determined by
predictive accuracy and other sensor performance parameters.
This is in contrast with this paper, which uses dwell time to
minimize the probability of a missed detection of multiple
sensors. The efficient use of resources for robot path planning
and sensing is achieved using a RSM in [13].

Sensor scheduling approaches must treat the sensor re-
sources against a timeline of suitable slots, where only a
single task using a specific sensor or sensor resource may
occupy a slot on the utilization timeline. Sensor scheduling
approaches are summarized in [14], [15], [16]. Heuristic
schedulers have dominated the approaches from early work
such as [17] to more recent approaches such as [18], [19], [20],
[21]. Sometimes the scheduling is handled intrinsically by
the task prioritization algorithm [22], [23] including Bayesian
approaches [24], or as outputs of the other sensor functions
[25], [26]. These approaches are good at solving a single
problem formulation, but are not easily extensible to different
scenarios and often required much analysis to rework.

The scheduling problem can also be formulated as an
optimization problem as is done in Section III. Then the use
of various optimization algorithms as the scheduler becomes
possible. Mathematical programming approaches to solving
information-theoretic approaches are one option [27], [28].
Alternatively, artificial intelligence approaches such as genetic
algorithms and particle swarm optimization have also been



proposed [29], [30], [31], [32] as well as using both in a
hybrid algorithm [33]. Another option is techniques such as
online Monte Carlo simulations [34]. These approaches suffer
from heavy computational burden and long times to reach
a globally optimal solution. RSM allows the computational
load to be managed through model simplification and does not
require long runs to reach a global optima in the solution space
as shown in Section IV. Furthermore, RSM schedulers that
employs a good architecture merely requires the formulation
of the sensor management problem as an optimization problem
to apply to new sensor suites.

II. TARGET SURVEILLANCE MODEL

Consider a networked radar system with the primary func-
tion of detecting targets. Search radar systems are designed
with the aim of detecting targets in their surveillance space.
However, radar systems operate with limited resources, which
inherently restricts the system from continuously observing the
entire search space. Typically a set amount of time is allocated
to scanning the entire region, referred to as the scan time.
The mechanism of scanning is dependent on the sensor, i.e.
mechanically steered, or electronically steered. In this paper,
the case where the search space of a radar is subdivided into
a set of non-overlapping regions is considered.

A. Poisson Point Processes Formulation

A Poisson point process (PPP) is a useful mathematical tool
which has been applied in a wide variety of applications. An
inhomogeneous PPP with intensity function λ(·) is a point
process in Rn such that: for every subset of the space, A ⊆ Rn,
the number of counts, N(A) has a Poisson distribution with
parameter λ(A) =

∫
A
λ(x)dx < ∞; and for any collection

of disjoint bounded Borel measurable sets A1, . . . , An ⊆ A,
N(A1), . . . , N(An) are independent [35].

In this paper, a PPP is used to represent the number of
undetected targets. Thus, if the search space is denoted by the
region A, then N(A) is the number of undetected targets.
The search space is represented by a discrete set of non-
overlapping cells, S = {S1, · · · ,SN}. This results in a PPP
with a discrete intensity function. It is also noted that the
number of undetected targets varies with time. The time
dependence is reflected by the discrete intensity function,
which is represented mathematically by λk|k(Si;αk), where
k ∈ {1, 2 . . . T} the discrete time steps, with T representing
the final time step. The intensity is also dependent on the
system parameters, which are represented by αk. It has been
shown in [36] that the intensity function of each cell can be
iteratively updated to maintain an estimate of the number of
undetected targets as time progresses. This is achieved through
a two step procedure. The first step is given by

λk|k−1(Sj ;αk−1) = λb(Sj)

+
∑

i|Sj∈T (Si)

