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Summary

Articulated Heavy Goods Vehicles (HGVs) are more efficient than conventional rigid lorries,
but exhibit reduced low-speed manoeuvrability and high-speed stability. Technologies such
as autonomous reversing and path-following trailer steering can mitigate this, but practical
limitations of the available sensing technologies restrict their commercialisation potential.
This dissertation describes the development of practical vision-based articulation angle and
trailer off-tracking sensing for HGVs.

Chapter 1 provides a background and literature review, covering important vehicle
technologies, existing commercial and experimental sensors for articulation angle and off-
tracking measurement, and relevant vision-based technologies. This is followed by an
introduction to pertinent computer vision theory and terminology in Chapter 2.

Chapter 3 describes the development and simulation-based assessment of an articulation
angle sensing concept. It utilises a rear-facing camera mounted behind the truck or tractor,
and one of two proposed image processing methods: template-matching and Parallel Tracking
and Mapping (PTAM). The PTAM-based method was shown to be the more accurate and
versatile method in full-scale vehicle tests. RMS measurement errors of 0.4–1.6◦ were
observed in tests on a tractor semi-trailer (Chapter 4), and 0.8–2.4◦ in tests on a Nordic
combination with two articulation points (Chapter 5). The system requires no truck-trailer
communication links or artificial markers, and is compatible with multiple trailer shapes, but
was found to have increasing errors at higher articulation angles.

Chapter 6 describes the development and simulation-based assessment of a trailer off-
tracking sensing concept, which utilises a trailer-mounted stereo camera pair and visual
odometry. The concept was evaluated in full-scale tests on a tractor semi-trailer combination
in which camera location and stereo baseline were varied, presented in Chapter 7. RMS
measurement errors of 0.11–0.13 m were obtained in some tests, but a sensitivity to camera
alignment was discovered in others which negatively affected results. A very stiff stereo
camera mount with a sub-0.5 m baseline is suggested for future experiments.

A summary of the main conclusions, a review of the objectives, and recommendations
for future work are given in Chapter 8. Recommendations include further refinement of both
sensors, an investigation into lighting sensitivity, and alternative applications of the sensors.
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Chapter 1

Introduction and literature review

1.1 Background and motivation

Heavy Goods Vehicles, or HGVs, play a vital role in sustaining and growing modern
economies [6]. In the UK in 2014, inland freight transport amounted to 185 billion tonne
kilometres, and of this 74% was transported by road on HGVs [7]. This freight movement
serves all aspects of society, with 23% of 2015 HGV traffic transporting food products,
followed by ‘metal, mineral and chemical products’ (18%) and ‘products of agriculture,
forestry, raw materials’ (18%) [7]. Other important commodities transported by HGVs
include machinery and equipment, consumer goods, waste and mail.

The growth of freight transport demand on limited infrastructure, coupled with ambitious
CO2 emission reduction targets, has driven technology and policy development to investigate
and implement measures to improve the efficiency of road freight transport. The latest
developments in engine technology yield vehicle CO2 reductions in the region of 1–2%
[8], at increasing costs and diminishing returns as internal combustion engine technology
saturates. Low rolling-resistance tyres and improved aerodynamics are relatively low cost
measures with few barriers to adoption, offering reductions of 1–5% and 6–9% respectively
for long haul applications [9].

Alternative fuel technology such as methane can reduce long haul CO2 emissions by
0–12%, but presents significant barriers in terms of fuelling infrastructure and associated
cost [9]. Hybrid-electric engine technology offers long haul reductions of 4–10% and does
not require any additional infrastructure, but can significantly increase vehicle cost [8].

Full electric powertrains reduce ‘tank-to-wheel’ carbon emissions to zero, but their
realistic ‘well-to-wheel’ emissions are directly linked with the carbon generated by the power
grid. At present, full electric vehicles present an emissions reduction of approximately
40% relative to conventional diesel vehicles [8], but this figure will improve with further
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decarbonisation of the power grid. However, full electric powertrains are currently limited
to vehicles up to 12 tonnes gross mass and so are not suited to long haul applications, and
introduce significant barriers at present in terms of supporting infrastructure and costs [8].

In comparison, it is possible to reduce vehicle emissions by 11–19% [10] (and higher
in certain cases [11]) with relatively minor barriers to introduction by permitting the use of
longer and/or heavier truck combinations, carrying more freight with fewer vehicles. These
vehicles are often referred to as ‘High Capacity Vehicles’, or HCVs. This solution can utilise
existing trucks and trailers, requires no additional infrastructure, and reduces the number of
HGVs on the roads. Furthermore, these vehicles are as safe and often safer than conventional
HGVs when operated within a suitable regulatory framework [11]. The effectiveness and
safety of such vehicles has been proved in implementations and trials in a number of countries
[12].

The barriers for incorporating the use of HCVs on arterial roads and motorways (‘primary
routes’) are mostly political, social, and regulatory. Successful trials and implementation of
HCVs in Australia, New Zealand, Canada, South Africa, and parts of Europe [13–17] have
demonstrated that these barriers can be successfully overcome, and that HCVs are a feasible
and effective solution.

Provided HCVs undergo an informed design process ensuring inherent dynamic safety,
and are operated within a suitable regulatory framework ensuring best practice in terms of
loading, driver training, and maintenance, their adoption on primary routes requires little
in the way of technological intervention. However, the net emissions reduction benefit of
HCVs is clearly a function of uptake. Improving the accessibility of HCVs to secondary road
networks would enable them to serve a wider spectrum of transport tasks, thereby increasing
uptake relative to conventional HGVs. Technological interventions can help to facilitate this.

In some cases technological intervention would be mandatory in order to meet country-
specific legislation. In the UK for example, all HGVs must meet the turning circle requirement
[18], which limits the level of ‘cut-in’ as a vehicle navigates a standardised roundabout
manoeuvre. Long HCVs have inherently reduced manoeuvrability and are unlikely to meet
this requirement without trailer steering technology.

Manoeuvrability is a particular limitation for long HGVs or HCVs with two or more
articulation points. These will tend to exhibit large cut-in behaviour when turning, and
are inherently unstable in reverse [19]. Although a professional driver can reverse singly-
articulated vehicles (into a loading bay for example), reversing combinations with two or
more articulation points is nearly impossible without technological intervention.

Technologies such as active trailer steering [20–22] and autonomous reversing [23]
have been shown to improve the manoeuvrability and hence road network access of HCVs.
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Similarly, technologies such as combined braking and steering control [24] and anti-jackknife
control [25] help to improve the high-speed safety of HCVs, improving their motorway
performance in a number of conditions. Many of these technologies have been developed
within the Cambridge Vehicle Dynamics Consortium (CVDC).

Commercialisation and wide-spread uptake of these technologies requires robustness and
financial feasibility in order to be attractive to fleet operators and original equipment manu-
facturers (OEMs). Enforcing their adoption through regulation is possible, but legislators
are wary of the economic effects on an industry which already operates with very low profit
margins [26].

A notable challenge preventing the widespread uptake of such technologies is the require-
ment for additional vehicle sensors and instrumentation. Specialised sensing equipment is
fundamental to most active vehicle control technologies (see for example [20, 27, 28]), and
high levels of accuracy and robustness are usually required. The cost and practicality of
sensors is equally important.

Autonomous reversing, jackknife control, combined braking and steering control, and
trailer steering are important technologies in the effort to enable the use of HCVs in more
countries, and on wider subsets of the road network. Two sensing requirements have been
identified as particular barriers to the commercial adoption of these technologies: articulation
angle sensing and trailer off-tracking estimation.

Articulation angle sensing refers to the measurement of the yaw angle between a truck and
trailer, or between subsequent trailers, and is a core requirement for autonomous reversing,
jackknife prevention, and combined braking and steering control technologies [29–31].
Assuming conventional trailers, it is necessary for articulation angle sensing systems to be
based on the tractor unit, where control processing and actuation signals originate. Currently
however, these technologies rely on either trailer-based articulation angle sensors with non-
standard or experimental communication links1, or estimation techniques which require
knowledge of the trailer states and other non-standard sensors.

Trailer off-tracking refers to the lateral deviation of the rear of a trailer from the path
followed by the tractor unit. This can either originate from the familiar ‘cut-in’ behaviour a
trailer exhibits as an articulated vehicle navigates a turn, or when an articulated vehicle is
travelling on a low friction surface with cross-slope. Off-tracking estimation is fundamental
to the ‘path-following’ trailer steering technology developed within the CVDC [32, 20].
Trailer-steering is a trailer-based control technology, but off-tracking is currently determined

1Conventional trailers have limited communication links between the truck/tractor and trailer. Currently the
ABS or EBS CANbus link for braking signals is the only standard data communication link between the two.
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through a combination of tractor and trailer sensors and knowledge of geometric properties
including those of the tractor. It also assumes high levels of friction at all wheels.

There is an important distinction to make at this point, regarding tractor- and trailer-
based control technologies, and their ideal sensing requirements. The distinction is partly
due to the inherent nature of the HGV industry. Throughout the world, tractor and trailer
units are designed to be interchangeable so that any tractor can pull any trailer. This gives
maximum flexibility in logistics operations. Furthermore, truck manufacturers produce
trucks and develop truck-based technology, while trailer manufacturers produce trailers and
develop trailer-based technology. Because of the interchangeability requirement, tractor-
based technologies should require no knowledge of or modifications to a trailer, and vice
versa.

If a tractor-based technology such as autonomous reversing requires the fitment of
specialised sensors or modifications to a trailer, it is limited to function only with that trailer.
In practice, one tractor unit may be used for various freight tasks, and coupled to a variety
of trailers. Trucks and trailers may also be coupled and decoupled multiple times within a
single day or transport task, and this is especially true in the context of the European Modular
System (EMS) (more on this later). Therefore, all trailers which could be used with that
tractor would need to be fitted with the sensors, or modified in some other way, adding cost
and burden to the operator. These burdens on the operator form a barrier to the adoption of
the technology, and hence the adoption of HCVs in general.

A substantial improvement in the commercial feasibility of these technologies would
be achieved if all sensing could be conducted remotely on the same vehicle unit (i.e. trac-
tor/trailer) as the controller and actuation, without the need for modifications to or pre-existing
knowledge of the other vehicle unit. Furthermore, this would permit these technologies to be
completely developed, optimised, and pre-fitted by the respective OEM, mitigating the risk
of incorrect fitment of sensors or modifications to the other vehicle unit which would impact
performance.

The ideal scenario of purely tractor-based control for autonomous reversing is illustrated
in Figure 1.1a. In this case the controller is tractor-based, as is actuation via the steered
wheels, and so ideally sensing should also be tractor-based. Similarly for jackknife control
(Figure 1.1b), actuation is in the form of either steer input, trailer brake actuation, or hitch
locking/damping, and so the system can be entirely tractor-based. Trailer brake actuation
signals can be sent over standard EBS2 CANbus3 links between tractor and trailer, mandatory
on all articulated HGVs in Europe.

2Electronic Braking System
3Controller Area Network (data bus standard for vehicles)

4



1.1 Background and motivation

The ideal scenario for combined braking and steering control is shown in Figure 1.1c.
Again actuation includes the trailer brakes but actuation signals can be sent over standard
CANbus connections4. Ideal trailer-based trailer steering control with trailer-based off-
tracking estimation is shown in Figure 1.1d.

The tasks of articulation angle and trailer off-tracking measurement are fundamentally
‘pose estimation’ and ‘ego-motion’ estimation problems. Pose estimation pertains to de-
termining the position and orientation of a body (i.e. the trailer angle) from an external
reference (the truck/tractor). Ego-motion estimation is the problem of determining a body’s
motion (i.e. trailer off-tracking) from the reference of the observer (the trailer).

In summary, in order to facilitate the wider uptake of HCVs, there is a need to address the
barriers to their implementation. One of the important barriers is the commercial feasibility
of enabling technologies such as autonomous reversing and path-following trailer steering.
Two particular sensing requirements have been identified as barriers to the adoption of these
technologies, and this research sets out to investigate potential solutions to these needs. These
can be summarised as the need for:

1. tractor-based articulation angle sensing, and

2. trailer-based, trailer off-tracking estimation5.

These sensing systems should not require modifications to the other vehicle unit (tractor
or trailer), should be low cost and practical, should be sufficiently accurate for control
effectiveness, and should be robust to the heavy duty operating environment of HGVs. Non-
contact sensors would be preferable to contact sensors to ensure durability under the heavy
loads and industrial operating environments of HGVs.

The following section provides a more detailed introduction to HGVs and associated
terminology, followed by a section on HCVs and their use in various countries. Thereafter,
a review of pertinent ‘enabling technologies’ for HCVs is given, highlighting current lim-
itations. A review of existing commercial and experimental sensors for articulation angle
and off-tracking estimation is then given. Lastly, various pose and ego-motion estimation
methods are discussed, with a focus on current vehicle technologies and vision-based sensing.

4Although combined steering and braking control as presented by Morrison [24] requires currently non-
standard brake valves, it is fair to assume that the next generation of braking technology will incorporate such
fast-acting valves as standard, given their significant impact on braking and steering performance.

5Trailer off-tracking measurement from the tractor is theoretically possible, given tractor side-slip and
articulation angle measurements. However, trailer-steering actuation remains trailer-based, and so actuation
signals would need to be sent from tractor to trailer. This is not possible with current standard tractor-trailer
communication links. It is possible that additional communication links may be introduced in the future,
necessitated by significant developments in advanced full-vehicle control systems. However, the time scale of
these developments was assumed to be beyond that of the current work.
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1.2 Heavy Goods Vehicles

The definition of a Heavy Goods Vehicle (HGV) differs between countries, but usually refers
to road freight vehicles (i.e. trucks or lorries) above a certain Gross Combination Mass
(GCM). In the UK, vehicles and vehicle combinations above 3.5 tonnes are considered HGVs.
The permitted truck and trailer combinations, maximum GCM, and maximum length of
HGVs also varies between countries.

Generally speaking, an HGV consists of either a single rigid truck, supporting its own
payload, or a vehicle combination consisting of a prime mover and one or more trailers (see
Figure 1.2). The prime mover may be a rigid truck fitted with a pintle hitch coupling at its
rear to which drawbar-type trailers can be coupled. Alternatively the prime mover may be a
truck-tractor (hereon referred to simply as a ‘tractor’), which bears no payload of its own,
but is fitted with a ‘fifth wheel’ coupling via which a semi-trailer can be attached.

Types of trailer shown in Figure 1.2 include semi-trailers, B-link trailers, full-trailers,
and drawbar trailers (also known as dog trailers or centre-axle trailers). A semi-trailer is
a trailer with no front axles which couples via a fifth wheel and kingpin. A B-link trailer
is a semi-trailer with an extended chassis and fifth wheel at its rear for coupling another
semi-trailer or B-link trailer. A converter dolly can be used to couple a semi-trailer to a rigid
truck or another trailer via a pintle hitch. A full-trailer is conceptually a dolly and semi-trailer
combination, except that the fifth wheel and kingpin coupling is replaced by a turntable,
creating a standalone articulated trailer. A drawbar trailer has axles located under the centre
of the loading area, and a rigid drawbar extending at its front for coupling via a pintle hitch.

In the UK, permitted HGVs include rigid trucks up to 12 m in length and 32 tonnes GCM
(Figure 1.2a), tractor semi-trailer combinations up to 16.5 m and 44 tonnes with a maximum
semi-trailer length of 13.6 m (Figure 1.2b), and truck and drawbar trailer combinations
up to 18.75 m and 44 tonnes [33] (Figure 1.2c). A field trial is currently underway with
‘Longer Semi-Trailer’ (LST) combinations with semi-trailer lengths of 15.65 m, giving a total
combination length of 18.75 m [7]. Conventional HGVs used in other countries include a ‘B-
double’ (Figure 1.2f), common in Australia and South Africa, and the ‘Nordic combination’
(Figure 1.2e), common in Sweden and Finland up to 25.25 m in length6.

In the UK the term ‘articulated vehicle’ normally refers only to tractor semi-trailer
combinations, but the term will be used more generally here to refer to any truck and trailer
combination, as distinct from a rigid truck.

