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Abstract: The engagement of additive manufacturing (AM) technology in developing 
intermetallic coatings involves additional heat treatment with a view to obtaining desirable 
microstructure and mechanical properties. This eventually increases the lead time and the 
manufacturing cost. To address these challenges, this study explores the fabrication of gradient 
and laminar structures of titanium aluminide (Ti-Al) composite coatings deposited on Ti-6Al-4V 
substrate via a single step laser cladding (LC). The alterations in microstructural properties, 
chemical composition and phase analysis of the coatings reinforced with TiC were investigated as 
a function of laser energy density. Evaluation of the deposited samples reveals that FGM 
composite clads were fabricated from Ti-Al blended with TiC when LED was set at 17.50 J/mm2. 
At the selected LED, a thermo-positive reaction between the constituents’ materials was induced 
and it resulted in the formation of intermetallic compounds (e.g. Ti2AlC, 𝛾𝛾 and 𝛼𝛼2 matrix phases) 
with a microhardness more than that of the substrate (Ti-6Al-4V alloy). This study provides new 
insights on the selection of process parameters for the coating manufacturers while employing low 
cost- and time-effective LC process for fabricating functional graded Ti-Al coatings. 

Keywords: Functionally graded materials (FGM); Laser cladding (LC); Chemical composition; 
Titanium aluminide (Ti-Al). 

1. INTRODUCTION:

Engineering components fabricated from functionally graded materials (FGM) are 
characterised with differing microstructural, mechanical and physical properties due to gradual 
alteration in chemical composition over its entire volume with a view to achieving superior service 
performance [1, 2]. FGMs ensure that its constituent dissimilar materials compensate for each 
other’s demerits so as to manufacture a product with improved service performance relative to 
each of the parent materials when fabricated singly. Due to these reasons, FGMs are becoming 
increasingly popular in aerospace, nuclear, electronics, medical and chemical industries as seen in 
Nazarov and co-investigators [3] who demonstrated the potential of selective laser melting (SLM) 
fabricated functionally graded nickel aluminide (Ni-Al) system in manufacturing aviation 
components.   
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FGMs have been manufactured from Fe3Al and SS316L [4]; Ti-6Al-4V and SS316 
stainless [1]; nickel aluminide (Ni-Al) [3]; and titanium aluminide (Ti-Al) [5, 6] for various 
technological applications. Among various FGM systems, titanium aluminide (Ti-Al) are 
attracting increasing industrial and academic attention because of its superior elastic modulus, 
specific strength, creep strength and excellent temperature oxidation resistance [7, 8]. 
Nevertheless, Ti-Al structural parts are characterised with undesirable room temperature ductility, 
susceptibility to cracking and poor wear resistance [9-11]. Meanwhile, it has been established that 
controlled dispersion of reinforced particulates into FGM titanium aluminide matrix could enhance 
its wear resistance as well as associated microstructural and mechanical properties [9].  

Among the manufacturing routes engaged in fabricating FGMs and its composites are 
selective laser melting (SLM) [3]; laser cladding (LC) [8, 9]; friction stir processing [12]; laser 
metal deposition [1, 4, 6] and self-propagating high temperature synthesis [5]. Of all these 
manufacturing routes, laser-based manufacturing (LbM) techniques such as LC imparts minimal 
heat-affected zone (HAZ) and dilution, reduced residual stress and improved metallurgical 
bonding when engaged in extending the service life of engineering components. Therefore, this 
study employs LC combined with pre-heating in depositing Ti-Al reinforced particulate FGM 
composite on Ti-6Al-4V substrate. The use of pre-heating in eliminating crack-susceptibility of 
engineering parts had been demonstrated in LbM.  