P (Sj |Si)Ps(Si)λk−1|k−1(Si;αk−1),

(1)

where λk−1|k−1(Sj ;αk−1) is the intensity function of cell
Sj at time step k − 1 based only on information from time
step k − 1; λb(Sj) is the intensity function of a PPP, which
models the number of undetected targets entering the region at
time k, referred to as births; P (Sj |Si) represents a transition
distribution induced by the Markov kernel p(xk|xk−1) on
x ∈ A; T (Si) is the subset of cells to which a target can
transition from cell Si (so that P (Sj |Si) = 0∀Sj 6∈ T (Si));
Ps(Si) represents the survival probability of undetected targets
at k − 1 in cell Si to time k; and λk|k−1(Sj ;αk−1) is the
intensity function of cell Sj at time step k− 1 updated by the
aforementioned terms. The second step is given by

λk|k(Sj ;αk) = (1− PD(Sj ;αk))λk|k−1(Sj ;αk−1), (2)

where PD(Sj ;αk) represents the probability of detecting a
target in cell Sj .

In this paper, the search system is assumed to consist of
multiple radars which may include areas of overlap. The
probability of detection is based on the inclusion-exclusion
principle applied to the probability of detection of each radar.
This is illustrated for the two radar scenario, but can be adapted
to any number of radars:

PD(Sj ;αk) = PD,1(Sj ;αk) + PD,2(Sj ;αk)

− PD,1(Sj ;αk)PD,2(Sj ;αk)
(3)

where PD,x(Sj ;αk) represents the probability of detection
for radar x, and the probability of detection of the individual
radars is assumed independent.

III. GLOBAL OPTIMIZATION

In general, optimization is the process of determining the
parameters which result in a minimum of a function, referred
to as the objective function. In this paper, the objective
function is the expected number of undetected targets for the
search space given by

f(αk) =

N∑
i=1

λk|k(Si;αk). (4)

The corresponding optimization problem is given by

α∗k = arg min
αk∈X

f(αk) s.t. c(αk) ≤ 0 (5)

where X is a subset of RD, and c(αk) is a known constraints
function.

Optimization is a challenging task as the objective function
may consist of many local minima within the search space.
In addition, objective functions in complex systems can be
computationally expensive to evaluate, without closed form
expressions of gradients. For example, in the case of a search
radar system with a model for probability of detection which
considers complex targets, spatial diversity, and clutter. The
aim of a global optimization algorithm is to search for the
global minima. The approach proposed for global optimization
in this context is based on the concept of RSM [7]. A response
surface represents a computationally cheap surrogate of the



objective function which can be used for global optimization.
In this paper, the response surface is approximated with a
Gaussian Process (GP) regression model.

A. Gaussian Process Regression

A GP is a stochastic process that is suitable for modeling
non-linear functions. GPs can be described as a distribution
over functions [37]. This distribution is characterized by a
mean function, m(x), and covariance function, k(x,x′),

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (6)

resulting in the following expression for a GP

g(x) ∼ GP(m(x), k(x,x′)). (7)

A GP is a collection of random variables, any finite set of
points, i.e. {xi ∈ X}Mi=1, induces a consistent joint Gaussian
distribution on RM . This property of the GP is used to obtain
closed form expressions for marginals and conditionals, such
as the posterior.

The mean function prior is typically assumed equal to
zero or constant. This places a large importance on the
model selected for the covariance kernel, as well as on the
hyperparameters of the model. They are commonly learned
by maximizing the conditional likelihood [37].

B. Global Optimization with Response Surface Modeling

RSM is a global optimization method based on a statistical
approach1. A probabilistic model is used to represent the
objective function. In this paper, it is modeled with a GP2.
Using a GP based model has the advantage of a closed form
expression to quantify uncertainty.

Initially, there are no observations from the objective func-
tion. Each time the objective function is evaluated, also re-
ferred to as an optimizer iteration, the observation is stored, i.e.
{α(v)

k , y(αk)(v)}Vv=1, where y(αk) ∼ N (f(αk), ν),and V is
the number of stored observations. The observations are used
to obtain a model posterior. Computing the model posterior
based on all the observations results in an increased com-
putational expense in comparison to optimization techniques
that only consider local gradient information. However, this
allows the model to converge to a global solution with a small
number of objective function evaluations even for challenging
non-convex objective functions [7].