6The ‘Nordic combination’ (Figure 1.2e) and the ‘truck and full-trailer’ (Figure 1.2d) combination are
conceptually identical, in that they consist of a rigid truck, dolly and semi-trailer. In the case of the full-trailer,
the dolly and semi-trailer are typically integrated as one trailer through a ‘turntable’ coupling. In the case
of the Nordic combination, a conventional semi-trailer is ‘converted’ into a full-trailer via a ‘converter dolly’
(connected via a fifth wheel coupling), resulting in greater modularity and flexibility.
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1.3 High Capacity Vehicles

Traditionally, the cost of logistics has been a primary driver of the transport sector towards
improving the efficiency of transport. Another major driver has emerged in the form of ambi-
tious CO2 emissions targets. The European Union (EU) has set a target of 20% greenhouse
gas emission reduction by 2020 (from 1990 levels) and 80% reduction by 2050. The UK has
set a target of 35% by 2020 [34].

Domestic transport accounts for approximately 20% of the UK’s total CO2 emissions,
and HGVs account for 21% of this, or 4.2% of the total [35]. The case is similar in Europe,
with road transport responsible for about 20% of total CO2 emissions, approximately one
quarter of which is attributable to trucks and buses [36]. Therefore, improving the efficiency
of road freight transport, and specifically that of HGVs, is important in the efforts to achieve
global emission reduction targets.

Enabling the use of longer and/or heavier HGVs, and thereby requiring fewer HGVs for
a given freight task, has been shown to be one of the most promising and impactful measures
to improve the efficiency of road freight transport, and thereby reduce emissions [12]. It
has also been shown that such vehicles can be as safe as or even safer than conventional
HGVs, especially when operated under a suitably robust operating framework coupled with
self-regulation [12].

HGVs that fall outside of the legislated maximum gross combination mass, maximum
length or number of trailers are referred to variously as ‘Longer Heavier Vehicles’ (LHVs) or
‘High Capacity Vehicles’ (HCVs). The distinction between HGVs and HCVs is specific to
the geographical context however, as a B-double would be considered an HCV in the UK
for example, but as a conventional HGV in South Africa where they have operated since the
1980s [37].

The term ‘Long Combination Vehicle’ (LCV) generally refers to vehicle combinations
with two or more trailers. In this case a B-double is an LCV regardless of the context.
Most HCVs are LCVs, but exceptions include longer and or heavier tractor semi-trailer
configurations. The UK’s LST combinations under trial are a good example of this.

In Australia, the use of HCVs has been formally adopted into national transport legislation
through the Performance-Based Standards (PBS) scheme [13]. The scheme permits the use
of HCVs on designated subsets of the road network, subject to a comprehensive simulation-
based assessment of the vehicle dynamics performance, an assessment of the road wear
impact and bridge loading effects of the vehicle, special accreditation of the operator, smart
access control and tracking of the vehicles, and special requirements for loading control and
driver training.
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In South Africa, an HCV trial known locally as the ‘Smart Truck’ scheme [38] has been
in operation since 2008, largely based on the Australian PBS scheme. As of February 2017,
the trial includes 215 participating vehicles, transporting commodities such as mining ore,
timber, fuel, coal and sugar, with vehicles ranging in length from 22 to 40 m, and in mass
from 56 to 148 tonnes. To date, performance data for 92.4 million truck kilometres have been
accumulated, together with data from conventional vehicles performing the same freight task
on identical routes (the ‘baseline’ vehicles).

The latest data [11] show that the South African Smart Truck fleet saves approximately
67,000 truck trips, 9 million km of truck travel, 2 million litres of fuel and 5,500 tonnes of
CO2 per year. Year-on-year since inception, the Smart Trucks have had between a third and
a half of the crash rate of the baseline vehicles, indicating significant safety benefits of the
system of vehicles and the Smart Truck framework. The initial trial is expected to conclude
in the next year, and discussions towards national implementation are underway.

In Europe in 1996, EU Directive 96/53 EC [39] introduced the European Modular System
(EMS). This directive gives EU member states the option to permit HCVs on certain routes
within their territory, provided the combinations consist of defined interchangeable vehicle
units (as shown in Figures 1.2e, 1.2f, 1.2g). Sweden and Finland were operating EMS-type
vehicles before the formal introduction of EMS, and currently permit EMS vehicles up to
25.25 m in length and 60 tonnes gross mass [1]. The Netherlands, Germany and Spain have
since also introduced 25.25 m EMS combinations (up to 60 tonnes in Netherlands and Spain,
and up to 44 tonnes in Germany) [17, 40]. Denmark is trialling the introduction of 25.25 m
EMS vehicle combinations up to 60 tonnes [17].

The Longer Semi-Trailer (LST) trial in the UK [7] is evidence of the UK’s growing
interest in HCVs. The 10-year trial was launched by the Department for Transport (DfT)
in 2012 with up to 1,800 vehicles participating under special permits. The trial permits an
additional 2.05 m to the length of the semi-trailer, allowing additional loads to be carried,
and thereby reducing the number of truck trips and kilometres travelled. As at 31 Dec 2015,
1,747 vehicles were participating in the scheme.

Official data collected during the LST trial show that the use of the longer semi-trailers
has saved 8.7–10.6 million vehicle kilometres, removed 1 in 19 vehicle trips, and exhibited
70% fewer personal injury accidents compared with standard articulated HGVs. In January
2017, the DfT announced that the trial would be extended by 5 years, and the number of
participating vehicles increased to 2,800 [41].

The trend towards larger and heavier vehicles is also evident in conventional HGV
operations. In the UK in the period from 1990 to 2015 [7], there was an 83% increase in the
use of rigid trucks above 25 tonnes, while the use of rigid trucks below 17 tonnes decreased
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by 76%. Similarly there was an increase of 69% in the use of articulated HGVs over 33
tonnes, while the use of those below 33 tonnes decreased by 86%.

1.4 Enabling technologies for High Capacity Vehicles

Long HCVs with multiple points of articulation exhibit limited manoeuvrability in terms
of turning and reversing. They may also exhibit reduced yaw stability compared with
rigid or singly-articulated vehicles, resulting in increased rearward amplification of lateral
acceleration (sometimes leading to trailer rollover), increased transient off-tracking of trailers
(overshoot of the rearmost trailer into adjacent lanes during an evasive manoeuvre), or
jackknifing [42]. Addressing these issues is an important factor in enabling the uptake of
HCVs.

To some extent, the manoeuvrability of HCVs can be improved through careful selec-
tion of passive vehicle design parameters such as trailer configuration, axle positions and
hitch locations. The scope for improvement is very limited however, given constraints of
practicality, payload type and geometry, and maintaining acceptable axle load distribution.
Furthermore, changes to these parameters which favour manoeuvrability are often at the
expense of high-speed safety performance characteristics [42–45].

Similarly, the high-speed safety performance of HCVs can be improved through the
careful selection of passive vehicle parameters such as axle and hitch locations. Some
changes such as increasing the wheelbase of trailers can improve high-speed stability while at
the same time improving axle load distribution and also bridge loading and road wear impact.
However, the effects of additional trailers can only be addressed to a limited degree through
passive design choices. The specification of suspension components and tyres can also
effect performance, particularly in improving rollover performance and reducing dynamic
tyre forces, but there is generally very little scope here for improving manoeuvrability and
high-speed dynamic performance.

There is hence a need for active intervention technologies to address the manoeuvrability
and stability limitations of HCVs, given the limitations of passive design choices [25, 46,
19, 22]. Such systems include autonomous reversing, anti-jackknife control, active trailer
steering and combined braking and steering control. These technologies are beneficial to
improving the accessibility and safety of HGVs in general, but are particularly important in
enabling wider use of HCVs on more of the road network.

Some of these technologies will now be described in more detail, highlighting the current
state of development and some important limitations.
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1.4.1 Autonomous reversing

The reversing of an articulated vehicle is an inherently unstable process, and so some level of
control is needed to achieve a desired reversing task [47]. For simple articulated vehicles such
as tractor semi-trailers, an experienced driver is able to perform this control task, manually
providing control inputs to the front steering wheels of the tractor in response to the observed
response of the trailer.

For vehicles with two or more points of articulation, the control task becomes exceedingly
challenging for a driver to perform, given the increased number of unstable degrees of
freedom and the non-linearity and unpredictability of the system. This has warranted a
number of investigations into the development of suitable automatic controllers for this task.
These controllers can be in the form of either reverse assist or fully autonomous reversing
where the required steer inputs are calculated and input automatically. The current discussion
will focus on autonomous reversing.

Some recent work on the topic includes a ‘virtual tractor’-based controller [48], a ‘unicy-
cle’ controller for short single-axle trailers [49], and the controller of [50] which is limited
to certain axle and hitch configurations. These systems, together with the majority of other
work on the topic, are predominantly theoretical in nature, difficult to tune in reality, and
their validity has not been evaluated on full-scale HGVs [29].

More recently, Rimmer et al. [47, 29, 23] demonstrated practical controllers for the
reversing of multiple trailer HGVs, and successfully demonstrated their feasibility in several
full-scale tests. In [29], Rimmer and Cebon demonstrated a state feedback controller, and
evaluated it on a full-scale tractor semi-trailer, B-double, and B-triple vehicle combinations.
In [23], a preview-point controller was presented, which offered reduced steer input and
swept path at the expense of path-following error. In comparison tests with a B-double the
two controllers were able to achieve path-following of the rearmost axle to within 50 mm
and 220 mm respectively [23].

All the controllers proposed in [48–50, 29, 23] assume passive trailers, using only the
tractor steer angle as the control input. In terms of sensing, Rimmer’s reversing controller
[29, 23] requires measurements of steer angle, position and heading of one of the vehicle
units (i.e. the tractor), and articulation angle. This can hence be viewed as tractor-based
technology, with the exception of articulation angle sensing.

1.4.2 Anti-jackknife control

If either a truck or trailer experiences yaw instability, normally resulting from a loss of
traction of one or more axles, then yaw instability of the entire vehicle combination will
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result [51]. There are two ways in which this can occur, known as ‘tractor jackknife’ and
‘trailer swing’, depending on which axles lose their lateral grip. This often results in the tractor
and trailer folding in towards each other, commonly known as ‘jackknifing’. Jackknifing can
also occur during reversing due to the inherent instability of articulated vehicles in reverse.

Various jackknife prevention systems have been proposed, with three primary control
actuation methods: hitch actuation, braking, or steering (see Figure 1.1b). Hitch actuation
can be in the form of articulation locking or articulation damping [51]. Jackknife control via
braking can be achieved either by removing wheel lock using ABS7 or EBD8 to produce
correcting yaw moments [25]. Alternatively, steering inputs from the tractor can be used to
correct jackknifing [25].

Azad et al. [51] investigated the dynamics of jackknifing, and the role that articulation
damping could have in prevention. Bouteldja et al. [30] developed a jackknife detection and
prediction system for tractor semi-trailer combinations based solely on the observation of
articulation angle. A state observer and an Extended Kalman Filter (EKF) were adopted to
estimate the angle given measurements of steer angle, lateral velocity and yaw rate, and the
system was assessed through simulation.

Chu et al. [52] highlighted that knowledge of the articulation angle is fundamental to any
jackknife detection system. They identified a lack of inexpensive and practical articulation
angle sensing technology, and so introduced a state observer to estimate it for a tractor
semi-trailer using other sensors more likely to be available on commercial vehicles. The
system required measurements of steer angle, lateral acceleration, yaw rate, and axle loads,
most of which would be available from an Electronic Stability Control (ESC) system if fitted.
Performance was shown to be good, except in instances of low tyre-road friction, introducing
the additional need for friction estimation.

Chen et al. [25] developed a differential braking scheme to prevent jackknifing in a
tractor semi-trailer using model reference adaptive control. The system relied solely upon the
articulation angle for control feedback. The system was validated in computer simulations
and scale model tests. Chiu et al. [53] conducted a study of jackknifing to determine the
critical articulation angles for the onset of jackknifing, particularly in reversing manoeuvres.

It is clear that articulation angle is the most important variable of concern for jackknife
detection and control, regardless of the actuation and control methods employed.

7Anti-lock Braking System
8Electronic Brakeforce Distribution
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1.4.3 Combined braking and steering control

Anti-lock Braking Systems (ABS) serve two purposes: preventing the lock-up of wheels
under severe braking and hence allowing a driver to maintain directional control, and reducing
stopping distances by maintaining higher static rolling friction between the wheels and road
surface [24]. For HGVs, the technology has been shown to be less effective in reducing
stopping distances than in the case of passenger vehicles, as a result of the sluggish response
time of the pneumatic braking systems on HGVs compared to the hydraulic braking systems
on passenger vehicles [24].

‘Slip-control’ braking has been shown to significantly improve stopping distance com-
pared to ABS through the use of fast-acting pneumatic valves and accurate tyre slip mod-
ulation. Successive investigations by Kienhöfer et al. [54, 55], Miller et al. [56, 46], and
Henderson et al. [57, 27] resulted in the design of a novel fast-actuating pneumatic valve
and sliding mode tyre slip controller. Recent field tests demonstrated a 17% reduction in
stopping distance and 30% reduction in air consumption during braking on a low friction wet
basalt-tile surface when the braking system was fitted to the trailer [58].

Morrison showed that although the slip-control system was very effective in reducing
stopping distances, this was at the expense of directional stability compared with conventional
ABS [24]. Morrison et al. [59, 60, 24, 31] extended the slip-control braking system to address
scenarios of combined braking and steering, and introduced the ‘attenuated slip demand’
concept. This yielded both directional control and stopping distance performance superior
to that of conventional ABS. Morrison’s work on combined braking and steering control is
important for the long term commercial prospects of slip control braking, but the attenuated
slip controller introduces additional sensing requirements. Sensor signals required for
attenuated slip demand include: forward speed, side slip, yaw rate and steer angle from the
tractor, and importantly also requires articulation angle.

In [59, 60, 24, 31], articulation angle sensing was achieved with a trailer-based ‘VSE’
sensor (see Section 1.5) with a CAN-based communications network connecting the con-
trollers in each vehicle unit. Although the fast acting valves are not yet standard hardware,
it is reasonable to assume that the next generation of HGV braking hardware will adopt
such faster-acting valves, and make use of slip-control and combined braking and steering
technologies such as these. This leaves the significant problem of measuring articulation
angle and transmitting it to the master braking controller in the tractor unit. Measuring
articulation angle on the tractor unit would solve this problem.
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1.4.4 Trailer steering

Off-tracking refers to the lateral deviation of the rear of a truck or trailer as it navigates a
turn, or as it is subjected to low friction and/or cross slope. Off-tracking is illustrated in
Figure 1.3a for a tractor semi-trailer. The magnitude of off-tracking can be measured in a
number of ways. In this research it is taken to be the lateral deviation of the rear of the trailer
relative to the path of the hitch point, measured laterally to the trailer axis.

‘Tail swing’ is another important manoeuvrability metric which pertains to the level of
swing-out of the rear of a truck or trailer during a turn. Importantly, tail swing occurs on the
outside of a turn, where the driver has no line of sight. This is usually the result of a short
wheelbase and/or large rear overhang, a common feature of centre-axle trailers. Excessive tail
swing can lead to collisions with roadside furniture and parked vehicles, stationary vehicles
in adjacent lanes, or with cyclists or pedestrians.

Conventional trailer axles are unsteered. This limits the overall manoeuvrability of the
vehicle combination, and also results in tyre scrub for trailers with multiple unsteered axles.
A number of trailer steering technologies exist which aim to remedy one or both of these
issues, and these can be generally classified into passive and active systems.

Passive steering systems, in order of complexity and cost, include: ‘self-steering’, ‘com-
mand steer’, and ‘pivotal bogie’ systems [61]. Self-steering offers the least benefit in terms
of manoeuvrability and tyre scrub. Command steer and pivotal bogie systems can signifi-
cantly improve manoeuvrability (through reduced cut-in) and tyre scrub, but tend to exhibit
excessive tail swing behaviour in transient manoeuvres. Passive steering systems have also
been shown to degrade stability at high speeds, and usually require locking in place above a
threshold speed [28].

By comparison, active steering systems can approach optimal manoeuvrability per-
formance without unfavourable transient effects, and have also been shown to improve
high-speed safety performance [32, 28, 62]. An early active steering concept was proposed
by Hata et al. [63] to reduce the off-tracking of rigid trucks without increasing tail swing.
This concept was extended by Notsu et al. [64] for a steered semi-trailer, in which the rear of
the trailer actively followed the path of the front of the tractor. These are early examples of
the ‘path-following’ trailer steering method.

More recently, Jujnovich and Cebon [21] developed an active path-following semi-trailer
steering system in which the rear of the trailer follows the path of the fifth wheel for all
speeds and paths. This is illustrated in Figure 1.3b. Their strategy for achieving this was
to compare heading angles at the front and rear of the trailer using a non-linear control
strategy. A ‘model-matching technique’ requiring a reference trailer model was used to
address problems associated with steering angle limits at low speeds. The controller required
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knowledge of vehicle parameters from both tractor and trailer, as well as measurements of
speed, articulation angle and trailer yaw rate. The performance of the path-following concept
compared with a conventional trailer and command steer is shown in Figure 1.4, highlighting
its superior cut-in and tail swing behaviour.