Ti-6Al-4V is characterised with high strength and corrosion resistance, however, it’s 
technological application in the automotive, aerospace, and power-generation industries is 
hindered by its limited operating temperature (400 oC) and poor wear resistance [13, 14].  This 
challenge can be overcome by incorporating reinforced particles into the FGM Ti-Al matrix in an 
attempt to increase the range of service temperature at which parts made in Ti-6Al-4V can be 
utilised as well as improve its wear resistance. Meanwhile, a search through the databases reveals 
that only a single study [9] had dwelt on LC fabricated FGM reinforced particulate composites till 
date. The study by Abboud and co-investigators [9] only considered the effects of scan velocity, 
powder feed rates and number of layers on the geometrical characteristics, microstructural 
variation and wear properties of Ti-Al/TiB2 FGM composites. Findings from the study pointed 
out that the samples were porous and characterised with cracks. In order to establish a basis for 
manufacturing FGM parts for extending the high temperature service life and wear resistance of 
Ti-6Al-4V components in the automotive, aerospace, and power-generation industries, this study 
advances on the work of Abboud et al., (1994) by considering the effects of laser energy density 
(LED) on the consolidation mechanism, microstructural evolution, microhardness, phase analysis 
and chemical composition of Ti-Al/TiC FGM composites fabricated with LC process combined 
with pre-heating. LED indicates the combined influence of laser power (P), scanning velocity (V) 
and beam diameter (d) in order to understand the role of thermal transfer in the solidification 
mechanism and microstructural development of Ti-Al/TiC FGM composite coatings. 
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2. MATERIALS AND METHODOLOGY: 

2.1 Materials: 

This study employed commercially available elemental gas atomised aluminium (Al: 45-
90 µm), grade 1 titanium (Ti: 45-90 µm) and irregularly shaped titanium carbide (TiC: 45-90 µm) 
morphology. The purity of Ti, Al and TiC powders was 99.9%. The powders were supplied by 
TLS, Technik GmbH. The feed rate in g/min of each powder was determined via the flowability 
graphs. The component ratio of the FGM composite constituents was determined by using the ratio 
of the feed rate of the parent materials. Titanium aluminide (Ti-Al) system consisting of 50%wtTi-
50wt%Al was formulated initially and the morphologies of the blended powders and that of TiC 
are shown in Figures 1a and b respectively. Figures 1c and d show the EDS analysis identifying 
the elemental composition of the blended 50%wtTi-50wt%Al and TiC powders respectively.  Ti-
Al was then blended with TiC in varying proportion as shown in Table 1 which depicts the gradual 
variation of composition across the volume of the FGM.  

   

(a)  (b)  

(c)  (d)  
Figure 1: Scanning electron micrographs showing the surface morphologies of the powders used 
in this study (a) Titanium aluminide (Ti-Al); (b) Titanium carbide (TiC); and the EDS analysis 
confirming the elemental compositions of the powders (c) Titanium aluminide (Ti-Al); (d) 
Titanium carbide  (TiC); 
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Table 1: Composition of powder blends used in fabricating each layer of the FGM composite clads. 

No. of layer Composition of powder blends for each layer 
5 60% Ti-Al + 40wt% TiC 
4 70% Ti-Al + 30wt% TiC 
3 80% Ti-Al + 20wt% TiC 
2 90% Ti-Al + 10wt% TiC 
1 100% Ti-Al 
 

2.2 Methodology 

Prior to deposition of FGM composite materials, Ti-6Al-4V substrates with dimension 100 
mm x 100 mm x 5 mm were cleaned with acetone in an attempt to remove impurities from its 
surface and enhance the quality of the laser clad. Table 2 shows the process parameters used in 
depositing the FGM reinforced particulate composite in this study. These parameters were adopted 
on the basis of a prior study carried out by Tlotleng et al., [10] in which it was established that Ti-
Al parts with desirable mechanical properties can be fabricated within the range of selected 
parameters.  Laser energy density (LED) in J/mm2 is defined as shown in (i) 

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑃𝑃 𝑉𝑉 ∗ 𝑑𝑑�                                                               (𝑖𝑖) 

 Table 2: Process parameters used in depositing the FGM reinforced particulate composite. 

Laser power (kW) 1.25, 1.50, 1.75 
Scan speed (m/min) 1.50 
Spot diameter (mm) 4.00 
Energy density (J/mm2) 12.50, 15.00, 17.50 
Pre-heating temperature (oC) 400.00 
Standoff distance (mm) 12.00 
Shielding gas flow rate (l/min) 10.00 
Carrier gas flow rate (l/min) 2.00 

 