After computing the posterior model, the next point in the
search space for objective function evaluation is selected as
the point which maximizes an acquisition function. Several
acquisition functions have been described, one such function
evaluates the expected amount of improvement of the objective
function in the search space, represented mathematically as [7]

EI(αk) = σ(αk)[uΦ(u) + φ(u)], (8)

1In the context of utilizing GP prior functions, this method has also been
referred to as Bayesian optimization (e.g. [8])

2A summary of the algorithm for a single radar scan is illustrated in the
Appendix.
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Fig. 1: Geometry of the simulation scenario.

where u = fmin−µ(αk)
σ(αk)

, Φ and φ represent the normal cumula-
tive distribution function and density function, respectively,
σ(αk) and µ(αk) represent the predictive mean function
and standard deviation function, respectively, and fmin is the
current best objective function observation.

IV. EXAMPLES & RESULTS

A. Example Scenario

Consider the scenario with two stationary radars3 observing
a 2-D surveillance region. The region is divided into a 100×
100 Cartesian grid, with each cell in the grid has a surface
area of one square kilometer. The position of each radar is
PA(x, y) = (0, 0) km and PB(x, y) = (100, 0) km. The
angular extent covered by each radar is Θtot,A = [0, π2 ] rad
and Θtot,B = [π2 , π] rad. The maximum range of both radars
is 100 km. The angular extent of each radar is divided into
10 equally sized non-overlapping pie-slice shaped regions,
each with an angular extent equal to that of the radar beam.
The radar resource for optimization is the dwell time for
each beam, αk = {τi,j}i∈B,j∈R, where B and R represent
the indexes for the beams in a radar and individual radars,
respectively. The total scan time, Tscan, available to visit all
the beams is 1 s for each radar, which leads to the constraints∑
i∈B τi,j ≤ Tscan for each radar. The geometry of the scenario

is illustrated in Figure 1. The birth intensity is a step-wise
function

λb(Sj) =

{
2 j ∈ C
10−3 otherwise (9)

where C represents the indexes for 4 cells in the region
indicated in Figure 1. The initial intensity, λ0(Sj), is equal
to the birth intensity in (9).

3Differentiated with indexes A and B
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Fig. 2: Illustration of the probability of miss,
1 − PD(Sj ;αk), with a uniform scan time of
0.1 s for a constant radar cross-section (RCS).

B. Gaussian Process Model

The covariance function can significantly affect the quality
of GP regression. Based on the recommendation of [8], a
Matérn 5/2 covariance function is utilized.

C. Probability of Detection

A key advantage of the method presented in this paper
is the ability to deal with challenging non-convex objective
functions. In a search radar system, this may be caused by
complex probability of detection models. In this paper, the
modified Albersheim model [38] presented in [36] is used for
the experiments. The probability of detection for each radar is
given by

PD,x(Sj ;αk) =
(1− d) + (1− γ)ebSj

(αk)

1 + ebSj
(αk)

, (10)

where bSj (αk) =
σRτi,x−c
0.12c+1.7 , c = log(0.62/Pfa), and the prob-

ability of false alarm, Pfa = 10−6, γ = 0.1 is the probability
of eclipsing. The constant d = 1 + (1 − γ)e−c/(0.12c+1.7) is
added to fix the probability of detection to zero with zero
resources. The radar cross-section of the target, σR parameter,
decreases as the third power of the range, and is scaled so
that the probability of detection for each radar is 50% with
a dwell time of 0.1 s at a range of 50km. The joint radar
system probability of miss for the aforementioned scenario is
illustrated in Figure 2 for a dwell time of 0.1 s assigned to
each beam.

D. Results

The aforementioned scenario was simulated for a total
period of 40 s. The results presented are averaged over
10 independent Monte Carlo runs. The presented method is
compared with a search radar system with the same geometry,
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Fig. 3: Comparison of the output of the objective function
for a uniform scan time and scan time optimized globally,
for varying numbers of optimizer iterations.

but using a raster search pattern, where the total scan time is
divided uniformly between the beams.