An alternative strategy was proposed by Cheng [32, 20], using a ‘virtual driver’ at the
rear of the trailer and a simpler proportional–integral–derivative controller to determine
off-tracking at low speeds. The system was also applicable to high speeds, minimising a cost
function with respect to high-speed stability instead of off-tracking. The controller required
knowledge of various tractor and trailer parameters, as well as measurements of tractor speed
and steer angle, trailer yaw rate and articulation angle. The controller assumed zero wheel
sideslip at low-speeds.

By basing the control on off-tracking error instead of heading angles, Cheng’s approach
avoided possible steady-state tracking errors that are possible in Jujnovich’s approach. Fur-
ther, Cheng’s controller does not require the reference trailer approach to handle steer
saturation. A prototype trailer incorporating the path-following system is shown in Fig-
ure 1.5, developed by the Cambridge Vehicle Dynamics Consortium (CVDC). The trailer
currently uses Jujnovich’s control strategy, as it is currently better suited to low speeds and
simpler to implement, but may incorporate Cheng’s controller in future. Cheng’s work was
subsequently extended by Roebuck et al. [22] for multiple trailers.

Although Cheng’s controller improved on certain aspects of Jujnovich’s, it has two
particular shortcomings relevant to the current work. Firstly, like Jujnovich’s controller, it
requires measurements from the tractor, and also knowledge of tractor parameters for the
vehicle model. Secondly and importantly, the assumption of zero slip limits the application
of the system to on-highway and high friction conditions. This is a reasonable assumption
for many applications, but is limiting for icy conditions on the highway and for off-highway
applications such as logging, livestock and dairy collections from farms, and military convoys.
Off-highway applications are prone to low friction, cambered and inclined roads, and tight
corners, giving rise to potentially large wheel slip.

Miao and Cebon [65] demonstrated how the performance of Cheng’s path-following
control can be severely degraded in conditions of low friction, camber and grade. Simulating
a path-following tractor semi-trailer combination traversing a 450◦ roundabout manoeuvre,
they showed a 0.4 m increase in off-tracking error when 5◦ road camber and 5◦ grade were
introduced (Figure 1.6a). A manoeuvre with 5◦ camber and a co-efficient of friction of 0.1
resulted in a 0.6 m increase in off-tracking error (Figure 1.6b).
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Miao [3] showed how Cheng’s controller could be reformulated to take an independent
measurement of off-tracking, i.e. relaxing the no-slip assumption. This paved the way for the
investigation of alternative off-tracking estimation methods.

1.4.5 Barriers to adoption

The technologies just described are promising enablers of HCV uptake, addressing important
limitations of these vehicles. However, some important practical challenges associated with
these technologies have also been highlighted, particularly their sensing requirements.

It is clear that articulation angle sensing is a fundamental requirement for autonomous
reversing, anti-jackknife, and combined braking and steering technologies. Existing artic-
ulation angle sensors inhibit the feasibility of these technologies, in that they are either
trailer-based or require some knowledge of trailer parameters.

Similarly, trailer steering is a highly effective technology for improving the manoeuvra-
bility of longer HCVs, especially in challenging environments. The most promising such
technology is the CVDC’s path-following concept [32, 20], which has been shown to achieve
an optimal balance between cut-in and tail swing, while reducing tyre scrub. However, the
system assumes knowledge of tractor parameters, and Miao [65] highlighted its sensitivity to
reduced friction levels, deeming it potentially ineffective in icy or off-highway conditions.

The wheel slip dependence originates from the manner in which off-tracking is estimated.
Finding a solution for trailer off-tracking estimation which is independent of friction levels
and which requires no knowledge of tractor parameters would go a long way towards
improving the performance and commercial feasibility of effective trailer steering technology.

In the following sections, articulation angle and trailer off-tracking measurement will
be discussed in more detail. Existing technology and the latest research are described,
highlighting the shortcomings and scope for further work.

1.5 Articulation angle sensing

At the start of this discussion, it is useful to establish the precision which an articulation
angle sensor would require for application to HGVs. The reversing controller of Rimmer
et al. [47, 29, 23] tries to ensure that the rear of the trailer follows a user-defined path as
accurately as possible, with a target ‘path following error’ of zero. For reasonable obstacle
avoidance and control stability, it is estimated that actual path-following errors should be
no more than 0.3 m (peak-to-peak). Assuming a zero-mean sinusoidal error signal, this
translates into a maximum error of 0.15 m and an RMS error of 0.10 m, in line with previous
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work on path-following steering control [32, 21]. Articulation angle sensing is used by the
controller to calculate the current position of the rear of the trailer relative to the tractor
using trigonometry, from which the current path-following error is calculated. Therefore,
given target the path-following error statistics, the required articulation angle error statistics
may be calculated. For a UK Longer Semi-Trailer with a distance of approximately 14 m
from kingpin to trailer rear, this translates into articulation angle errors of sin−1 (0.15

14

)
= 0.6◦

maximum, and sin−1 (0.10
14

)
= 0.4◦ RMS. RMS is a useful accuracy metric as it incorporates

both mean and noise error components, and will be used throughout this thesis.

1.5.1 Commercial and experimental sensors

Various articulation sensors exist either commercially or for research and development
work. Examples include: a kingpin sensor commercially available from Vehicle Systems
Engineering B.V. Netherlands (the ‘VSE sensor’) [66], a prototype Orbisense™ magnetic
sensor by AB electronic Ltd [32], and a custom string potentiometer solution [28] (see
Figure 1.7). TRIDEC (Netherlands) use a custom articulation angle sensor as part of their
active trailer steering system [67].

These are all trailer-based sensors, and require non-standard communication links with
the tractor. Furthermore, the VSE and Orbisense sensors require significant modifications to
the trailer kingpin and the string potentiometer requires a physical connection between tractor
and semi-trailer. The Orbisense™ sensor was never commercialised, for reasons including
insufficient resolution for active-trailer steering applications [28]. With the exception of the
Orbisense™ sensor, these sensors are examples of ‘contact-type’ sensors. For semi-trailers
the fifth wheel is subjected to high static and dynamics loads and is a dirt and grease-prone
environment, with potentially negative effects on the longevity of these sensors. For this
application a good case is made for a non-contact sensing solution.

A small number of patents exist for articulation measurement for passenger vehicles with
towed trailers [68, 69]. These systems include the use of multiple sensors, some of which
include cameras, but the precision of these systems is unknown and, in cases where cameras
are used, details of the image processing methods are not clear. The system proposed in [68]
requires an extensive manual calibration procedure.

1.5.2 State observers

A state observer approach has been proposed in various studies, in which articulation angle is
estimated from other sensor measurements coupled with a full motion model of the vehicle.
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A drawback to this approach is the need for an accurate vehicle model, necessitating the
assumption of numerous geometric and dynamic parameters.

Bouteldja et al. [30] developed a jackknife detection system for tractor semi-trailer
combinations based solely on the observation of articulation angle. They adopted a state
observer and an EKF for articulation estimation and assessed the system through simulation.
Although results were not given for the precision of articulation angle measurements, the
maximum error in estimated tractor yaw angle using the state observer approach was in the
region of 8◦. The system requires sensing of steer angle and tractor position.

The articulation angle observer of Chu et al. [52] (see Section 1.4.2) exhibited maximum
errors of 0.3◦ for small angles (up to 3◦), 1.6◦ in a low friction test up to 10◦ (with friction
estimation enabled), and 10◦ in a low friction test up to 20◦ (with no friction estimation).
The observer proposed by Ehlgen et al. [70] achieved a maximum error of 5.4◦ in vehicle
tests with articulation angles up to 48◦, requiring only a steer angle sensor input.

1.5.3 Camera-based sensors

The use of cameras to measure articulation angle has been proposed in the work of Schikora
et al. [71], Caup et al. [72], Harris [73] and Fuchs [74, 75]. The favoured set-up consists of
a camera, or cameras, mounted to the rear of the towing vehicle, observing the front of the
trailer, and inferring articulation angle through suitable image processing methods.

Schikora et al. [71] proposed two vision-based methods for the measurement of articula-
tion angle: one for semi-trailers and one for drawbar trailers. For semi-trailers they proposed
using an encoder plate attached to the underside of the semi-trailer, which was viewed using
a single upwards-facing camera beneath, shown in Figure 1.8a. The rigid drawbar trailer
system requires specially-placed infrared diodes to the front trailer face, assuming the face
is planar (if not, a planar mounting surface would be required). These diodes were viewed
through a rear-facing infrared-filtered camera fixed to the rear of the hauling vehicle, as
shown in Figure 1.8b. The encoder plate system has a claimed accuracy of around 0.3◦ for a
full 180◦ range of angles, and a computation time of below 0.15 s, but details for the infrared
system are not clear. Trailer modifications are required in each case.

Caup et al. [72] employed a single rear-facing camera to measure the articulation angle
between a car and a simple drawbar trailer, with assumptions on the location of the hitch and
the maximum length of the drawbar (see Figure 1.8c). The system requires no modifications
to the trailer, but is applicable only to drawbar trailers. They utilised a template-matching
method, trained to optimise parameter sets, and an alpha-beta filter to smooth measurements.
In vehicle tests, average errors of 1.69–2.19◦ and maximum errors of 5.48–7.55◦ were
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demonstrated for articulation angles up to 50◦. The average time per computation was 0.15 s,
making it real-time feasible.

In 2013, Harris [73] investigated a camera-based articulation angle sensing concept
specifically for tractor semi-trailers. The concept consisted of a camera (or cameras) mounted
to the rear of the tractor cab, facing rearward towards the front of the semi-trailer, and using
image processing algorithms to extract the trailer angle from the image sequences. Harris’
work is particularly relevant to the current research, and so is discussed in some detail here.

Harris investigated two image processing methods to accompany the rear-facing cab
camera: ‘homography decomposition’ (using one camera) and stereo vision (using two
cameras). The first method assumed a planar trailer front. A datum image of the trailer front
at zero articulation was required, and subsequent images of the trailer were compared to this
datum to determine the planar homography between the two trailer orientations. Feature
matching was used to compare images, using SIFT9 features and RANSAC10 [76] (RANSAC
is a model-fitting algorithm which is robust to the presence of many outliers). An example
output of the matching process is shown in Figure 1.8d. The articulation angle was extracted
from the homography using single value decomposition. A Kalman Filter was added to
smooth the resulting noisy measurements.

The method was evaluated using image sequences generated by a 3-D CAD11 model
of a tractor semi-trailer combination. A resolution of 640×480 was used in the simulated
images. Maximum errors of 8.4◦ were observed in tests up to 90◦ articulation angle. The
largest errors originated from the transition from trailer front to trailer side in the camera
view at large articulation angles. Errors of over 80◦ were observed without the Kalman Filter.
The computation time was approximately 5 s per frame or 0.2 frames per second (‘fps’).

The stereo vision approach utilised a stereo camera pair and a block-matching image
processing technique [77] to generate a disparity (depth) map of the trailer. The resulting
3-D point cloud was projected onto the horizontal plane, and a RANSAC scheme was used
to extract the rectangular trailer outline and infer its angle (see Figure 1.8e). Although
stereo vision is inherently three-dimensional, the method used to extract the trailer outline
to determine the articulation angle assumes a box-type trailer with a 2-dimensional (planar)
front. A Kalman Filter was again adopted to smooth the measurement output.

The stereo vision method was assessed using the same CAD simulation environment, for
articulation angles up to 60◦. Maximum errors of 1.2◦ were observed, up to 7◦ without the
filter. The system was also implemented on a full-scale tractor semi-trailer, and slalom and
roundabout manoeuvres were conducted with articulation angles of up to 60◦. Maximum

9SIFT = Scale Invariant Feature Transform
10RANSAC = RANdom SAmple Consensus
11CAD = Computer-Aided Design/Drawing
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errors of up to 18◦ were observed, or 26◦ without the Kalman Filter. Computation time was
highly impractical at approximately 70 seconds per frame, but it is possible that the algorithm
could be refined to improve computational efficiency.

Harris briefly introduced a third method, ‘template-matching’. Assuming again a planar
trailer, and a datum image of the trailer at 0◦ articulation angle, Harris showed that the
datum image could be ‘warped’ to generate a database of images of the trailer at any angle,
stored at 0.1◦ increments. Real-time images of the trailer could then be compared with
the database to find the best match and hence best articulation estimate. 2-dimensional
normalised cross-correlation was used to compare images. A very limited evaluation of the
method was carried out, suggesting much improved accuracy and computation compared to
the first two methods.

In 2014, Fuchs et al. [74] presented a camera-based articulation angle measurement
concept for truck and full-trailers. The concept relied on three defined markers arranged in
a triangular pattern fixed to the trailer front, assuming that the front of the trailer is planar.
The system also required precise knowledge of vehicle geometry and camera location. A
conceptual implementation of the system on a 1:16 scale vehicle is shown in Figure 1.8f.

The concept was tested in an idealised simulation environment (not on the scale truck
shown in Figure 1.8f), using an image resolution of 640× 480, for articulation angles up
to approximately 50◦. With perfect knowledge of camera location, maximum errors of
0.39◦ and 0.53◦ for dolly and trailer angles were obtained respectively. However, when a
6% error in camera location was incorporated (equivalent to 160 mm for a standard UK
trailer), maximum errors rose sharply to 3.8◦ and 3.9◦ respectively, and increased linearly
with additional camera location error.

In [75], Fuchs et al. added a Kalman Filter to their system, and again evaluated the
system in an idealised simulation environment. Articulation angles of up to 15◦ and 30◦ for
the dolly and trailer were investigated respectively. Maximum errors of 0.6◦ were obtained
for the new system, versus 1.5◦ using the previous system. The Kalman Filter required the
first 75 frames for initialisation.

In related work, in [78] a stereo vision SLAM12 algorithm was proposed and used to
measure the rotation angle between the shovel house and shovel car-body of a mining rope
shovel. The system performed well and achieved maximum errors of under 1◦ over a rotation
range of ±180◦, though errors of up to 5◦ were observed before loop closure was reached.

In work investigating the navigation of small articulated robotic vehicles, Larsson et al.
[79] used a rotating laser on the prime mover to detect reflective tape of known location
affixed to the trailer. The measurements were coupled to an Extended Kalman Filter (EKF).

12SLAM = Simultaneous Localisation and Mapping (described in Section 1.7.2)
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This could in theory yield acceptable accuracy (actual figures are not given), but is limited
because it requires the existence of known markers on the trailer.

1.5.4 Performance summary

A performance summary of the most relevant articulation measurement concepts described
above is given in Table 1.1. The methods of validation of these concepts can be separated into
either simulation or full-scale vehicle tests, and so the performance results (maximum errors
obtained, εmax) should be viewed in this light. Maximum errors as a function of maximum
articulation angles assessed during validation have been plotted in Figures 1.9a and 1.9b for
simulation and vehicle test results respectively. (Shaded areas on the plot are a visual aid to
help group data points from common sources.) Schikora’s systems [71] have been omitted:
the encoder system requires substantial trailer modifications, and accuracy information for
the diode system is not clear.

1.6 Trailer off-tracking sensing

Miao [3] showed how Cheng’s controller [32, 20] could be reformulated to take an indepen-
dent external off-tracking measurement, and subsequently proposed a camera-based method
for independent off-tracking estimation. To the author’s knowledge, Miao’s work is the only
directly relevant work on trailer off-tracking estimation, and so is the focus of this section.

Target path-following errors were presented in Section 1.5 for the case of articulation
angle sensing. Comparable targets for path-following accuracy are proposed here, as these
relate directly to trailer off-tracking measurement. Using the UK Longer Semi-Trailer as a
reference, maximum and RMS trailer off-tracking measurement errors should be 0.15 m and
0.10 m respectively for adequate control stability and obstacle avoidance.

1.6.1 Miao’s ground-watching navigation system

To address the shortcomings in Cheng’s controller, Miao [3] proposed a ‘ground-watching
navigation system’ to measure off-tracking independently of wheel slip conditions. The work
was primarily aimed at off-highway applications such as livestock and dairy collections,
military convoys and logging.