  The deposition of the FGM particulate reinforced composite in single track and multi-
layers was achieved via a 3kW IPG continuous fiber laser system.  In order to inject the FGM 
constituent materials into the melt pool on a substrate pre-heated at 400 oC, a 3-way coaxial nozzle 
system connected to a 5-axis CNC machine and a 1.5 bar GTV multi-hopper powder feed system 
was employed to serve this purpose. The powder feed system regulates the powder feed rate 
through its rotary speed. As reported earlier on, the flowability graphs of the powders were used 
in determining the component ratio of the FGM constituent materials as shown in Table 1.  The 
shielding and carrier gases used in the experimental work are both made of argon gas with the 
specified flow rates in Table 2. Samples produced in each parameter shown in Table 2 were 
replicated twice. Since the deposition is continuous at the middle of the tracks, cross-sections of 
the deposited FGM clad samples were obtained at the middle of the track for microstructural and 
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compositional characterisation. Thereafter, the sectioned FGM clads were ground and polished to 
a 0.04 µm (OP-S suspension) surface finish with a Struers TegraForce-5 auto/manual polisher. 
The samples were etched in Keller’s reagent for 2 to 3 minutes so that the microstructural 
characteristics were determined by Olympus optical microscope equipped with Analysis® 
software.  

A scanning electron microscope (SEM), Jeol JSM-7100F equipped with energy dispersive 
X-ray spectroscopy (EDS) was used to carry out the microstructural and elemental analysis of the 
FGM composites. The SEM-EDS facility equipped with a video camera for observing the sample 
stage as its height is controlled used the NSS software for analysis. The phase composition of the 
FGM composite clads was identified via X-ray diffraction (Model Bruker D8 Advance.) with a Cu 
Kα monochromator radiation source. Material PDF files were used in identifying the phases 
present in the FGM composite coatings. Microhardness values of the FGM composite coatings 
were determined by using a Matsuzawa Seiko Vickers microhardness tester model MHT-1. The 
indenting load used was 500 g with a dwell time of 10 seconds used for each indentation. 
Microhardness measurements were taken along the length of the coating at 100 µm spacing as well 
as the interface between the substrate and the FGM composite coating. The experimental findings 
reported in this study were the average values of the corresponding results of the two groups of 
experiments. 

3. RESULTS AND DISCUSSION: 

3.1 Analysis of optical micrographs of FGM composite clads 
 

Optical micrographs (OM) of the FGM composites revealing the developed 
microstructures at its lower, middle and upper sections (see Figures 2a-i) were examined with a 
view to understanding how variation in LED has altered the microstructure across its volume. 
Based on microstructural evidence obtained from Figure 2, irrespective of the amount of LED 
dissipated into the fabricating the FGM, the particle size of unmelted titanium carbide had 
diminished in varying degrees relative to the particle size of the starting powder which lies between 
45 to 90 µm (Figure 1b). This suggests that TiC particles melted and dissolved in the melt pool. 
Furthermore, independent of the amount of LED employed during LC processing, it is also noted 
that the sizes of unmelted TiC particles in the FGM composite samples tend grow increasingly as 
follows: top layer →  middle layer → bottom layer. This implies that increased consolidation 
occurred at the lower section in comparison to the top section of the FGM. In concurrence with 
Shishkovsky and co-investigators [6], the growth in the size of unmelted TiC particles as well as 
increased consolidation from the top layer to the lower layer of the FGM composite samples, 
irrespective of the LC process parameters, could be attributed to the phenomenon of directional 
solidification in which heat is dissipated away from the top layer to bottom layer. 
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(a)  (d)  (g)  

(b)   (e)   (h)   

(c)  (f)  (i)  
Figure 2: Optical micrographs of the FGM composite fabricated with 12.5 (a, b, c); 15.0 (d, e, 
f)  and 17.5 J/mm2 (g, h, i)  viewed at the  top layer(a, d, g);  middle layer (b, e, g)  and lower  
layer (c, f and i). 

 
 

Figures 2a-c, d-f, and g-i show the optical micrograph images of the FGM composite 
fabricated with 12.50, 15.00 and 17.50 J/mm2 respectively. These micrographs establish that the 
amount of TiC melting and dissolving in the melt pool varies as the LED dissipated during the LC 
processing of FGM samples.  It is also evident from the micrographs that the sizes of unmelted 
TiC particles reduce as follows: 12.50 J/mm2 →  15.00 J/mm2 → 17.50 J/mm2. The nature of 
microstructure evolving at the top, middle and bottom layers of FGM samples fabricated with LED 
of 17.5 J/mm2 is presented in Figures 2g, h and i respectively. The sample made with LED of 17.50 
J/mm2 is distinguished from those fabricated with 12.50 J/mm2 and 15.00 J/mm2 as its 
microstructure is characterised with unmelted TiC particles as well as fine dendrite and needlelike 
phases at all location across the volume of the FGM. In addition, dendrites are finest at the top 
layer in comparison to the middle and lower layers.  
 
