Solar PV Indoor and Outdoor Testing

CSIR Energy Centre Solar PV and EAC Lawrence Pratt

9 October 2018

our future through science

Confidential

Outline

- 1. CSIR facilities indoor and outdoor
- 2. Results from outdoor testing
- 3. Results from indoor testing
- 4. Quality versus Reliability
- 5. Reliability Testing
- 6. Summary

Types of Research and Testing Services

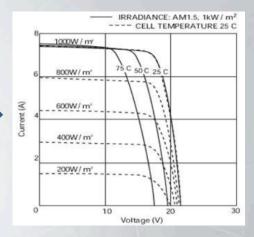
1. Outdoor PV modules and systems

 Long-term performance monitoring, model validation, power quality analysis, yield studies, failure analysis, loss characterization, etc.

2. Indoor quality for PV modules

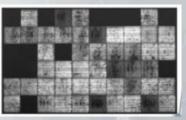
– PV module power measurements, energy rating, temperature coefficients, multi-irradiance measurements, electro-luminescence imaging, high voltage safety testing, etc.

3. Indoor reliability for PV modules

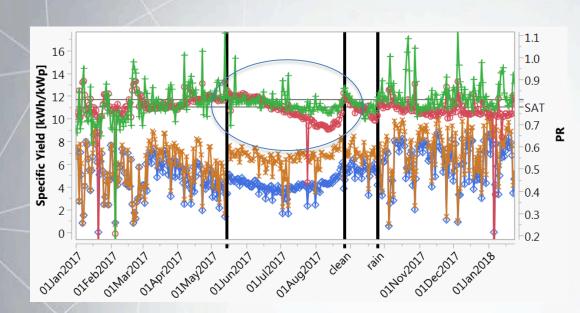

 Accelerated stress testing, thermal cycling, humidity freeze, damp heat, potential induced degradation, and mechanical load

Testing Facilities – Indoor and Outdoor

Sun simulator with temperature chamber


IV Curves

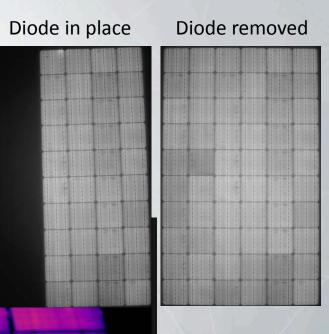
Outdoor Testing

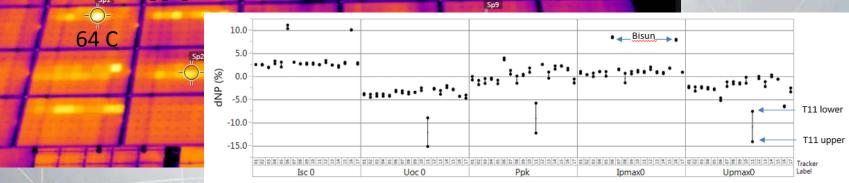

Mechanical Load

Potential Induced Degradation

Soiling losses: Single Axis versus Dual Axis

14 May through 02 Sept 2017

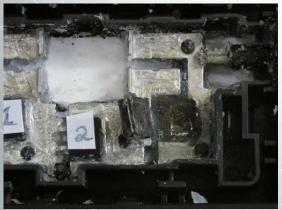

Systen	Soiling Loss [%]	Soiling Rate [%/week]	PR
SAT	20	1.5	0.77
DAT	5	0.5	0.80

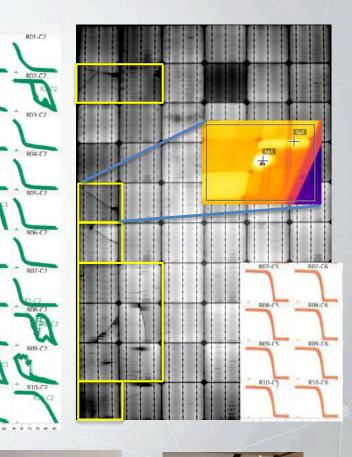

- In 2017, the soiling loss was 4x greater on the single axis tracker during the 3 winter months without rainfall
- We speculate that this is due to the height of the dual axis tracker and the orientation of the dual axis tracker in the dry, winter months
- The specific yield of the dual axis tracker was 50% higher during the winter months compared to the single axis tracker (4.1 vs. 6.5 kWh/kWp)

Hotspot testing: Failed Bypass Diodes

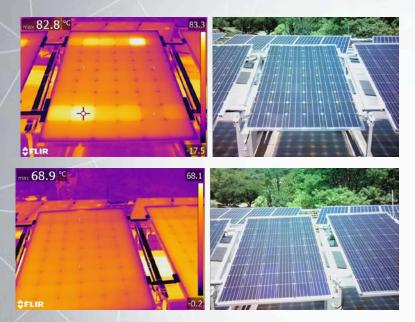
- Module substrings with hotspots August 2017
 - 11 on upper string, 5 on lower string
- IV curves correlate voltage loss to number of failed substrings
- Determined bypass diode failed in short-circuit on a sample of two modules
- We suspect damage due to lightning