The ground-watching concept was demonstrated for a tractor semi-trailer combination
using two downwards-facing cameras mounted beneath the semi-trailer, one near the fifth
wheel and one near the trailer follow-point. One of the cameras is shown in Figure 1.10.
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Miao used FAST13 features and SURF14 descriptors to detect features in each image.
Feature matching between front and rear camera images was achieved using the FLANN15

algorithm. A RANSAC scheme was adopted to calculate the planar homography from the
feature matches, and single value decomposition was used to determine planar rotation and
translation from the homography.

For small off-tracking errors both cameras were used. Images from the front camera
were stored in a data buffer, and compared to rear camera images when one trailer length
had passed some time later. Calculating the planar homography between these images gave
a direct measurement of off-tracking. Miao referred to this as the ‘Dual Camera Ground
Watching Navigation System’ or DC-GWNS. An outline of the DC-GWNS is shown in
Figure 1.11a.

When off-tracking errors were larger than the camera field of view such that front and
rear images did not overlap (0.28 m lateral off-tracking error in this case), only the front
camera was used. Planar homographies were obtained between sequential images, giving
measurements of side-slip and lateral velocity at the fifth wheel. These data, together with
trailer yaw rate and articulation angle measurements, were used with a yaw-plane vehicle
model to estimate off-tracking at the end of the trailer. Miao referred to this as the ‘Single
Camera Ground Watching Navigation System’ or SC-GWNS. An outline of the system is
shown in Figure 1.11b.

Performance of the two systems was demonstrated in vehicle tests on dry tarmac with
a tractor semi-trailer. Off-tracking measurement errors of 0.05 m were obtained at 10 Hz
in open-loop tests (i.e. with non-steered trailer axles and no control). In closed-loop tests,
using measurements from the GWNS as inputs to Miao’s modified path-following controller,
path-following errors of less than 0.1 m were obtained.

Although the system addressed the issue of wheel slip dependence, it assumed an un-
changing and planar road surface with static features. In conditions where wheel slip is likely
(i.e. where there is mud, standing water, ice, snow), it is also likely that the road surface
is non-planar and varies with the passing of the vehicle, and so may be unsuitable for the
ground-watching concept.

The sensitivity of Miao’s system to these conditions was not explored, as tests were
conducted on dry tarmac. Standing water would potentially invalidate the feature-matching
process (due to the reflection of the trailer undercarriage). Also, a soft muddy road surface
will be subject to displacement and settling as the vehicle passes over it, meaning that the

13FAST = Features from Accelerated Segment Test
14SURF = Speeded Up Robust Features
15FLANN = Fast Library for Approximate Nearest Neighbours
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surface seen by the front camera may differ from that of the rear camera which would
invalidate one of the fundamental assumptions.

From a practicality point of view, cameras mounted beneath a trailer in these conditions
would also be very prone to dirt and water splash which could significantly affect the
performance of feature extraction and matching. Although this risk exists for most outdoor
camera-based measurement applications, the under-trailer configuration has a far greater
exposure than cameras mounted elsewhere on the vehicle.

These unfavourable road conditions and their implications for camera-based off-tracking
measurement are an important consideration in current and potential off-highway applications
for trailer steering, and so should be taken into account in further developments of this work.

1.6.2 Other related work

Other applications of path-following in high slip environments include agricultural vehicles
and planetary exploration. Cariou et al. [80] developed a system to guide a towed agricultural
implement (i.e. a trailer) along a predefined path, controlled with steer inputs from the towing
vehicle. The system yielded off-tracking errors of approximately 1.7% of distance travelled
in scale model tests with low friction.

The system utilised an articulation angle sensor, a kinematic vehicle model, and high pre-
cision RTK-GPS (Real Time Kinematic GPS). This is a method of GPS positioning wherein
an additional GPS base station is used to make corrections to normal GPS measurements,
increasing accuracy significantly. This is not practical for road vehicle applications as a line
of sight with the base station must be maintained to receive corrections.

Helmick et al. [81] proposed a visual odometry-based system for the global path-
following of a Mars rover in a high-slip environment. Stereo visual odometry data was
merged with data from an inertial measurement unit using a Kalman Filter. This was
complemented with kinematic measurements based on wheel speed and steer angles. The
system was able to achieve 2.5% path-following accuracy in manoeuvres on loose sand and
cross-slopes of up to 15◦.

1.7 Pose and ego-motion estimation

Fundamentally, the two tasks of articulation angle and trailer off-tracking measurement
are problems of pose estimation and ego-motion estimation. Pose estimation generally
refers to determining the position and orientation of an object which is external to the
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observer/sensor. Ego-motion estimation refers to the measurement of an observer’s own
position and orientation.

Pose and ego-motion estimation are important in many applications, including the navi-
gation of mobile robots and Unmanned Aerial Vehicles (UAVs), human pose estimation and
gesture recognition, and multiple aspects of autonomous and semi-autonomous passenger
vehicles such as navigation, lane keeping, obstacle avoidance and vehicle dynamics control.

The following discussion provides an overview of existing vehicle-based sensing tech-
nologies which are currently used, or could be used, for pose and ego-motion estimation tasks.
This is followed by an overview of some important pose and ego-motion data processing
methods used in vehicle and related applications.

1.7.1 Vehicle-based sensing technologies

Modern passenger vehicles require a number of sensing tasks in order to interact safely
with the environment and with other vehicles and road users. This is particularly true of
autonomous and semi-autonomous vehicles. Typical sensing tasks include obstacle detection,
navigation, pose estimation, and ego-motion estimation. These tasks are often inter-related,
and the sensing technologies for each can be complimentary and interchangeable.

First, a brief mention of GPS (Global Positioning System), as this is commonly used for
vehicle and robot localisation tasks and is widely available. GPS is able to provide global
positioning information, accurate to between a few metres and a few centimetres, and so
does not suffer from drift problems. Pose and ego-motion measurement with GPS is possible
through the use of multiple GPS receivers, and this is commonly used for vehicle testing,
but in order to achieve centimetre-level accuracy high precision differential GPS would be
required, and this is both costly and impractical for on-road applications.

Perhaps the simplest direct method of ego-motion estimation and navigation is wheel
odometry [82]. Wheel encoders are used to determine the rotation of individual wheels
on a vehicle or mobile robot, and from these measurements the motion and position of the
vehicle can be calculated. This is a very low cost solution, but drawbacks include unbounded
errors due to integration and the assumption of no wheel slip. The use of wheel odometry is
nonetheless very common in mobile robots, and is often used to compliment other sensors.

Ultrasonic sensors are commonplace on passenger vehicles, commonly used as parking
sensors. Ultrasonic sensors rely on the transmission and reflection of short wavelength
sound waves (with wavelengths of a few centimetres) to provide non-directional depth
measurements (to a parked vehicle for example). These sensors are low cost, and the short
wavelength provides good accuracy at low range. However, their maximum range is limited
to a few metres.
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Ultrasonic sensors have also been used for cyclist and pedestrian detection applications.
Existing commercial systems include the ‘Autowatch’ [83] and ‘Backwatch’ [84] systems.
Recent research developments include work by Jia [85, 86] in which an array of ultrasonic
sensors was used to detect cyclists next to an HGV and also to predict their future motion.

Radar (RAdio Detection And Ranging) is increasingly common on passenger vehicles.
Common applications include adaptive cruise control, collision detection and avoidance, and
lane change assistance. Radar utilises the transmission and reflection of long wavelength
radio waves, giving it good range (up to a few hundred meters). Radar is more costly than
ultrasonic sensors and is sensitive to the porosity of the target surface, passing though porous
surfaces such as plastic bumpers instead of reflecting.

Early vehicle-based radar technology was limited to 77 GHz Long Range Radar (LRR),
which has a good range (10–250 m) but relatively poor resolution (0.5 m) [87]. LRR is hence
primarily used for forward facing radar for adaptive cruise control. Later, 24 GHz Short
Range Radar (SRR) was introduced with a range of 0.15–30 m and a resolution of 0.1 m [87],
enabling its use for blind spot detection, lane change assist, and some parking assistance
applications. Combinations of ultrasonic sensors and long- and short-range radar are often
used for modern passenger vehicle applications, such as on the semi-autonomous Tesla
Model S. An illustration of the typical sensors and their purposes on a modern passenger
vehicle is given in Figure 1.12.

Lidar (LIght Detection And Ranging) has been used in many applications including
robotics and cartography, primarily for high-density three-dimensional mapping [88]. Lidar
operates in a similar manner to radar but utilises the transmission and reflection of light
waves of varying wavelengths to detect distances. In modern lidar systems, it is common for
multiple lasers to be aligned vertically and rotated at high speed to give a reasonable vertical
field of view and up to 360◦ horizontal field of view.

Lidar began as a mapping and ranging technology for geographers, but modern lidar
has found significant use in mobile robotics and autonomous vehicles. The use of lidar
for autonomous vehicles has been showcased by prominent autonomous vehicles including
Google’s self-driving car and several DARPA Grand Challenge entrants [89]. The Velodyne
HDL-64E S2 used on Google’s car has a 360◦×26.8◦ field of view, 0.09◦ angular resolution,
and 2 cm distance accuracy [90]. These specifications make it attractive for one-off prototypes,
but its $80,000 price (as of 2013) [91] limits its commercial feasibility for most vehicle
applications. The Google car and Velodyne sensor are shown in Figure 1.13.

Ultrasound, radar and lidar are all examples of ‘active’ sensing technologies. They
emit a signal under their own power and use information from the reflected signal to infer
distance. Active sensors are attractive in that they can measure distances and motion directly,
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utilise very little data, and require minimal processing power. The lack of data allows for
simple processing, but also limits the amount of useful information which can be extracted.
Additionally, ultrasonic and lidar sensors are sensitive to weather conditions. Another
important consideration with active sensors is that they suffer from interference from other
active sensors of the same type. Given the increasing use of vehicle-based sensing for
intelligent vehicles, an abundance of active sensors would be problematic [92, 93].

Vision-based sensing

Vision-based sensing refers to the use of cameras and appropriate image processing tech-
niques to obtain information from a scene. Vision-based sensors are passive and only process
light received which has been reflected from objects in the environment. With appropriate
processing techniques, images can be used to infer both spatial information such as pose and
ego-motion, but also qualitative information such as identifying pedestrians or traffic signals.

Images are extremely rich in information, and their ability to provide both spatial and
qualitative information has resulted in the widespread uptake of vision-based technologies
in the automotive sector and more broadly. Compared to active sensing technology, vision
technology requires significantly more processing to extract the data of interest which can
be complex and computationally demanding. However, significant developments in image
processing algorithms and computer processing power have made modern vision-based
technology feasible and affordable for a wide range of real-time applications [94].

It is widely accepted that drivers rely predominantly on visual information [95], and so
the use of artificial vision systems for vehicles is intuitive. In a vehicle context, cameras are
simple to implement, versatile and relatively inexpensive, and not prone to sensor-to-sensor
interference, making them commercially attractive [96–98]. Additionally, existing road
infrastructure provides many visual cues such as lane markings and road signs [92], and
vision-based systems are well suited to differentiating between objects such as pedestrians
and cyclists [93], further increasing its attractiveness to the automotive sector.

Extensive overviews of the developments and applications of computer vision to road
vehicles are given by Bertozzi et al. [92] and by Dickmanns [94].

Vision-based state estimation has been explored in both UAVs and road vehicles, includ-
ing roll angle estimation for two-wheeled vehicles [99, 98]; attitude and motion estimation for
UAVs [100–102]; and side-slip estimation for ground vehicles by [103, 104]. Vision-based
obstacle detection for both on and off-road vehicles has been studied extensively [105–110].

Vision-based sensors are often used in conjunction with other sensors such as radar
and ultrasound, so that they may complement each other, and provide additional factors
of safety. When all sensors are available and operational, complementary sensors can be
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combined through ‘sensor fusion’ [93]. This is often achieved though the use of Kalman Filter
techniques. Using cameras in a sensor fusion approach is common in autonomous and semi-
autonomous vehicle applications including Google’s self-driving car and the Tesla Models
S, X and 3. Modern cyclist detection technologies also utilise a combination of cameras
and radar, such as the system of Volvo Group [111] and Fusion Processing’s CycleEye®
[112]. Image data from the camera/s are used for detection, while radar data gives accurate
depth measurements. The combination of sensors in such a fashion can be costly, and so
much research has been conducted into solving vehicle-based sensing problems using vision
technology alone.

The number of image processing methods developed for vision-based sensing, particularly
for pose and ego-motion estimation, is significant. Three methods are particularly relevant,
and have been used extensively in comparable tasks previously: Simultaneous Localisation
and Mapping (SLAM), visual odometry, and template-matching methods. These three
methods will be covered in more detail in the following sections.

1.7.2 SLAM

Simultaneous Localisation And Mapping or ‘SLAM’ is the problem of determining the posi-
tion of a moving agent (vehicle, robot, human observer) while at the same time constructing
a map of its environment. The solution to this problem has far-reaching applications to
road vehicles, mobile robotics, unmanned aerial vehicles, and augmented reality. In general,
SLAM involves the acquisition of sensor data, detecting features or ‘landmarks’ in these data,
finding associations in these features between frames (either ordered or unordered frames),
and using probabilistic models to determine the optimal solution to both localisation and
mapping problems which minimises errors.

The first successful SLAM implementation utilised an EKF and has come to be known
as EKF-SLAM [113], though many variations and implementations of this algorithm have
since been developed. More recent developments include FastSLAM [114] and FastSLAM
2.0 [115], which uses a particle filter instead of a Kalman Filter, making it more effective
for non-linear motion models and more computationally efficient. Other variants include
Graph-based SLAM [116] and Topological SLAM [117].

The sensing input for SLAM can come from a variety of sources, as long as the sensor
can detect and locate features or landmarks. Using inputs from lidar or cameras is common,
but radar and ultrasonic sensors have also been used [118]. More recently, work on visual
SLAM (or ‘vSLAM’) has dominated the literature, owing to the abundance and low cost of
cameras, and significant improvement in vision processing algorithms and processing power.
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Early visual SLAM utilised stereo cameras (stereo SLAM), but more recent developments
have made SLAM possible with a single camera (mono SLAM) [119]. Mono SLAM gives
position measurements up to an arbitrary scale factor16 unless provided with additional
information. Visual SLAM can be either feature-based, detecting and tracking individual
image features, or dense, tracking pixel-level variations.

Important vSLAM algorithms include ORB-SLAM [120], a sparse mono SLAM using
ORB17 features, which has since been superseded by ORB-SLAM2 [121] which can take
mono, stereo, or RGB-D inputs. (RGB-D sensors will be described shortly.) LSD-SLAM18

[122] is a dense mono SLAM algorithm which gives rise to higher accuracy in low texture
environments and dense scene reconstruction. Both ORB-SLAM and LSD-SLAM algorithms
have been made open-source by their authors.

Parallel Tracking and Mapping (PTAM) [123] is a novel and highly efficient implementa-
tion of mono SLAM, in which the localisation and mapping processing tasks are formulated
in parallel. The PTAM algorithm was developed for ‘augmented reality’ applications, and
so is best suited for use within a localised area as opposed to for exploration. The parallel
formulation results in excellent computational efficiency, while allowing for computationally
expensive pose and map refinement to take place when other mapping tasks are not needed.
‘Bundle adjustment’ [124] is used for this task. PTAM is hence highly accurate, but can only
provide position estimates up to an arbitrary scale factor.

The parallel SLAM formulation introduced by PTAM has since been adopted in a number
of other SLAM implementations. Notably, S-SLAM [125] is a stereo implementation
of PTAM which removes the scale ambiguity of PTAM, but which is less computationally
efficient. The source code for both PTAM and S-PTAM algorithms is open-source [126, 127].

For navigation applications, recent developments have shown that the mapping task of
SLAM can be almost entirely replaced through the use of pre-existing maps. The detail and
availability of street level maps (such as Google Street View) and public photographs have
allowed for surprisingly accurate pose and location estimates to be made without the need
for the traditional mapping task within SLAM. A notable example of this is PoseNet [128],
which can estimate location and pose from a single monocular image using Convolutional
Neural Networks (CNNs).

163-D measurements which are accurate ‘up to a scale factor’, are measurements which are known only in
a relative sense and not an absolute sense. For example, a single camera SLAM system is able to generate a
scaled 3-D map of feature points from multiple views of a scene, but it is not known to the camera whether
the 3-D distances between points are in centimetres, meters or kilometres. To determine scale, the change in
camera pose between frames must be known, which can be obtained with stereo cameras or from external
measurements such as wheel odometry.