3.2 Scanning electron micrographs and EDS analysis of FGM composite clads 

 
Scanning electron micrographs (SEM) of the FGM composite samples fabricated with LED 

of 12.50, 15.00 and 17.50 J/mm2 are shown in Figures 3a-c, d-f, and g-i respectively with a view 
to further highlighting on the distinguishing characteristics of each sample. It is evident from 
Figures 3a-c that that the microstructures of the FGM composite consists of grey-coloured 

Unmelted TiC 

Al matrix 

Fine Dendrites & 
needlelike phases 
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unmelted TiC particles (1), white-coloured ring region surrounding the unmelted TiC particle (2) 
and dark-coloured region (3). Comparative analysis of FGM composite samples fabricated with 
12.50 J/mm2 (Figure 3a-c) and 15.00 J/mm2 (3d-f) reveals that the thickness of white-coloured 
ring regions are larger in the latter than the former. The thickness of these white-coloured ring 
region is also noted to be increasing from top to lower layers of the FGM samples irrespective of 
the selected process parameters. Meanwhile, the width of regions 1 and 3 have reduced in samples 
fabricated with 15.00 J/mm2 (3d-f) relative to that of 12.50 J/mm2. 

 
 EDS analysis was carried with a view to gaining insight into the chemical composition of 

the regions 1, 2 and 3 formed in FGM samples fabricated with 12.50 J/mm2 and 15.0 J/mm2. EDS 
findings reported in Table 3 confirm that the grey-coloured region 1 is rich in titanium with trace 
quantity of carbon; the white-coloured ring region 2 consists of aluminium, carbon and titanium; 
while the dark coloured region 3 consists of aluminium and carbon with trace quantity of titanium. 
The formation of white-coloured ring region 2 indicates the occurrence of metallurgical reaction 
between aluminium, titanium and carbon while the existence of region 3 indicates there was 
diffusion of carbon to aluminium rich dark areas.   
 

(a)  (d)  (g)  

(b)  (e)  (h)  

(c)  (f)  (i)  
Figure 3: Scanning electron micrographs (SEM) of the FGM composite fabricated with 12.5 (a, 
b, c); 15.0 (d, e, f) and 17.5 J/mm2 (g, h, i) viewed at the top layer (a, d, g); middle layer (b, e, 
g) and lower layer (c, f and i). 
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Table 3: Typical chemical composition of FGM samples fabricated with LED of 12.0 J/mm2 and 
15.0 J/mm2. 

 C Al Ti 
1 0.87  99.13 
2 8.33 85.68 5.98 
3 5.17 94.19 0.64 

 
Analysis of Figures 3g-i reveal the evolution of distinct microstructural features for FGM 

composite samples fabricated with 17.5 J/mm2. For instance, three regions consisting of the core 
(A) surrounded by layers (B) and sandwiched between region C are shown in Figure 3h. The area 
marked X in Figure 3h is a representative area consisting of A, B and C which is observed at higher 
magnification (Figure 4). Figure 4 reveals that the core region 1 is surrounded by layers 2, 3 and 
4 with the layers sandwiched in lighter grey region 5. The EDS analysis of the regions is shown in 
Table 4.  

 
Figure 4: SEM observation of regions A, B and C at higher magnification 

 

Table 4: Typical chemical composition of regions A, B and C. 

 C Al Ti 
1 0.80  99.20 
2 0.92 0.97 98.11 
3 1.74 11.65 86.60 
4 2.12 20.88 77.00 
5 2.60 37.56 59.84 
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(a) 

 
(b) 

 
(c) 

 
Figure 5:  EDS point test data for the composition curves of FGM composite fabricated 
with (a) 12.50 J/mm2 (b) 15.00 J/mm2 and (c) 17.50 J/mm2 
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Analysis of Figure 4 and Table 4 confirm that an in-situ reaction synthesis occurred between Ti-
Al and TiC powders when LED of 17.5 J/mm2 was dissipated for processing as isolated titanium 
rich (1) and aluminium rich (3) regions which are associated with FGM composites fabricated with 
lower LED (Figures 3a-c; d-f) have depleted in size (Figures 3g-i). This occurred as aluminium 
and carbon atoms diffused inward into the titanium core.  