33

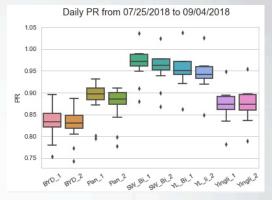


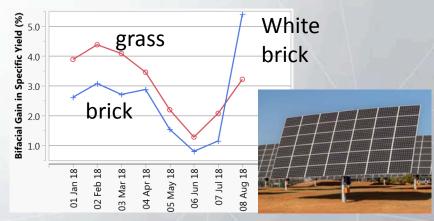

Hotspot testing: Failed Bypass Diode

R01-C1


R07-C1

- 1. Shaded IV curves from Tracker 11 module removed July '18
- 2. Cracks on R02-C1, R05-C1, R06-C1, R08-C1, R08-C2
- 3. No crackes observed the in substrings at the center and the right side
- 4. Areas marked yellow have burnt marks on the backsheet
- 5. 160 C backsheet temp when C1R5 was covered 75%
- 6. Bypass diode solder bond failed resulting in open circuit




Bifacial Modules: Performance Ratios

- 1. Frameless bifacial module showed hotspots in front of mounting rails
- 2. Framed bifacials did not show hotspots
- 3. These hotspots vanished later in the day
- 4. We speculate that spacing between rail and backside and the albedo is causing non-uniform irradiance on the back side

- 1. DC PR for bifacials: .94 to .97
- 2. DC PR for monofacials: .83 to .90

- 1. Bifacial gains on a dual axis tracker
- 2. White paint on bricks increased the gain

Indoor: Quality Testing

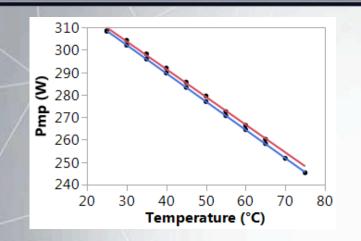


Fig 1. Temperature Coefficients

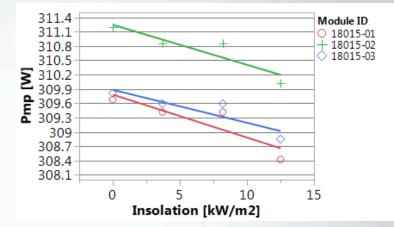


Fig 2. Light induced degradation (LID)

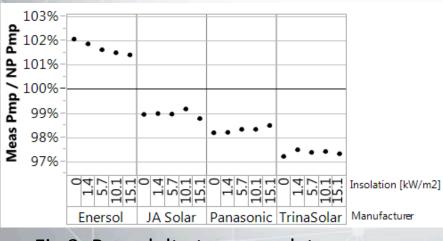
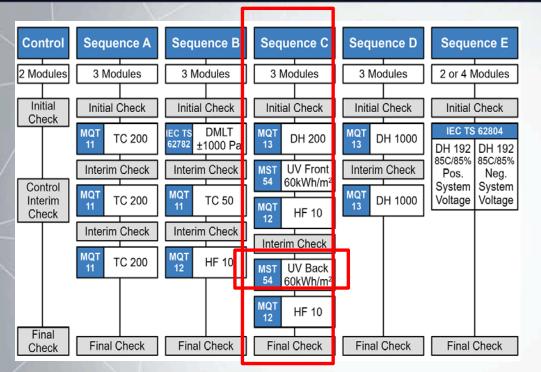



Fig 3. Pmp delta to nameplate

18000-17				00-17		
		38 cracked				
	1				1	
	1					1
	1			1	1	
		1	1	1	1	1
	1	1		1	1	1
	1	1		1	1	1
	1			1	1	1
	1	1			1	1
		1			1	1
		1			1	1
					1	1

Fig 4. EL and Crack Map

Indoor: C450 Extended Reliability Program

Figure 5. EXP C450 test protocol

Source: C450 PV module testing protocol for quality assurance programs, 2018

- C450 is an international standard protocol for PV module reliability testing
- 2. C450 is based on IEC standards
- 3. C450 development committee included representatives from the commercial, research, and testing segments of the PV industry
- C450 is comparative in nature, providing science based data on the relative performance of PV modules in the market place
- 5. Results are used to manage PV module supplier quality
- Module manufacturer is motivated to supply the best modules, not the worst of the lot