17ORB = Oriented FAST and rotated BRIEF
18LSD = Large-Scale Direct Monocular
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In any discussion of SLAM, it is important to mention the concept of ‘loop closure’.
This stems from a fundamental navigation problem of SLAM, in that errors in pose and
position are unbounded with time due to the accumulative nature of the motion estimates.
In a typical loop closure mechanism, when a mobile robot returns to a previously explored
area and previously detected landmarks are recognised, current pose and location estimates
are mapped with previous data from that location in order to refine current and historical
estimates. Various approaches have been proposed for this, with varying levels of accuracy
and practicality [129], though bundle adjustment is commonly used for this task.

Finally, RGB-D sensors have attracted some interest in the SLAM community. An RGB-
D sensor is a combination of a colour camera with a depth sensor. A low-cost commercial
example of this is Microsoft’s Kinect™ sensor which uses an infrared emitter and sensor
and a low resolution colour camera. Khoshelham and Elberink [130] determined the error
and resolution of the Kinect™ sensor to be quite low at 4 cm and 7 cm respectively at the
maximum range of 5 m.

1.7.3 Visual odometry

Visual odometry is effectively a subset of vSLAM, in which the focus is primarily on the
localisation task. In addition, where the focus of SLAM is primarily on global localisation
and optimisation by using unordered frames (i.e. not necessarily sequential), visual odometry
is incremental, utilising sequential (ordered) frames, and optimises motion estimates only
over the most recent frame, or a few of the most recent frames.

This is an attractive alternative to SLAM if pose accuracy is of primary importance,
and especially if only short term motion is of interest. Should global position estimates
be required, unbounded drift would result in large errors over time, and would need to be
compensated with additional sensors such as GPS. Visual odometry algorithms employ
various unique mechanisms to minimise drift, with varying degrees of effectiveness.

For mobile robots and vehicles, visual odometry essentially serves the same task as wheel
odometry, but with better accuracy and without any dependence on wheel slip conditions [82].
As with vSLAM, visual odometry can be either mono or stereo, with mono implementations
being typically less accurate and position estimates only true up to an arbitrary scale factor.

Fundamentally, the visual odometry procedure requires calculating the transformation in
camera pose between two sequential images (in terms of translation and rotation). This is
typically done by identifying and matching features between images, calculating the relative
pose of the camera through triangulation and a perspective camera model, and minimising
reprojection errors over all detected features using a suitable optimisation scheme [82].
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Scaramuzza and Fraundorfer [82] give an extensive review of the background, literature
and methods of visual odometry for the interested reader. The number of existing visual
odometry algorithms is vast, with varying degrees of accuracy, computational efficiency and
practicality. An extensive list of algorithms can be found in [131]. These include SOFT
[132] (stereo), VISO2 [133] (mono and stereo), and SVO (mono and stereo) [134].

Visual odometry as it has just been described is a feature-based algorithm. Dense visual
odometry is usually more commonly referred to as ‘optical flow’, and is more relevant
to mapping applications, or where particular structural features of the environment are of
interest (as in the case of pedestrian detection for example).

As with vSLAM and other visual methods, visual odometry is often fused with wheel
encoders, GPS or Inertial Measurement Units (IMUs) to improve accuracy or reduce drift.
However, as before there has been much focus on developing and improving vision-only
methods so as to reduce reliance on expensive GPS and IMUs, or for applications where
GPS cannot be guaranteed.

1.7.4 Template-based pose estimation

Template-based methods have been used in a number of applications to estimate the pose
of an observed object, including vehicle detection and human pose and gesture recognition.
Some prior knowledge of the observed object is required, such as a full 3-dimensional model
(e.g. [135, 136]), or a number of template images of the object from different view points
for which the pose is known (e.g. [137]). The task of determining the pose of the object
becomes a task of recognition or ‘matching’, and hence techniques for this are often known
as ‘template-matching’.

The registration process may be carried out through direct pixel-based comparison
between observed and template images, or through feature-based methods (see [138] for
an in-depth survey of existing methods). Pixel-based registration techniques include cross-
correlation [139], mutual information [140] and histogram matching [141]. Feature-based
methods make use of distinct features in images (e.g. SIFT [142], SURF [143], or edge
features [144]), and the geometric relationships between distinct features can then be used
to compare images for registration purposes, or used to calculate pose directly. Pixel or
feature-based registration may also be complemented with learning based tools such as
Neural Networks (e.g. [145]). A detailed discussion of image matching and similarity
metrics is given in Section 3.2.2.

Harris’ template-matching method for articulation angle sensing [73] (Section 1.5) is
an example of pixel-based matching for pose estimation, making use of cross-correlation.
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Miao’s dual camera ground-watching method for trailer off-tracking estimation [3] (1.6.1) is
an example of feature-based matching for pose estimation, making use of SURF features.

1.8 Summary

• High Capacity Vehicles (HCVs) offer an attractive and feasible solution to reducing
emissions and improving freight efficiency, and their uptake has grown following
successful trials and implementations throughout the world.

• One of the barriers to increased uptake of HCVs, especially multiply-articulated HCVs,
is their restricted low-speed manoeuvrability and potentially compromised stability at
motorway speeds. A number of technologies such as path-following trailer steering,
autonomous reversing, and jackknife control help to address these limitations.

• These technologies impose additional instrumentation and sensing requirements for
trucks and trailers. In particular, the measurement of articulation angle and trailer
off-tracking has been identified as critical to the functioning of these technologies.

• Existing articulation angle sensors are either trailer-based, require non-standard tractor-
trailer communication links, require impractical trailer modifications or markers, or are
not sufficiently accurate. Ideally the sensor should be purely tractor-based in order for
it to be commercially feasible and should yield errors not exceeding 0.6◦, with RMS
errors below 0.4◦.

• Existing methods of trailer off-tracking estimation are limited to high friction condi-
tions and require tractor parameter information, both of which are not ideal. Miao’s
‘ground-watching’ concept [3] addresses this friction limitation but presents additional
practical limitations in off-highway conditions. An ideal trailer off-tracking sensor
should yield errors not exceeding 0.15 m, with RMS errors below 0.10 m.

• Vision-based methods for pose and ego-motion estimation—including SLAM, visual
odometry and template-matching—have proven effective and versatile in comparable
sensing applications. Cameras are also a cost effective and commercially feasible
technology compared to alternatives such as lidar and radar.

• In this work, novel vision-based concepts for articulation angle sensing and trailer
off-tracking estimation are presented which address many of the limitations of the
current state-of-the-art, thereby improving the commercial prospects of important
HGV control systems. Furthermore, the concepts are validated in experiments on
full-scale HGV combinations under various conditions, giving reliable evidence as to
their effectiveness in real commercial applications.
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1.9 Objectives

1. Develop a tractor-based articulation angle sensing concept which:

(a) requires minimal information exchange with the trailer,

(b) can work with any trailer or dolly, without significant modification,

(c) is compatible with multiple truck and trailer combinations,

(d) can provide angle measurements at 10 Hz with a maximum error of 0.6◦ and an
RMS error of less than 0.4◦.

2. Evaluate the performance of the articulation angle sensor in full-scale vehicle tests.

3. Develop a trailer-based trailer off-tracking estimation concept, which:

(a) requires minimal information exchange with the truck/tractor,

(b) makes no assumption about the state of wheel slip on any of the axles,

(c) can provide off-tracking measurements at 10 Hz with a maximum error of 0.15 m
and an RMS error of less than 0.10 m.

4. Evaluate the performance of the off-tracking sensor in full-scale vehicle tests.

1.10 Thesis structure

Chapter 2 provides a brief introduction to the topic of computer vision, to aid the reader as
these concepts are used and referenced in later chapters. Thereafter, this thesis is primarily
divided into two distinct parts: articulation angle sensing and trailer off-tracking estimation.

Chapter 3 covers the development of a vision-based articulation angle sensing concept,
and investigates its feasibility and performance through simulations. Template-matching
and PTAM-based algorithms are investigated. In Chapter 4, the concept is implemented
on a full-scale tractor semi-trailer combination, and field testing results are presented and
discussed. The concept is extended in Chapter 5 to accommodate a truck and full-trailer
combination, where two articulation angles measurements are required, and field testing
results on a full-scale vehicle combination are presented.

The investigation into trailer off-tracking estimation begins in Chapter 6. A vision-
based concept using stereo visual odometry is introduced and evaluated in simulations.
Chapter 7 presents the results of field tests on a tractor semi-trailer combination, wherein the
performance of the concept is evaluated, and scope for future work identified.

Chapter 8 concludes the thesis with a summary of the main findings of each chapter, and
a discussion of recommendations for future work.
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1.11 Publications

The following peer-reviewed publications have resulted from this work [146, 147]:

1. C. de Saxe, D. Cebon, “A Visual Template-Matching Method for Articulation Angle
Measurement,” IEEE 18th International Conference on Intelligent Transportation
Systems, Las Palmas, 2015, pp. 626-631, doi: 10.1109/ITSC.2015.108

2. C. de Saxe, D. Cebon, “Visual odometry for trailer off-tracking estimation”, 14th
International Symposium on Heavy Vehicle Transport Technology, Rotorua, 2016, pp.
138-149, ISBN: 978-0-620-74483-6

In addition, three academic papers are in preparation to be submitted for publication
in peer-reviewed journals. Broadly speaking, these have been categorised according to the
themes of: articulation angle sensing using template-matching, articulation angle sensing
using PTAM, and off-tracking sensing using visual odometry.

1.12 Tables and figures

Table 1.1 Summary of existing articulation angle estimation work

Source Method Validation Γmax (◦) εmax (◦) Notes

Bouteldja [30] State observer Sim. 90 8 (Yaw angle)
Chu [52] State observer Sim. 3–20 0.3–10
Ehlgen [70] State observer Veh. 48 5.4
Schikora [71] Infrared vision Veh. Unknown Unknown Markers
Schikora [71] Encoder plate Veh. 90 0.3
Caup [72] Vision (templates) Veh. 20–55 5.5–7.6
Harris [73] Vision (hom. dec.) Sim. 17–90 3.2–8.4 Planar trailer
Harris [73] Vision (stereo) Veh. 17-52 3.3–18 Planar trailer
Fuchs [74] Vision Sim. 50 0.5 Markers
Fuchs [75] Vision+KF Sim. 15–30 0.6 Markers
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(a) Tractor-based control for autonomous reversing
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(b) Tractor-based control for jackknife prevention
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(c) Tractor-based control for combined braking and steering
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(d) Trailer-based control for trailer steering

Fig. 1.1 Tractor- and trailer-based control ideologies
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(a) Rigid truck

(b) Tractor semi-trailer

(c) Truck and drawbar trailer (also ‘centre-axle trailer’/‘dog trailer’)

(d) Truck and full-trailer (also ‘turntable drawbar trailer’)

(e) Truck, converter dolly and semi-trailer (‘Nordic combination’)

(f) B-double

(g) Tractor, semi-trailer and drawbar trailer

Fig. 1.2 Common HGV and HCV combinations (illustrations from [1])
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Fig. 1.3 Trailer off-tracking: (a) unsteered trailer, (b) steered trailer with path-following
control

Fig. 1.4 Trailer steering performance in a roundabout manoeuvre (modified from [2]).

Fig. 1.5 CVDC’s prototype path-following semi-trailer
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(a) Road grade and camber (b) Road camber and reduced friction

Fig. 1.6 CVDC path-following performance under adverse road conditions [3]

(a) VSE kingpin sensor [66] (b) Orbisense kingpin sensor [28]

(c) String potentiometer sensor [28]

Fig. 1.7 Commercial and research articulation angle sensors.
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(a) Schikora, semi-trailer [71] (b) Schikora, drawbar trailer [71]

(c) Caup [72] (d) Harris, homography decomposition [73]

(e) Harris, stereo [73] (f) Fuchs [74]

Fig. 1.8 Non-contact articulation angle sensors
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(b) Results based on vehicle tests

Fig. 1.9 Performance summary of published articulation angle sensing solutions, showing
maximum errors obtained as a function of maximum articulation angles assessed

Fig. 1.10 Miao’s ‘ground-watching’ camera (adapted from [3])
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(a) DC-GWNS

(b) SC-GWNS

Fig. 1.11 Miao’s dual (a) and single camera (b) ground-watching navigation systems [3]
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Fig. 1.12 Typical arrangement sensors on a modern passenger vehicle [4]

(a) (b)

Fig. 1.13 Google’s self-driving car (a), with Velodyne HDL-64E S2 LiDAR system (b) [5]
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Chapter 2

Computer vision fundamentals

This brief chapter has been included to provide an overview of relevant vision-related theory
and terminology, for readers without a background in computer vision and also to lay the
foundation for concepts and theory used in subsequent chapters. ‘Computer vision’ refers
to a collection of techniques and algorithms used for the efficient and useful extraction
of information from image data. Such data may be obtained from a single image, from
simultaneous images taken by two or more cameras (e.g. stereo vision), or from an image
sequence. The use of computer vision for pose and motion estimation tasks usually requires
two fundamental steps: extracting points of interest from an image or images (‘feature
detection and description’), and transforming the locations of these interest points from
image space into real world coordinates (‘triangulation’). Conversely, the mapping of real
world points into image space is known as ‘perspective projection’.

2.1 Images, features and descriptors

An image consists of a 2-D array of pixels, each with an associated greyscale intensity
or 3-value RGB colour value (Red Green Blue). In this work only greyscale images are
considered, which commonly utilise an 8-bit representation with pixel values between 0
(black) and 255 (white). The locations and intensities of pixels or groups of pixels are used
by computer vision algorithms to perform detection or motion estimation tasks.

Computer vision techniques are usually classified as either ‘dense’ or ‘sparse’. Dense
techniques utilise raw pixel intensities over the full image (or smaller ‘patches’ extracted
from the image) to detect objects, motion, or structure. Sparse techniques add an intermediate
step in which distinct points of interest are first detected in the image. These are referred to
as ‘features’ and often have an associated ‘descriptor’ to aid in feature tracking and feature
matching between images.
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Features are usually detected based on common groupings of pixel intensities, or par-
ticular discontinuities in pixel intensity gradients. Common image features include edges
[144, 148], corners [149] and ‘blobs’ [148]. Edges are not well-suited to motion detection,
but can be used to identify shapes (using Hough transforms for example [150]). Corners and
blobs are more useful for motion detection.

The purpose of a ‘feature detector’ is to locate features in an image. Convolving an image
with a Gaussian kernel, Laplacian of Gaussian (LoG) kernel, or a Difference of Gaussian
(DoG) kernel is often used to detect peaks, troughs or zero-crossings of pixel intensity
gradients, from which various features are defined. Traditional feature detectors include
the Canny edge detector [144], the Harris corner detector [149], and the DoG blob detector
[151]. A popular and efficient corner detector is the Features from Accelerated Segment Test
(FAST) [152] in which the variation in pixel intensities in a circle around a point are used to
determine whether or not the point is a corner.

A ‘feature descriptor’ is a type of ‘fingerprint’ associated with a feature which enables
features to be tracked and matched between images. The simplest descriptor is a patch of
pixels around the feature, which can be tracked or matched through cross correlation tech-
niques. More advanced descriptor types include SIFT (Scale-Invariant Feature Transform)
[142], SURF (Speeded Up Robust Features) [143], HOG (Histogram of Oriented Gradients)
[153], GLOH (Gradient Location and Orientation Histogram) [154] and wavelets [155].

The SIFT feature descriptor has been used extensively in the literature. It uses a 4×4
grid of cells around a keypoint, each consisting of 4×4 pixels. At each pixel the intensity
gradient magnitude and direction is found and grouped into one of 8 directions, and these
are grouped into one histogram of gradients per cell. The result is a 4× 4× 8 dimension
descriptor vector per feature. Intensity gradients are found with the DoG operator. The SURF
feature descriptor is a more efficient development of the SIFT feature through the use of ‘box
filters’, and has been adopted in place of SIFT descriptors in many applications that require
computational efficiency.

Matching features between two or more images is a useful way to determine structure
or motion. If the images are captured by two cameras simultaneously (stereo vision),
metric structure can be extracted from a scene using triangulation. If the images are taken
sequentially with the same camera, the motion of the camera and/or the structure of the
scene can be calculated, but usually only up to an arbitrary scale (i.e. depth calculation is not
possible). Computer vision techniques utilising these concepts to infer structure or motion
include ‘visual odometry’ (see [82]), ‘optical flow’ (e.g. [156]) and ‘structure from motion’
(e.g. [133]).
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2.2 Perspective projection

Perspective projection is a model of the imaging process in which points in 3-D space
are transformed into coordinates in an image. The theory of this imaging process can be
described using a simplified ‘pin-hole’ camera model. In the pin-hole model (Figure 2.1),
light rays from 3-D world points coincide at the camera’s focal point (taken to be the origin
of the camera co-ordinate system), passing through the virtual imaging plane located at a
distance f (the focal length) ahead of the camera. Co-ordinates of points on the imaging plane
are then related to pixel co-ordinates through a simulated CCD (Charge-Coupled Device)
imaging process.