Figures 5a, b and c depict the EDS point test data for the composition curves of FGM 
composite fabricated with 12.50, 15.00 and 17.50 J/mm2 respectively. An observation of Figure 5 
shows that the EDS of all FGM composite clads possess the following features in common: 
immediate lift and dip, as well as up and down stagger irrespective of the laser energy density 
employed during fabrication. Meanwhile, intersection is only evident across the length of the 
sample fabricated with 12.50 J/mm2 (Figure 5a) and at the top layer of the FGM composite clad 
deposited with 15.00 J/mm2 (Figure 5b).  The occurrence of these features on the compositional 
curves suggests the trends in the elemental concentration across the volume of the FGM composite. 
It is evident from Figures 5a, b and c that at instances when titanium diffuses faster, both 
aluminium and carbon tend to diffuse very slowly and vice-versa. At 12.50 J/mm2, it is established 
that Ti atoms diffuse slower than aluminium and carbon atoms (Figure 5a).  As the LED increases 
to 15.00 J/mm2 and 17.50 J/mm2, titanium atoms diffuse faster than aluminium and carbon atoms 
(Figures 5b and c). With LED set at 12.50 J/mm2, the concentration of diffused aluminium atoms 
are above the expected values of 50wt%, 45wt%, 40wt%, 35wt% and 30wt% for each of the 1st, 
2nd, 3rd, 4th and 5th layers respectively whereas the concentration of dissolved titanium atoms across 
at all the layers are below the expected values. This could be attributed to the fact that the dissipated 
LED is only effective at melting much of aluminium atoms to the detriment of titanium atoms. 
Meanwhile, at LED of 15.00 J/mm2 and 17.50 J/mm2, the concentration of aluminium atoms are 
much well below the expected values across the layers while those of titanium are well above the 
expected concentration values across the layers. It is pertinent to note that the concentration of 
dissolved titanium atoms across the layers of the FGM composite clad fabricated with 17.50 J/mm2 
are higher than those of 15.00 J/mm2 while the converse is true for aluminium. The concentration 
of diffused carbon atoms across layers is constant at values varying between 3.00 to 4.00 wt% for 
samples fabricated with 15.00 J/mm2 and 17.50 J/mm2. The concentration of diffused carbon atoms 
across FGM layers at 15.00 J/mm2 and 17.50 J/mm2 is lower than that of 12.50 J/mm2. Reduced 
concentration of aluminium below the expected values across the layers at 15.00 J/mm2 and 17.50 
J/mm2 indicate that aluminium atoms might have evaporated as   the specified LED might have 
induced processing temperature higher than the melting point of aluminium. Increased 
concentration of titanium atoms for samples deposited with 15.00 J/mm2 and 17.50 J/mm2 suggests 
increasing trend in the formation of intermetallic compounds between Ti, Al and C atoms. 
Meanwhile, it is anticipated that the phase composition of intermetallic compounds forming from 
metallurgical reactions between Ti, Al and C atoms will increase in the following order:  12.50 
J/mm2 → P 15.00 J/mm2 → 17.50 J/mm2. 
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3.3 XRD analysis of FGM composite clads 
 

XRD analysis (Figure 6 and Table 5) of the samples confirms the formation of Ti2AlC 
(titanium aluminide carbide) in the FGM composites in addition to 𝛾𝛾 and 𝛼𝛼2 matrix phases while 
some TiC phases are still retained within the microstructure. The relative intensity of diffractive 
peaks (Figure 6) for 𝛼𝛼2 in the FGM composite clads is significantly enhanced as LED increases. 
This emphasizes that increase in the volume fraction of 𝛼𝛼2 matrix occurs as LED increases. 
Findings reported for Figures 3 and 5 as well as Tables 3 and 4 support this claim that the 
propensity of metallurgical reactions involving Ti and Al tends to increase as LED increases. 
According to Liu & DuPont [15], for a melt pool containing > 2 at. pct. carbon at processing 
temperatures > 2200 oC, primary TiC1-x solidifies initially. Thereafter, a peritectic reaction in 
which Ti𝐶𝐶1−𝑥𝑥 + L →  𝑇𝑇𝑇𝑇2AlC occurs as the melt pool cools down to 2200 oC. Further cooling of 
the melt pool below 2200 oC leads to the precipitation of the ternary 𝑇𝑇𝑇𝑇2AlC because of depletion 
of carbon content in the liquid composition. Later, a different peritectic reaction in which L + 
𝑇𝑇𝑇𝑇2AlC → 𝛽𝛽-Ti(Al) occurs. Liu & DuPont [15] also reported that the reaction L + 𝛽𝛽 →  𝛼𝛼 
+ 𝑇𝑇𝑇𝑇2AlC could occur at the final stage of LC processing. Given the available information from 
the work of Liu & DuPont [15], the phase transformation scheme for the FGM composite clads is 
elucidated as follows:  