Figure 3 illustrates the objective function value for varying
numbers of optimizer iterations. Regardless of the selected
number of optimizer iterations, the presented method outper-
forms the uniform scan time approach. The reason for this is
clearly demonstrated in Figure 4. The dwell time assigned to
the beams for all the simulated scans are illustrated in Figures
4a and 4c for radar A and B, respectively. The dwell time
for the beams observing the region of the search space with
the high intensity birth cells generally have increased dwell
times throughout the simulation. This is confirmed in Figures
4b and 4d, which illustrate the corresponding dwell times
averaged over all simulation times. An increased dwell time
in this region results in a reduction of the expected number of
undetected targets. The algorithm is able to exploit the overlap
of radar detection ranges by reducing the dwell time the greater
the overlap, as illustrated for beam index 2 and 9 in Figures
4b and 4d, respectively.

By comparing Figures 4 and 5, the effect of varying the
number of optimizer iterations is illustrated. Even with a
limited number of optimizer iterations, the method is still able
to allocate the majority of resources to the beams observing
the cells with high birth intensity. The increased performance
observed for an increasing number of optimizer iterations is
offset by an increase in computational expense. The number
of iterations will typically be determined by the available
computational time.

Performance of the method for the case where high clutter
regions exist is also considered. This is achieved by modifying
the scenario depicted in Section IV-A by including 18 cells,
which have a probability of detection of 0, independent of the
dwell time. These cells are located in the vicinity of (40, 5)
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(b) Average dwell time per beam for radar A.
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Fig. 4: Illustration of the optimized dwell times over a
40 s period with 30 optimizer iterations.
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Fig. 5: Illustration of the optimized dwell times over a
40 s period with 5 optimizer iterations.
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Fig. 6: Performance comparison of the presented method
with 5 optimizer iterations when considering the scenario
with and without the addition of clutter cells.

km on the grid presented in Figure 1. Including the clutter
cells has no influence on the distribution of dwell times. This
is expected as increasing the dwell time for the beams, which
observe the region that includes the clutter cells, has no impact
on the probability of detection. The impact of the clutter cells
is noted with an increase in the number of expected undetected
targets as illustrated in Figure 6.

V. CONCLUSIONS & FUTURE WORK

This work shows the utility of RSM towards scheduling
multiple sensors, and introduced RSM to the sensor manage-
ment community. It shows that the RSM scheduler provides
a significant improvement towards reducing the number of
missed targets in a surveillance radar network. This is com-
pared to performing a uniform scanning regime (or sequential
stepped scan) often employed by surveillance radars. The RSM
scheduler requires very few iterations to provide a significant
reduction in the number of missed targets. The RSM technique
also quickly determines where the most effective use of sensor
resources needs to be applied. Consequently, it spends more
radar dwell time on these beam locations. The scheduler is
not impacted when considering clutter regions that reduce
the ability of the radar to detect targets. Future work will
compare our RSM scheduler to other global optimization
techniques to further demonstrate the benefit of this algorithm.
Finally, mapping the RSM scheduler to a sensor management
architecture is also left as future work.

ACKNOWLEDGMENT

The financial assistance of the ABSA Chair in Actuarial Sci-
ence towards this research is hereby acknowledged. Opinions
expressed and conclusions arrived at, are those of the authors
and are not necessarily to be attributed to ABSA.

The financial assistance of the South African Department of
Science and Technology (DST) towards this research is hereby
acknowledged. Opinions expressed and conclusions arrived at
are those of the authors, and are not necessarily to be attributed
to DST.

APPENDIX

The different steps of the algorithm for a single radar scan
are summarized in Figure 7.

Uniformly sample
initial dwell times

Evaluate
objective function

Update Gaussian
process model

Determine
dwell times

that maximize
aquisition function

Evaluate
objective function

Maximum
number

of iterations
reached?

End

No

Yes

Fig. 7: Flow chart of the algorithm for a single radar scan.
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