The pin-hole imaging process comprises a sequence of transformations from world
coordinates X = (X ,Y,Z), to camera-centred coordinates Xc = (Xc,Yc,Zc), to image plane
coordinates XI = (XI,YI), and finally to pixel coordinates in the image plane w = (u,v).
These transformations will first be outlined individually, and then brought together in the full
pin-hole camera model. The perspective projection theory presented here is adapted from
[157] and [158].

The rigid body transformation from world coordinates X to camera-centred coordinates
Xc is governed by a rotation R and translation T as follows:

Xc = RX+TXc

Yc

Zc

=

R11 R12 R13

R21 R22 R23

R31 R32 R33


X

Y
Z

+

Tx

Ty

Tz

 (2.1)

The ‘perspective projection transformation’ from camera-centred coordinates Xc to coor-
dinates in the image plane XI is a function of the camera focal length f . The transformation
is as follows:

XI = fx
Xc

Zc
YI = fy

Yc

Zc
(2.2)

where fx and fy are the focal lengths in the horizontal and vertical directions.
Finally, the ‘CCD imaging transformation’ from image plane coordinates XI to pixel

coordinates w is given by:

u = u0 + kuXI v = v0 + kvYI (2.3)

where (u0,v0) is the principal point (the location at which the optical axis passes through
the image plane, usually near the geometric centre of the image), and ku and kv are scaling
parameters which account for rectangular pixels.
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It is common to describe world, camera, image plane and pixel co-ordinates in homo-
geneous form to linearise the imaging process and simplify subsequent operations. The
coordinates in homogeneous form are:

X̃ =
[
ξ X ξY ξ Z ξ

]ᵀ
X̃c =

[
ξ Xc ξYc ξ Zc ξ

]ᵀ
X̃I =

[
ξ XI ξYI ξ

]ᵀ
w̃ =

[
ξ u ξ v ξ

]ᵀ (2.4)

where the tilde symbol denotes homogeneous co-ordinates and ξ is an arbitrary scaling
factor. Homogeneous coordinates are useful in computer vision in that they enable points at
infinity to be represented by finite coordinates, and they enable simple matrix representation
of important image transformation operations. Wherever possible, ξ is set to 1, but can
otherwise take on any value.1

In homogeneous form, Equations 2.1, 2.2 and 2.3 become:

X̃c =


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

 X̃ (2.5)

X̃I =

 fx 0 0 0
0 fy 0 0
0 0 1 0

 X̃c (2.6)

w̃ =

ku 0 u0

0 kv v0

0 0 1

 X̃I (2.7)

1In converting Cartesian to homogeneous co-ordinates, the choice of ξ is arbitrary as this is a one-to-
many mapping (homogeneous co-ordinates are scale-invariant). It is therefore simplest to set ξ = 1. From
homogeneous to Cartesian co-ordinates, ξ will not necessarily be equal to 1, and homogeneous co-ordinates
must be divided through by ξ to yield the correct Cartesian co-ordinates.

44



2.2 Perspective projection

The homogeneous form of these equations enables the overall imaging process to be
simplified to the following form:

w̃ = K
[

R T
]

X̃ξ u
ξ v
ξ

=

ku fx 0 u0

0 kv fy v0

0 0 1


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz




X
Y
Z
1

 (2.8)

where K is the camera calibration matrix containing the ‘intrinsic’ camera parameters. ξ is
arbitrarily set to 1 in the world point for simplicity, but will have a non-unit value in w̃.

Given the pixel coordinates of an image feature and the intrinsic camera parameters,
Equation 2.8 may be used to determine the coordinates of that point in 3-D space, but only
up to an arbitrary scale factor due to ξ . In other words, using a single camera one can
determine the ray along which the point lies in space, but not the point’s distance from the
camera. This is sometimes referred to as ‘scale ambiguity’.

To remove the scale ambiguity in the imaging process, triangulation is required using
a second image of the point from an alternative viewpoint. The rotation and translation
between the viewpoints must be known. This is the basis of stereo vision.

2.2.1 Distortion correction

The pinhole camera model described by Equation 2.8 assumes that straight lines in world
coordinates remain straight in the image plane. In reality, camera lenses introduce non-linear
distortion to the imaging process, and the effects of this distortion must be removed before
the pinhole camera model is applicable.

The distortion model described by Heikkilä [159] incorporates both radial and tangential
distortion. In Heikkilä’s model, the effects of radial distortion are modelled by:

XI,distorted = XI(1+ k1r2 + k2r4 + k3r6 + . . .)

YI,distorted = YI(1+ k1r2 + k2r4 + k3r6 + . . .)
(2.9)

where r =
√

u2 + v2 and k1, k2, . . . are the radial distortion coefficients. It is common for
two or three radial distortion coefficients to be adopted, but additional coefficients can be
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used for more severe distortions. Tangential distortion is modelled as follows:

XI,distorted = XI +2p1XIYI + p2(r2 +2X2
I )

YI,distorted = YI +2p2XIYI + p1(r2 +2Y 2
I )

(2.10)

where p1 and p2 are the tangential distortion coefficients.

Often a simplified distortion model is adopted, such as the ‘FOV-model’ of Devernay
and Faugeras [160] which utilises a single radial distortion coefficient. This simplified
model is used in Klein and Murray’s PTAM [123]. In this case the transformations from
camera-centred coordinates to pixels (Equations 2.6 and 2.7) are modified as follows:[

u
v

]
=

[
u0

v0

]
+

[
fx 0
0 fy

]
r′PTAM
rPTAM

[
Xc/Zc

Yc/Zc

]
(2.11)

where

rPTAM =

√
X2

c +Y 2
c

Z2
c

r′PTAM =
1
s

arctan
(

2rPTAM tan
s
2

)
(2.12)

and s is the distortion coefficient.

Equations 2.9 and 2.10 (or Equations 2.11 and 2.12) can be incorporated into the pinhole
camera model (Equation 2.8) to model the full distorted imaging process. In practice,
distortion is usually corrected first, and then the pinhole camera model is assumed valid in
subsequent operations for simplicity.

2.3 Camera calibration

The intrinsic camera parameters, fx, fy, ku, kv, u0 and v0 can be obtained through a ‘camera
calibration’ process such as described by Zhang [161]. If Equation 2.8 is updated to include
distortion, the distortion parameters k1, k2, . . . and p1, p2 can be determined at the same
time.

Given a number of known solutions for w̃ and X̃, optimization techniques may be used to
solve for K, R, T in Equation 2.8. In practice, this typically involves capturing images of
a known checkerboard pattern at multiple orientations and locations relative to the camera.
For each image, corner detection methods can be used to detect the checkerboard corners
and hence determine w̃. World coordinates of the pattern corners X̃ are known given the
size and number of squares in the checkerboard grid, and by defining the origin of the world
coordinates to be coincident with one of the corners of the checkerboard.
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2.4 Stereo camera calibration

Popular implementations of the camera calibration process include the MATLAB ‘Com-
puter Vision System Toolbox’ [162], Bouguet’s ‘Camera calibration toolbox for MATLAB’
[163] and the OpenCV camera calibration functions [164]. All these implementations utilise
Zhang’s calibration process [161] with Heikkilä’s distortion model [159]. The MATLAB
implementations utilise three radial distortion coefficients (k1–k3) while the OpenCV imple-
mentation utilises up to six (k1–k6).

The ‘reprojection error’ is defined as the error between the observed pixel location of
the point w̃ and the predicted pixel location projected onto the image plane from the world
coordinate X̃ using Equation 2.8. The goal of the optimization algorithm is to minimise the
squared sum of reprojection errors in each image. Usually between 20 and 30 images are
required for the optimization to converge to acceptable accuracy (≈ 0.5 pixels).

2.4 Stereo camera calibration

A stereo camera pair consists of two cameras (left and right) separated by a fixed distance (the
‘stereo baseline’), capturing simultaneous images of a scene from different viewpoints. Using
feature-matching and triangulation, stereo cameras are able to determine depth information
from a scene, thereby removing the scale ambiguity inherent in mono camera systems.

Traditional stereo vision algorithms (see [157]) require that the relative rotation and trans-
lation between the left and right cameras must be known, in order to perform triangulation. It
is sometimes useful, but not necessary, to also ensure that the optical axes are parallel and that
the left and right image planes are coplanar. This yields horizontal epipolar lines, meaning
that left-right feature matching reduces to a simple horizontal scanning process [157]. This
is approximated by mounting the cameras laterally aligned and in parallel (parallel stereo),
but small misalignments must be compensated for. A ‘stereo rectification’ process is used to
apply small corrections to left and right images to compensate for these misalignments.

In general, the stereo baseline and relative orientation between the left and right cameras
(the ‘extrinsic’ camera parameters) will not be known precisely and must be determined
through a ‘stereo calibration’ process. This is in addition to the single camera calibration
process required to determine the ‘intrinsic’ camera parameters. Once the relative orientation
of the cameras is known, ‘stereo rectification’ may be performed. Distortion correction is
usually applied to the images first, followed by stereo rectification. In this work, parallel
stereo is assumed, and so stereo rectification is required.

The goal of the stereo calibration process is to estimate the rotation and translation from
right to left camera origins, denoted Rrl and Trl (where l and r refer to the left and right
cameras). With reference to Figure 2.2, for a common point in 3-D space observed in both
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left and right images, the camera-centred coordinates of that point are related as follows:

Xc,r = RrlXc,l +Trl (2.13)

From this, using Equation 2.1, it can be shown that:

Rrl = RrR
ᵀ
l (2.14)

Trl = Tl −Rᵀ
rlTr (2.15)

In a similar manner to the single camera calibration process, the values for Rrl and Trl

can be estimated by observing a known checkerboard pattern (X̃), and matching common
feature points between left and right images (w̃l , w̃r). By observing the checkerboard from
multiple viewpoints, Equations 2.8, 2.14 and 2.15 can be solved for Rrl and Trl using a least
squares optimization scheme, minimising the reprojection errors.

Once a stereo camera rig has been calibrated, the rectification transformations must be
computed so that images can be rectified in real-time. The following is a simplified overview
of the rectification process described by Fusiello et al. [165].

Rectification involves applying rotation transformations to left and right images to align
the optical axes, followed by a scale adjustment of one of the images to align the image
planes. The rectification rotation matrix is calculated as:

Rrect =
[
eᵀ1 eᵀ2 eᵀ3

]ᵀ
(2.16)

where:

e1 =
Trl

∥Trl∥
e2 =

1√
T 2

rl,x +T 2
rl,y

[
−Trl,y Trl,x 0

]ᵀ
e3 = e1 × e2 (2.17)

Left and right camera coordinates can then be rectified as follows:

Xc,l,rect = RrectXc,l Xc,r,rect = RrlRrectXc,r (2.18)

followed by a simple scale correction.
Implementations of the stereo calibration and rectification algorithms based on the above

theory are available in MATLAB’s ‘Computer Vision System Toolbox’ [162] and in the
OpenCV libraries for C++ and Python [164].
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Chapter 3

Development of an articulation angle
sensor

In this chapter, two vision-based methods for measuring the articulation angle of articulated
HGVs are described: template-matching and Parallel Tracking and Mapping (PTAM). A
single rear-facing camera centrally mounted behind the tractor cab was adopted in a similar
manner to previous work on the topic by Harris [73]. Simulations of the proposed methods
were conducted using a model of a tractor semi-trailer, comprising a dynamic ‘bicycle model’
for vehicle dynamics and a CAD-based visual model to generate image data.

The chapter begins with description of the vehicle simulation model used. Next, the
theory and implementation of the template-matching and PTAM methods are described,
followed by a simulation-based investigation into their performance and behaviour.

3.1 Simulation model

The simulation environment consisted of a tractor semi-trailer vehicle model and a CAD-
based visual model. The vehicle model was used to generate appropriate articulation angle
signals for a given steer input and vehicle speed. The visual model was used to generate
representative image data to match these articulation angle signals.

3.1.1 Dynamic vehicle model

A dynamic ‘bicycle model’ of a tractor semi-trailer was used to simulate vehicle motion.
The model had three degrees of freedom: lateral velocity, yaw and articulation. Longitudinal
speed was assumed to be constant. A free-body diagram of the model is shown in Figure 3.1.
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Development of an articulation angle sensor

Variables m and J are vehicle mass and moment of inertia about the centre of gravity
(CoG); U and V are longitudinal and lateral velocities; Ω is yaw angular velocity; Fh,x

and Fh,y are longitudinal and lateral hitch forces (measured in the tractor unit’s coordinate
system); Ff , Fr and Ft are tractor front, tractor rear and trailer lateral tyre forces; and δ is the
steer angle at the front axle. Γ is the articulation angle. Subscripts 1 and 2 denote the tractor
and trailer units respectively.

The following assumptions were made:

1. Left and right tyres may be reduced to a single tyre with common steer angle at the
axle centre.

2. Pitch and roll motion is small and can be neglected.

3. Lateral tyre forces are linearly related to tyre sideslip angles by a constant coefficient,
C, the cornering stiffness.

4. The forward speed of the tractor, U1, is constant.

From Figure 3.1, balancing lateral forces acting on the tractor and trailer units yields:

m1
(
V̇1 +U1Ω1

)
+Ff cosδ +Fr −Fh,y = 0 (3.1)

m2
(
V̇2 +U2Ω2

)
+Ft +Fh,y cosΓ+Fh,x sinΓ = 0 (3.2)

Balancing yaw moments about the hitch point for the tractor and trailer units yields a
further two equations of motion:

(a1 + c1)Ff cosδ + c1m1(V̇1 +U1Ω1)+ J1Ω̇1 − (b1 − c1)Fr = 0 (3.3)

(a2 +b2)Ft +a2m2
(
V̇2 +U2Ω2

)
− J2Ω̇2 = 0 (3.4)

Tyre forces are related to slip angles by a linear cornering stiffness, C, as follows:

Ff =C f α f Fr =Crαr Ft =Ctαt (3.5)

where C f , Cr, and Ct are the sums of front, rear and trailer cornering stiffnesses respectively.
The respective tyre side-slip angles are

α f = tan−1
(

V1 +a1Ω1

U1

)
−δ

αr = tan−1
(

V1 −b1Ω1

U1

)
αt = tan−1

(
V2 −b2Ω2

U2

) (3.6)
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3.1 Simulation model

Trailer kinematics may be related to tractor kinematics using the constraint at the hitch
point. Yaw rates Ω, lateral velocities V , and longitudinal velocities U , along with their first
derivatives, are related as follows:

Ω2 = Ω1 + Γ̇ (3.7)

Ω̇2 = Ω̇1 + Γ̈ (3.8)

V2 = (V1 − (b1 − c1)Ω1)cosΓ−U1 sinΓ−a2Ω2 (3.9)

V̇2 = (V̇1 − (b1 − c1)Ω̇1)cosΓ−U̇1 sinΓ−a2Ω̇2 − Γ̇ [(V1 − (b1 − c1)Ω1)sinΓ+U1 cosΓ]

(3.10)

U2 =U1 cosΓ+(V1 − (b1 − c1)Ω1)sinΓ (3.11)

U̇2 = U̇1 cosΓ+(V̇1 − (b1 − c1)Ω̇1)sinΓ+ Γ̇ [(V1 − (b1 − c1)Ω1)cosΓ−U1 sinΓ] (3.12)

Equations 3.1 to 3.12 were implemented in MATLAB [166] and solved using a standard
ordinary differential equation (ODE) solver. Inputs were tractor steer angle and longitudinal
speed, and the output was articulation angle, Γ. Vehicle parameters were taken from [73] for
a Volvo tractor unit and CVDC box-type semi-trailer. Details of the simulation parameters
are given in Table 3.1.

3.1.2 CAD visual model

A simplified CAD model of a tractor and box-type semi-trailer combination was created
in Autodesk Inventor [167]. The model is shown in Figure 3.2. The front and sides of
the semi-trailer were assumed to be planar. The tractor unit was assumed fixed and the
semi-trailer unit was free to rotate in the yaw-plane about the hitch point.

Representative visual texture was added to the trailer in order to provide the vision
algorithms with a sufficient degree of visual detail. A lack of any visual detail would make
any vision-based method ineffective. It is reasonable to assume some level of visual detail
will be available on trailers, either through mechanical features such as bolts or joins, textural
variations due to surface finish or wear, or company branding in the form of decals or paint
detailing.