L → TiC + L → TiC + 𝑇𝑇𝑇𝑇2AlC + L → TiC + 𝑇𝑇𝑇𝑇2AlC + β + L → TiC + 𝑇𝑇𝑇𝑇2AlC + 𝛼𝛼 → TiC + 𝑇𝑇𝑇𝑇2AlC 
+ 𝛾𝛾 (TiAl) + 𝛼𝛼2(𝑇𝑇𝑇𝑇3Al). 

In agreement with Pedrix and co-investigators [16], increment in volume fraction of 𝛼𝛼2 in 
the FGM composite clads with increased LED as seen in the XRD analysis suggests that increased 
carbon in solid solution as LED increases leads to enhancement in the stability of elevated 
temperature 𝛼𝛼  phase. Furthermore, the Ti-Al-C phase diagram also confirms that the solubility of 
carbon in the 𝛼𝛼2 phase is higher relative to that of 𝛾𝛾 phase [15]. Increased metallurgical reaction 
between Ti, Al and C at the highest LED adopted in this study (see Table 2) suggests that increased 
laser power enhances available heat being dissipated to the powder blends. Consequently, this 
raises the temperature of the melt pool as well as the propensity of the laser-material interaction to 
form an intermetallic compound as increasing amount of TiC dissolved into the melt pool. The 
precipitation of primary TiC from the melt upon solidification in all the samples could be attributed 
to the fact that the carbon content in the melt pool (Tables 3 and 4) is higher than 2 at. pct. 
irrespective of the LED adopted in fabricating the FGM composite clads. Although, the dissolved 
carbon content in the melt pool varies depending on the LED adopted for processing.  
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Figure 6: XRD analysis of FGM composite clad samples fabricated with LED of 12.50, 15.00 
and 17.50 J/mm2. 

 

Table 5: XRD analysis showing the phases presented in FGM composite samples fabricated with 
varying LED. 

Phase 2 Theta Angles Phase Composition 
12.50 J/mm2 15.00 

J/mm2 
17.50 
J/mm2 

A: 𝛾𝛾-TiAl 21.92,38.95,44.73,78.57 √ √ √ 
B: 𝛼𝛼2-Ti3Al 35.65, 40.90,53.81 64.64, 77.96 √ √ √ 
C: TiC 35.65, 40.90, 53.81, 76.92 √ √ √ 
D: Ti2AlC 40.91,53.91 √ √ √ 
E: Ti 35.75,36,06,40,50,53,60,55,46,71,25   √ 

 

 Each of the FGM composite clads fabricated in this study consists of different five layers 
regarding the composition and structure of each layer. Therefore, the composition and 
microstructure of each layer is a function of the composition of the powder blends as well as the 
LED. The dilution resulting from the melting of one layer upon the other as well as its solidification 
phenomenon is manipulated by the LED. It is expected that a minimum dilution between the first 
layer and the substrate is attained by selecting the appropriate LED parameter to impart the 
desirable composition. Further studies will explore the alteration in the composition across the five 
layers of the FGM composite clads with reference to the Ti-Al-C ternary system. 
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3.4 Microhardness of FGM composite clads 