Cost of Quality versus Reliability

Description	Quality	Reliability	
Project size [MW]	1	10	
Average module power [W]	300	300	
Number of modules in the project [N]	3 333	33 333	
Number of modules in the RANDOM sample [n]	100	20	
Sampling rate n/N [%]	3.0	0.06	
Cost of modules in the project [R]	3 200 000	32 000 000	
Price for IV, EL, Wet Leakage, and Dry Hipot [R]	460 000	included	
Price for C450 reliability test service [R]		1 000 000	
Quality testing as percentage of module cost [%]	14.4	3.1	
Duration of testing [weeks]	2	16	

Note: indicitive pricing only

Quality

Reliability

- 1. Quality assurance testing is focused on validating nameplate performance out of the box
- 2. Reliability is quality over time / stress
- 3. Reliability is focused on reducing risk of failure over the lifetime of the project
- 4. Reliability testing entails longer test periods on few modules
- 5. Reliability testing makes sense on larger projects when the risks justify the costs
- 6. IRENA reports claims a 2-3% gain in plant performance when quality assurance testing is announced
- 7. Estimates based on indicative pricing

Source: IRENA 2017 BOOSTING SOLAR PV MARKETS: THE ROLE OF QUALITY INFRASTRUCTURE

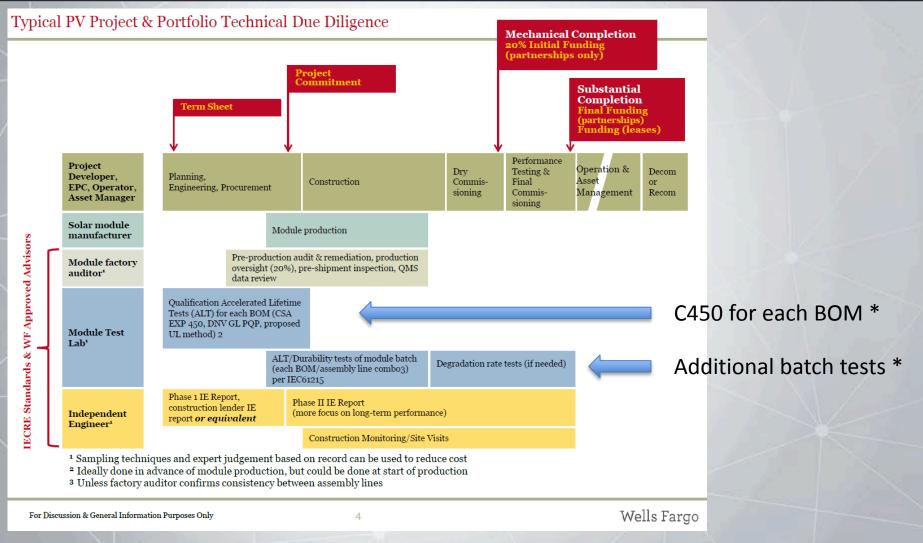

Indoor: Quality Testing Cost/Benefit

Table 1.2. Cost/benefit analyses of implementing specific quality infrastructure services

Quality infrastructure service Cost Benefi	it
Development: Solar resource and yield uncertainty	
Energy Production Assessment (EPA) based on measured irradiance for at least one year 6% leads to an increase in 6% leads to an increase in Rewarded through improve	P90 values by 3%.
Preconstruction: Prevention of low plant yields	0.82 @ 0.75% / yr
Batch acceptance testing for wholesale and utility projects The cost of a batch acceptance test (Typically USD 50000-55350 for a 20 megawatt (MW) plant) A reduction of the degradate 0.75% a year to 0.4~0.6% a financial model (Resulting in 1000000 of increased rev for a 20 MW plant)	a year in a project's n USD 450 000-
Construction: Performance testing	equates to R 20
Includes independent testing in engineering, procurement and construction contracts on photovoltaic systems performance	plant over 25 years plant over 25 years 4000-6000/MW a for a 20 MW plant)
Operation and maintenance	
Potential induced degradation (PID) reduction. Inspections to detect, classify and mitigate PID effectsCost of inspection and corrective actions (for a 6 MW plant in Western Europe: EUR 2 500-4000/MW) (USD 2767.5-4428/MW)Tackling PID reduces under 3-5%; however, recovery is the 6 MW plant, EUR 6 000 (USD 6642-11 070 MW/yea	not immediate (for -10 000/MW/year)

Source: IRENA 2017 BOOSTING SOLAR PV MARKETS: THE ROLE OF QUALITY INFRASTRUCTURE

Indoor: Reliability Testing by Wells Fargo

Source: The Value of Durable Materials in Maximizing Your Investment in Solar Energy, * added by CSIR

Summary

- 1. The CSIR is developing state of the art research and testing facility to support the South African solar PV industry
- 2. Soiling losses on the CSIR single axis tracker reached 20% after three months of no rain during the winter season of 2017
- 3. Quality and reliability testing should be included in large PV plant planning and construction, depending on the size
- 4. Quality and reliability testing can reap real cost savings and improved LCOE over the lifetime of a plant
- 5. Reliability matters!

Thank you

our future through science

Confidential