A virtual camera was located at the rear of the tractor cab1 viewing the front of the
semi-trailer in a similar configuration to that used by Harris [73]. The simulated camera in
Autodesk Inventor functions as a simple ‘pin-hole’ camera which behaves according to basic

1In reality this means that the camera would be subjected to the motion of the cab, which is connected to the
tractor chassis through a number of compliant suspension elements. The effect of cab motion relative to the
chassis on articulation angle measurement is assumed to be small. In the CAD model, tractor cab and chassis
are modelled as a single rigid body.
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perspective projection theory (Equation 2.8) with no distortion. Ambient lighting was set to
give a reasonable variation in lighting with articulation angle, but with no harsh shadows.
The camera was set to capture greyscale images of VGA resolution (640×480 pixels). The
camera was aligned so as to have its optical axis parallel with the longitudinal axis of the
tractor (and hence the longitudinal axis of the trailer at Γ = 0◦). However, it should be noted
that the CAD software lacked the ability to perfect align the camera with a specified axis,
and so the achieved alignment is only approximate.

Tractor wheelbase, hitch offset and trailer front overhang (h) were chosen to be repre-
sentative of a typical tractor unit at 3.7 m, 0.775 m, and 1.2 m respectively (see Figure 3.2).
The distance from the camera’s optical centre to the front of the trailer (d) was chosen to be
2.3 m. This is larger than what would be expected given the other parameters (it suggests the
rear of the tractor cab is ahead of the steer axle), but was chosen so as to provide a complete
view of the trailer front throughout the full articulation angle range for the pinhole camera.
The complete view of the trailer enabled the possibility of various other algorithms to be
investigated, which could rely on extracting the trailer outline for example. Ultimately, such
methods were deemed unfavourable, but the geometry was retained for the simulation studies.
No significant effects were anticipated as a result of this, other than the trailer occupying a
slightly smaller pixel space than in reality for a typical tractor semi-trailer combination.

The intrinsic parameters of the virtual camera in the CAD environment were determined
without the need for a camera calibration process, given that: (i) there was no distortion, (ii)
pixels were square, (iii) the optical axis was perfectly centred in each image, and (iv) the
focal length was a direct function of the selected viewing angle (which can be set within the
environment). Instead, these were calculated as follows:

ku = kv = 1 (u0,v0) =

(
nu −1

2
,
nv −1

2

)
fx = fy = f =

nu

2tan
(FOV

2

) (3.13)

where nu and nv are the image width and height, and FOV is the field of view (adjustable
within Autodesk Inventor). In this case: f = 243 pixels, (u0,v0) = (320,240) pixels.

3.2 Template-matching method

The underlying concept of the template-matching (TM) method is the ability to generate a
predicted image of the front of the trailer at any articulation angle, using a reference view
of the trailer (i.e. at Γ = 0◦), knowledge of the parameters d and h, and assuming a planar
trailer front. This process is called image warping.
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3.2 Template-matching method

A database of warped images can thereby be generated, and the process of estimating
current articulation angle becomes an image ‘look-up’ problem. A suitable image similarity
metric can be used to compare the current observed image with the images stored in the
database, to determine the closest match and hence estimate Γ.

This method was first proposed by Harris in [73] but was not fully developed. In this
work the method was further developed and refined, and an Unscented Kalman Filter (UKF)
was added to smooth the noisy signal output of the template-matching algorithm.

This section begins with details of the image warping and image matching processes.
The overall template-matching method is then summarised followed by brief discussions of
incremental motion behaviour, large articulation angles and edge detection.

3.2.1 Image warping

Using the pin-hole imaging model it is possible to derive a relationship between the images
of a planar object from two different viewpoints, provided the relationship between the two
viewpoints is known. In this case this is the warping of a datum image, taken of the trailer at
zero articulation, to yield an image of the trailer at non-zero articulation. It is assumed that a
datum image of the front of the trailer can be obtained while the vehicle is driven forwards in
a straight line.

Consider the rotation of the trailer relative to the camera as illustrated in Figure 3.3a.
Identical relative motion between the trailer and the camera can be achieved through a virtual
opposite rotation of the camera about the hitch point with an arc of radius (h+d) as shown
in Figure 3.3b. If it is assumed that the world co-ordinate system is aligned with the camera
co-ordinate system at Γ = 0◦, the rotation and translation of the camera can be described by
the R and T terms in Equation 2.8 respectively. These may be described in terms of Γ, h and
d as follows:

R =

 cosΓ 0 sinΓ

0 1 0
−sinΓ 0 cosΓ

 (3.14)

T =

 (h+d)sinΓ

0
(h+d)(1− cosΓ)

 (3.15)

The relationship between the pixel co-ordinates of two views of a plane is given by

w̃ = Pw̃0 (3.16)
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where P is the ‘planar homography’ matrix between the two images and the subscript ‘0’
indicates the image of the datum position (Γ = 0◦). P is defined as [168]

P = K
[

ξ

(
R+

1
d

TNᵀ
)]

K−1 (3.17)

where N is the normal to the observed plane at Γ = 0◦ (see Figure 3.3b), and ξ is the arbitrary
scale factor due to the scale ambiguity in the (T/d) term. In this case,

N =
[
0 0 1

]ᵀ
(3.18)

Figure 3.4 shows the image of the trailer front at Γ = 0◦ (the datum image) and the
effect of the warping process through the transformation, P. Before the warping step, the
background must be cropped from the datum image to leave only the trailer face (also shown
in Figure 3.4). This was done manually here, however in reality ‘optical flow’2 could be used
to differentiate the trailer from the background during the same straight line manoeuvre used
to obtain the datum image. This was not explored in this work.

The transformation P is a function of Γ, and so by varying Γ through the anticipated
articulation range a database of warped images can be generated. A suitable increment
may be chosen between warped images, which ultimately limits the precision of the look-
up process. To achieve a resolution of 0.1◦ would require an increment of 0.1◦. Smaller
increments would unnecessarily increase the computation time required for creating the
database.

The image warping process converts each pixel location (and associated intensity) from
image co-ordinates to world coordinates, and then to image coordinates at a new view point.
In reality integer pixel locations in the original image will not necessarily translate into integer
pixel locations in the warped image, and so interpolation is used in many implementations of
this process (such as in the VLFeat [169] and OpenCV [164] software libraries). Bilinear
interpolation was used in this work.

It is worth noting at this point that the image of the trailer face at a given angle is
dependent on the geometry of the trailer: the location of the hitch point relative to the camera
and the front overhang of the trailer. These will affect the translational component of the
relative motion between camera and trailer, which is fundamental to the image warping

2Optical flow is the apparent motion of image features or pixels between subsequent frames in an image
sequence as the camera moves relative to the environment, or vice versa. In the case of the straight line
manoeuvre, pixel motion would be detected in the background as pixels of the road surface, sky and roadside
move towards the vanishing point in the image, but very little motion would be observed in the region of the
trailer face as it is approximately stationary relative to the camera. This could be used to segment the datum
image into trailer and background regions.
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equations. Harris neglects this component and assumes that the variations in trailer geometry
can be accounted for by incorporating a scale dimension only. Although this appears to work
for the single case presented, the properties of perspective projection dictate that this was not
an adequate solution.

3.2.2 Image matching

Once the warped image database has been generated and stored offline, the primary task
of the algorithm is to compare each observed image with those in the image database and
determine which database image provides the best match. The value of Γ at which the best
matching database image is generated is then the estimated value of Γ. The entire database
need not be searched, but rather a narrow search range based on the previous estimate may
be used to reduce computation.

To determine the best match, a suitable similarity measure must be used. In computer
vision, template-matching is the task of locating a known (usually smaller) template image
within another image, indicating the existence of a particular object in that image. This is
usually achieved through the combination of a sliding window search procedure and some
image similarity metric. The image similarity metric gives a measure of the quality of the
match at each location of overlap between template and image, so that the the location giving
rise to the highest similarity determines the location of the template match within the search
image.

For images of similar size, the magnitude of the similarity metric at the location of the
template match may be compared between multiple images to determine which two images
are the most similar. This is the concept used here in finding the best-matching database
image.

Image similarity metrics

Template-matching was introduced in Section 1.7.4. This section focusses specifically on the
different methods for evaluating the ‘quality’ of a successful template match. For the current
application of template-matching, image similarity is the primary task and template match
location is of secondary importance (though still useful). An extensive survey of image
similarity methods up until 2003 is presented in [138] with relatively few additions to the
field since then. A summary of these pre-2003 methods is discussed here, along with more
recent developments.

In ‘dense’ template-matching, similarity can be determined through either a sum of
differences technique or cross-correlation. Additional processing steps such as normalising
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can also be included to reduce sensitivity to brightness, contrast and noise. These types
of methods are often computationally demanding, and so not often suited to real time
applications.

However, the computation of cross-correlation methods can be accelerated through
calculation in the Fourier domain using the convolution theorem, such as in Lewis’ ‘fast
normalised cross correlation’ method [139]. Speed improvement in intensity-methods may
also be achieved through the use of image pyramids—a sequence of down-sampled versions
of the same image. This allows for an initial computationally efficient search in a low
resolution version of the image in order to identify a region of interest in which to limit
subsequent higher resolution (and more computationally expensive) searches. This is known
as a coarse-to-fine strategy.

Edge detection (e.g. Canny edge detection [144]) can also be carried out prior to the
correlation calculation. This can reduce the search region and improve precision and robust-
ness to variations in brightness and contrast. It also enables a number of binary correlation
techniques to be used for the comparison step (e.g. [170, 171]), and possibly contour de-
tection and matching methods (e.g. [172–174]). Contour matching raises the possibility of
identifying and matching geometric attributes of the trailer such as its outline.

Other ‘dense’ template-matching methods can be grouped together as information-based
methods, which use distributed trends in the image data (i.e. pixel intensities or RGB values)
for comparison purposes and do not necessarily consider the spatial structure of images.
Methods include mutual information or entropy [140], histogram matching [141] and the
‘perceptual hash’ [175]. Dense methods in their basic form are not usually robust to large
changes in scale, rotation, or out-of-plane warping, though some examples of these have
been presented [138].

Feature-based methods involve the extraction of feature points, the subsequent matching
of these features between the template and search image, and a measure of the similarity of
the group of matched features. Feature types and common methods for feature detection and
description were described in Chapter 2. The similarity of feature groups between images is
often computed through spatial structure, using for example the Hausdorff distance metric.

Two recent developments in feature-based template-matching techniques include [170],
a computationally efficient method using HoG features and Hamming distance which is
currently not scale or rotation invariant, and the ‘Best-Buddies Similarity’ method [176],
which is robust to transformations as well as background clutter and occlusion.

For many applications, feature-based methods are useful in that they are discriminative
and invariant to brightness, orientation and scale. However, the assumption of available and
distinct features is one disadvantage of feature-based methods, and intensity-based methods
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have been shown to perform better in images where visual detail is finer in scale. This may
be the case for HGV trailers, unless commercial branding or other visual features are visible.

For the current application, the primary criteria in choosing an image comparison method
are a lack of invariance to transformations, robustness to a possible lack of distinct features,
low computational demand and robustness to variations in brightness and contrast. It was
concluded that normalised cross-correlation, specifically the computationally efficient imple-
mentation by Lewis [139], would be used. This offers no invariance to transformations, is not
feature-based and so is potentially more robust to low-detail visual texture, and is robust to
changes in brightness and contrast. The details of this implementation will now be described.

Fast normalised cross-correlation

With reference to Figure 3.5, γ(u,v) is the 2-dimensional normalised cross-correlation (NCC)
calculated at each point over which the template image, It , is ‘swept’ over the search image,
I. The basic form of NCC is given by [139]:

γ(u,v) =
∑x,y

[
I(x,y)− Īu,v

][
It(x−u,y− v)− Īt

]√
∑x,y

[
I(x,y)− Īu,v

]2
∑x,y

[
It(x−u,y− v)− Īt

]2
(3.19)

where:

• Īt is the mean of the template,

• Īu,v is the mean of I(x,y) overlapped by the template It at map coordinate (u,v), and

• ∑x,y is the sum over vertical and horizontal pixel coordinates in the region of overlap.

If I is an nu × nv image and It is an mu × mv template, γ will be a matrix of size
(nu +mu −1)× (nv +mv −1), representing every possible pixel overlap. The extent of the
overlap will range from x ∈ 1 and y ∈ 1 (only one pixel corner overlaps, as shown in top
left and bottom right of Figure 3.5) to x ∈ 1, . . . ,mu and y ∈ 1, . . . ,mv when the full template
overlaps the image, assuming the template to be always smaller than the search image. The
warped image is taken to be the template and the observed image is the search image.

As Lewis noted [139], without normalisation NCC is a simple convolution of two
signals, which can be computed efficiently by multiplication in the frequency domain in
accordance with the convolution theorem [177]. With normalisation, the addition of the

∑x,y
[
I(x,y)− Īu,v

]2 term in the denominator prevents this computation in the traditional
sense. However, the numerator of Equation 3.19 may still be computed in the frequency
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domain as follows, where F() is the discrete Fourier Transform operator:

num
γ (u,v) = F−1{F (

I′
)
F∗ (I′t

)}
(3.20)

where I′(x,y) = I(x,y)− Īu,v and I′t(x,y) = It(x,y)− Īt .

Calculation of the denominator remains a computationally expensive task and cannot be
achieved by frequency domain methods. Instead, Lewis proposed an algorithmic method to
improve speed, the details of which are outlined in [139]. The net effect is a computational
efficiency comparable to that of frequency domain computed cross-correlation, offering a
significant improvement in the speed of the calculation, especially as the size of the template
approaches that of the image.

The warped images of the trailer face are not rectangular, and hence background pixels
were introduced to produce a rectangular image. These pixels (of arbitrary value) can lead to
misleading results during the cross-correlation process and so must be removed. Figure 3.6
demonstrates the automatic cropping process adopted for this purpose. Each warped image
was cropped to the width of the trailer face, and the height of the shortest side. Cropping
the image by a few extra pixels at all sides was found to improve robustness, but too large a
border was found to remove useful visual texture and reduce precision. An additional border
of 20 pixels was found to be a good trade-off and was incorporated.

As the cropped template image was swept over the search image there was a peak in
the correlation coefficient at the point where the image features overlapped the most. An
example is shown in Figure 3.7a in which the peak is clear. The corresponding overlap of
the template with the search image is shown in Figure 3.7b. This maximum correlation
coefficient was used as the measure of image similarity between the two images.

To improve robustness and computation speed, the location of the maximum correlation
coefficient in the correlation map from the previous time step was used to define a search
window (or region of interest) in the current correlation map, within which to search for
the current maximum. This is shown in Figure 3.7a. This effectively provided a limit on
the distance in pixels which the trailer face was expected to move over a time step. This
avoided erroneous matches between the template image and features in the background in
the observed image by ignoring unreasonably large changes in match location, a problem
observed in preliminary simulations.

For the low speed scenarios considered here, a window size of 60×40 pixels was found
to be suitable. In future, a variable size window or more sophisticated tracking method may
prove more flexible.
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Edge detection

The use of edge detection before the NCC step was considered as a possible means to improve
precision. In practice, this would be applied to all database images, and to each observed
image as it is captured. The cross correlation step would then be carried out between two
edge images instead of greyscale images. Edge detection can be performed by blurring an
image with a Gaussian filter and then determining the contours of maximum pixel intensity
gradients, producing a new binary image with line edges plotted along these contours. The
scale at which edges are detected can be adjusted by adjusting the size of the Gaussian filter.
The effect of the edge detection is shown in Figure 3.8 for the observed image (cropped).

The effectiveness of this approach was explored with a sample set of images from the
CAD model. An observed image at 30◦ was compared with warped template images in a
±1◦ range at 0.1◦ increments. ‘Canny’ edge detection was used [144] with lower and upper
intensity thresholds of 30 and 90 respectively (change in intensity per pixel).

The results of the correlation analysis with and without edge detection are shown in
Figures 3.9a and 3.9b respectively. As expected, the peak maximum correlation coefficient
is at the correct template angle of 30◦. However, the behaviour for the two cases is quite
different as templates away from the correct value are assessed.

Also evident are oscillations in NCC with warp angle, resulting in localised ‘peaks’. This
will be henceforth denoted as ‘aliasing’, as a result of the integer values of pixel locations3.
To demonstrate how this works in practice: if a single-pixel-width vertical line of intensity 1
warps to a mid-pixel location in the new image, the result will be a two-pixel-width vertical
line of intensity 0.5. There will then be a slightly higher warp angle at which the vertical line
will be reproduced again at intensity 1, shifted one pixel laterally.