 Figure 7 shows the microhardness (𝐻𝐻𝐻𝐻0.5) across the layers of FGM composite clad 
samples at varying LED from the top surface of the deposits to the substrate. It is clear from Figure 
7a that the microhardness across the layers was constant (~ 100 HV0.5) and significantly less than 
that of the substrate. This outcome is not surprising as the applied LED of 12.50 J/mm2 is not 
effective to initiate metallurgical reactions between Ti, Al and C to ensure formation of 
intermetallics which could have imparted higher microhardness across the FGM layers. A marginal 
increase in microhardness across the FGM layers is noted for samples deposited with LED of 15.00 
J/mm2 relative to that of 12.50 J/mm2. The microhardness across the layers is however less than 
that of the substrate. In similarity to that of the sample deposited with 12.50 J/mm2, there is no 
difference in the microhardness across the second to fifth layers except in the first layer in which 
the microhardness is ~ 200 HV0.5. This indicates that the adopted process parameter is just 
sufficient to initiate gradient composition in the first layer alone. With LED increasing to 17.50 
J/mm2, the microhardness profile (Figure 7c) obtained across the FGM composite clad layers is 
like that reported for two-layer functionally gradient Ti-Al/TiB2 composite [9]. Except for the first 
layer, the microhardness across the last four layers is either equal to or higher than that of the 
substrate (Figure 7c). The impartation of microhardness values higher than that of the substrate at 
the last four layers of this sample points to (i) the Ti-Al matrix alloying with aluminium as well as 
the partial melting of TiC which results in the precipitation of primary TiC crystals; and (ii) 
refinement of the microstructure at these layers upon the occurrence of the phenomenon of rapid 
solidification. Meanwhile, reduced microhardness reported for the sample at the first layer and the 
interface could be attributed to the undesirable influence of the directional solidification in which 
excessive heat being transferred from the top layers to the first layers and the interface might have 
induced microstructural defects at the first layer and the interface.  

Evidence from microstructural/microhardness studies, chemical composition and phase 
analysis of the samples indicates that reaction synthesis will not take place between Ti and Al 
when LED is less than 17.50 J/mm2. Therefore, the formation of intermetallic compounds (e.g. 
Ti2AlC, 𝛾𝛾 and 𝛼𝛼2 matrix phases) results from thermo-positive reactions between Ti-Al. Prior to 
the commencement of the reaction synthesis via LC processing, the powder blends were heated 
near or thereabout the melting of aluminium. Consequently, molten aluminium reacts with Ti 
particles via a thermo-positive reaction which produces a range of products including the 
following: 3Ti + Al → Ti3Al;  Ti + Al → TiAl. As a result, the temperature of the whole system is 
deemed to rise abruptly and this induces a chain of reaction in the entire system. With increasing 
LED raising the temperature of the system to the melting point of Ti or above, this initiates a 
violently thermo-positive  reaction which produces molten Ti2AlC (titanium aluminide carbide).  
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(a)  

(b)  

(c)  
Figure 7: Microhardness (𝐻𝐻𝐻𝐻0.5) across the layers of FGM composite clad samples at varying 
LED from the top surface of the deposits to the substrate (a) 12.50 J/mm2., (b) 15.00 J/mm2. and 
(c) 17.50 J/mm2. 
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4. Conclusions: 

1. Based on microstructural evidence obtained from this study, the particle size of unmelted 
titanium carbide diminished in varying degrees, depending on the applied LED, relative to the 
particle size of the starting powder which lies between 45 to 90 µm. This suggests that TiC particles 
melted and dissolved in the melt pool. 

2. During the LC processing of the FGM composite clads, it was discovered that when titanium 
diffuses faster, both aluminium and carbon tend to diffuse very slowly and vice-versa. Moreover, 
titanium diffuses faster than both aluminium and carbon at higher LED.  

3. When the LED was set at 12.50 J/mm2 and 15.00 J/mm2, the induced processing temperature 
associated with the synthesis reaction of the powder blends was just adequate to affect the melting 
of aluminium. 

4. FGM composite clads were fabricated from Ti-Al blended with TiC when LED was set at 17.50 
J/mm2. At the selected LED, a thermo-positive reaction between the constituents’ materials was 
induced and it resulted in the formation of intermetallic compounds (e.g. Ti2AlC, 𝛾𝛾 and 𝛼𝛼2 matrix 
phases). 

5. The impartation of microhardness values higher than that of the substrate for the FGM composite 
clad fabricated with 17.50 J/mm2 could be attributed to (i) the Ti-Al matrix alloying with 
aluminium as well as the partial melting of TiC which results in the precipitation of primary TiC 
crystals; and (ii) refinement of the microstructure at these layers upon the occurrence of the 
phenomenon of rapid solidification. 

6. The composition and microstructure of each layer of the FGM composite is not only a function 
of the composition of the powder blends but also that of the LED. 
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