If another image of a vertical line of intensity 1 was cross-correlated with all these
warped images generated within a small range of warp angles (such that the width of the
line itself does not vary significantly), then the resultant maximum cross correlation will
exhibit multiple local maxima and minima as the line correlates at integer pixel locations and
mid-integer pixel locations respectively. The width of the peaks correspond to the expected
pixel widths at the respective articulation angles.

With edge detection the main peak is very pronounced, and maximum correlation coeffi-
cients drop rapidly away from the peak to values of around 0.4–0.6. Without edge detection,
the drop is more gradual and smooth, and maximum correlation coefficients do not drop

3This definition of aliasing is not completely in line with the definition used more generally in signal
processing and image processing, however they are related in that that they are both caused by a lack of
sampling resolution, resulting in artefacts in the measured signals.
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below 0.9. Edge detection therefore seems likely to offer superior precision, but there is an
important trade-off in the presence of disturbances.

Consider Figures 3.9c and 3.9d—the same tests except with a larger window of 5◦.
Assume that some disturbance has resulted in a previous estimate of Γ = 32◦ (shown) which
is now the centre of the current search range, and that the current search range is 2◦ (±1◦).
In the case of normal NCC, the smooth nature of the curve in this region is such that the
estimate will quickly move towards the correct peak near 30◦, over the next 2 or 3 time steps.
In the edge detection case, the estimate is much more likely to settle at a local peak and
won’t be directed towards the correct peak over subsequent time steps. Further, additional
disturbances may perpetuate the problem, resulting in an unstable drift towards large errors.

Consequently, edge detection was not carried forward as it seemed likely to result in
robustness problems when implemented under realistic conditions.

3.2.3 Summary of the template-matching method

Methods for generating a database of warped images, and for matching an observed image
with images in the database using NCC have been presented. The overall methodology is
summarised in Figure 3.10. A hypothetical controller is shown to indicate how the system
might be incorporated in a real-time control system such as reversing control or jackknife
prevention.

In preliminary simulations, it was found that down-sampling the observed and template
images by one pyramid level (effectively halving the resolution) had only a small effect on
the accuracy of the system while having a significant positive impact on processing speed.
Furthermore, using a search increment of 0.2◦ as opposed to 0.1◦ was also shown to have only
a minor effect on performance while improving processing speed. Both these modifications
were incorporated in the final implementation of the algorithm to improve frame rate, as this
was otherwise impractically slow.

The template-matching algorithm was implemented in MATLAB [166] on a 64-bit
Windows system with a 6-core 3.2 GHz Core i7 processor (see Appendix A) for details.
The ‘vl_imwbackward’ VLFeat [169] function was used for image warping (with bilinear
interpolation). The ‘normxcorr2’ MATLAB function, incorporating the acceleration methods
of Lewis [139], was used for image matching. OpenCV [164] was used for its general image
handling functionality.

640× 480 resolution greyscale images were used. A search range of ±1◦ and an in-
crement size of 0.2◦ were found to be appropriate for the database look-up process. An
additional crop border of 20 pixels was used for warped images. The region of interest
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window size was kept at 60×40 pixels for locating the maximum correlation coefficient in
each correlation map.

3.2.4 Incremental motion behaviour

It is useful to study the relationship between the rotational motion of the trailer and the
resultant lateral movement observed in pixel co-ordinates. Consider Figure 3.11 which shows
the trailer at angle Γ, and rotated by a small increment ∆Γ from this position. For the centre
of the trailer face, the ‘observed’ lateral displacement is denoted e, where ‘observed’ means
incorporating the perspective projection process, as if the imaging plane were located at the
centre of the trailer face.

An expression for e as a function of Γ and ∆Γ may be found by trigonometry, using
the accompanying geometric detail shown in Figure 3.11. Lengths and angles which can
be calculated by simple trigonometric relationships are already indicated in the diagram.
Starting in the right triangle A, σ3 can be found as follows:

σ3 = tan−1
(

hsinΓ

h+d −hcosΓ

)
(3.21)

and then, using the sum of angles at an intersection, σ1 is given by:

σ1 = 90◦+σ3 +Γ (3.22)

By Pythagoras’ theorem in triangle A, L1 can be found:

L2
1 = (hsinΓ)2 +(h+d −hcosΓ)2 (3.23)

followed by L2, by the cosine rule in the combined triangle BC:

L2 =
√

L2
1 +h2 tan2 ∆Γ−2L1h tan∆ΓcosΓ (3.24)

Finally, by the sine rule in triangle BC, σ4 is given by the expression:

σ4 = sin−1
(

h
L2

tan∆Γsinσ1

)
(3.25)

and this enables σ2 to be calculated by the internal angles of the triangle:

σ2 = 180◦−σ1 −σ4 (3.26)
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Having found an expressions for σ2, e can be found using the sine rule in triangle C,
which simplifies to give the following equation:

e =−hsinσ2 tan∆Γ

sin(Γ+σ2)
(3.27)

Given e, the lateral displacement in world co-ordinates, the resultant displacement in
the image plane is denoted e′. Given that ku = 1 for the CAD model (see Section 2.2), e′ is
equivalent to a lateral pixel displacement of ∆u. Variables e′ and ∆u are related to e by

∆u(Γ,∆Γ) = e′ =
(

f
Zc,A

)
e (3.28)

where Zc,A is the co-ordinate of the centre of the trailer face and is found to be

Zc = d +h(1− cosΓ) (3.29)

The above equations may be used to examine the behaviour of ∆u as Γ and ∆Γ are varied,
where ∆Γ may be interpreted as the increment size of the warped image database (provided
it is small). Figure 3.12 shows the variation in ∆u with Γ and ∆Γ for the CAD scenario. This
was generated for selected values of ∆Γ (0.05◦,0.1◦,0.15◦,0.2◦) and for the entire range of
Γ for the case of VGA resolution images (640×480). The figure will scale linearly with a
variation in resolution.

It is clear from the plots that ∆u = 0 for a particular magnitude of Γ which is denoted
Γlim (≈ 70◦). This represents the point where the trailer face normal is perpendicular to the
camera line of sight (see Figure 3.11). At this point, incremental movement of the trailer
face is parallel to this ray and produces no lateral displacement in the image plane. Beyond
this point the face is no longer visible. (Figure 3.12 shows the translation of the face in the
opposite direction beyond this point, as the trailer continues to rotate.) From Figure 3.11,
this is the point where σ2 = 0◦ and so e = e′ = ∆u = 0. This point, Γlim, is a function of h
and d only and can be calculated according to:

Γlim = cos−1
(

h
h+d

)
(3.30)

Knowledge of this point is useful because it describes the limit beyond which the front
face of the trailer can no longer be used for template-matching or other algorithms. For the
simulated values of h (1.2 m) and d (2.3 m) this angle is 69.95◦.
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3.2.5 Large articulation angles

To estimate angles beyond Γlim, the trailer sides would need to be incorporated into the
template-matching scheme. In Harris’ results [73] it was clear that large errors can result at
angles close to this point, especially when using the homography decomposition method.

Consider again the incremental motion behaviour of Figure 3.11. Points D and E can be
taken to be the ‘centres’ of the trailer side faces, and for the moment it is assumed that datum
images of the trailer sides are available. Using the same geometrical approach as above, but
with h replaced by g and d replaced by (d +h)−g (see Figure 3.11), the incremental motion
behaviour for the trailer sides may be calculated.

Results for both the trailer front and sides for 0.1◦ articulation angle increments are
shown in Figure 3.13. The limit angle for the trailer sides is |Γlim|= 20.6◦; |Γlim|= 69.95◦

for the trailer front as before. There are therefore two ranges between −69.95◦ and −20.6◦

and between 20.6◦ and 69.95◦ in which both the front face and a side face are visible.

A higher value of pixel movement per increment translates into a better sampling ratio
between pixel space and angular trailer motion which should provide more robust measure-
ment. Therefore the ideal point at which to transition from template-matching based on the
front face to the visible side face is the point at which these curves cross. These transition
points are denoted Γtrans and in this case Γtrans =±44.8◦.

The template-matching algorithm could be extended to accommodate this procedure.
Some improvement in accuracy might be expected given that narrow template images of the
trailer front near Γlim could be avoided, and side datums could be used at that point instead
(or front and side results could be averaged in this region).

Incorporating side images in such a way was explored by Harris [73], however results
demonstrated very large errors in the region of transition. Although it may be possible to
improve the transition method from that used by Harris, the requirement for side datum
images from a practical point of view is limiting, and would require additional calibration
steps or additional information about the trailer. As such only the front images were used,
and TM was not assessed beyond ±Γlim.

For this reason investigation of the template-matching algorithm was restricted to the use
of the front face, and hence it was limited by geometry to operate within Γlim. For the current
simulation geometry this still accommodates a large range of close to 70◦ ≤ Γlim ≤ 70◦.
Other geometries may be further restricted, but it is likely that the range will be sufficient for
most typical driving manoeuvres. Exceptions might include reversing around a tight corner.
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3.3 Unscented Kalman Filter

Preliminary simulations of the template-matching method exhibited noise in the output Γ

signal. An Unscented Kalman Filter (UKF) [178] was incorporated to smooth these noisy
measurements. In this section details of the filter and the underlying vehicle model are
described. The combined template-matching and UKF algorithm will be referred to as
‘TM+UKF’, to differentiate it from the unfiltered TM algorithm.

3.3.1 Kinematic vehicle model

A non-linear kinematic vehicle model was used so as to have the simplest model to capture
the low-speed yaw motion of the vehicle accurately. This is relevant in a commercial context
in which vehicle parameters may have to be estimated. The model incorporates non-linear
articulation angle behaviour at higher angles.

The 3-degree-of-freedom kinematic ‘bicycle model’ used is illustrated in Figure 3.14.
As before, c is the hitch offset, Ω is yaw rate, and U and V are the longitudinal and lateral
velocities at the rear axle respectively. The wheelbase is l. Tractor and trailer parameters are
subscripted 1 and 2 respectively. The steer angle is δ and the articulation angle is Γ.

By kinematic arguments, we note that:

Ω1 = (U1/l1) · tanδ (3.31)

Ω2 = Ω1 + Γ̇ (3.32)

V2 = (V1 + c1Ω1) · cosΓ−U1 sinΓ−Ω2l2 (3.33)

The kinematic assumption, which is reasonable at low speeds, requires that V1 =V2 = 0.
Assuming U1 to be constant, combining Equations 3.31–3.33 yields the following non-linear
state equation:

Γ̇ =−U1

(
− c1

l1l2
tanδ cosΓ+

1
l2

sinΓ+
1
l1

tanδ

)
(3.34)

To account for tyre scrub effects of multiple unsteered axles in an axle group, the
equivalent wheelbases concept was used [179]. The wheelbases l1 and l2 may be redefined
as follows:

leq = l +
T F

l
+

T F
l

(
Cr

C f

)
(3.35)
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where C f and Cr are the sums of front and rear tyre cornering stiffnesses (assumed linear)4.
T F is the ‘tandem factor’ and is defined as:

T F =
∑

na
p=1 ρp

na
(3.36)

where ρ is the axle spacing measured from the geometric centre of the axle group and na is
the number of axles in the group.

3.3.2 Filter description

The Unscented Kalman Filter (UKF) [180, 181] is a non-linear filter which, unlike the Ex-
tended Kalman Filter (EKF), does not require the derivation of Jacobian matrices, analytically
or otherwise. Rather, the non-linearities of the system model are accounted for through the
use of carefully chosen ‘sigma points’ which accurately capture the mean and covariance of
the random variable being propagated. The UKF is at least second-order accurate whereas the
EKF is only first-order accurate, and yet it maintains a comparable computational efficiency
to the EKF [181]. Full details of the UKF are given in Appendix B.

In the case of the kinematic bicycle model the state vector may be simply defined as
x = Γ. In discretised form, Equation 3.34 is the process model, F. The measurement model,
H, is simply yk = ΓT M where ΓT M is the noisy template-matching measurement output.
Measurement and process noise were assumed to be zero-mean Gaussian with covariance W
and Q respectively.

For non-constant speeds, U1 may be assumed to be constant over a time step. Therefore,
although Equation 3.34 assumes constant velocity, instantaneous values of U1 were used
in the UKF. The filter was implemented in MATLAB alongside the template-matching
algorithm.

3.4 Parallel Tracking And Mapping method

The second image processing method explored for articulation angle measurement was
Parallel Tracking and Mapping (PTAM). Unlike template-matching, this is a 3-D approach
which uses feature tracking to estimate the 6-degree-of-freedom pose of a camera relative to
an observed scene. An outline of the algorithm is presented here, along with details of the
implementation of the algorithm for the current task.

4Tyre cornering stiffness is load-dependent, and so this introduces a sensitivity to loading conditions. For
trailers, the third term in Equation 3.35 may be disregarded [47], but the issue remains for the truck. However,
in Section 3.6.4, sensitivity to the equivalent wheelbase (and hence tyre stiffness) is shown to be negligible.
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3.4.1 Introduction

The PTAM algorithm [123] was developed for augmented reality applications using hand-
held cameras. It is a solution to the monocular SLAM problem (Simultaneous Localisation
And Mapping5) and is an alternative to existing SLAM approaches such as EKF-SLAM and
FastSLAM. In the context of mobile robotics and augmented reality, the SLAM problem is
one of estimating the pose of a moving agent within a predominantly static scene (‘localisa-
tion’), while creating a map of the scene (‘mapping’). The two tasks are interdependent and
cannot be performed entirely in isolation of each other.

The SLAM problem is not fundamentally dissimilar to the problem of trailer motion
sensing. Here the goal is to determine the pose of the trailer relative to the tractor. The
camera is static (relative to the tractor) and the scene (the trailer) is moving but not deform-
ing. Provided the trailer occupies the majority of the camera field of view, the problem is
interchangeable.

PTAM differentiates itself from typical SLAM approaches primarily through the parallel
nature in which it performs the two tasks of mapping (generating a 3-D map of the observed
surroundings) and tracking (locating the camera’s pose within the surroundings). The two
tasks are performed in parallel processing threads with only intermittent communication
between the two [123].

Unlike the ‘frame-by-frame’ approach of typical SLAM algorithms, mapping is not
updated at every frame but is limited only to certain ‘keyframes’ where sufficient camera
translation has occurred for the mapping update to be meaningful. This allows for a computa-
tionally more expensive but more accurate method of mapping to be performed. In addition,
by taking mapping out of the tracking thread, more computational time is made available for
the tracking task, resulting in more accurate camera pose estimation [123].

Murray and Klein’s [123] application of PTAM to augmented reality for hand-held
cameras required the observed scene to contain a dominant planar surface. However, this
was only a requirement of that particular application, so as to introduce ground-based virtual
agents into the scene. The PTAM algorithm itself makes no assumptions regarding planar
surfaces and is theoretically applicable to arbitrarily non-planar scenes.

This means that the algorithm would be applicable to theoretically all trailer shapes,
including box-type trailers, tankers with domed fronts, trailers with front-mounted refrig-
eration units, and possibly even abnormal load trailers or car-carriers. As more of the
trailer is viewed with increasing articulation angles, additional keypoints can be added to the
three-dimensional map of the trailer, allowing for efficient recall when viewed again.

5The ‘localisation’ in SLAM and ‘tracking’ in PTAM can be taken to have the same meaning: determining
the 3-D pose of the camera relative to the scene.
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Loop closure (Section 1.7.2) is an important aspect of SLAM-type algorithms, especially
in the context of mobile robotics. Loop closure is the ability to recognise a pre-visited scene
map and hence reduce the pose and map errors which have accumulated since visiting that
location previously. Although this remains a difficult problem, it is of little consequence
to this application. The observed scene is unchanging, except when articulation angles are
sufficiently large such that the front face of the trailer (i.e. that of a flat-fronted trailer)
disappears from view and is replaced with a view of the side of the trailer. This is not deemed
to be problematic as the original scene is not diverged from significantly.

3.4.2 Theory

A detailed description of PTAM’s underlying theory can be found in [123]. A summary is
given here.

PTAM consists of two parallel processing threads: a mapping thread and a tracking
thread. Assuming a map of 3-D feature points has already been generated, the tracking thread
is responsible for matching detecting features in the current frame with features observed
in previous frames, and thereby updating the camera’s pose in the current frame. Thus the
motion of the camera is tracked in a known 3-D scene. Tracking is performed at frame rate
(i.e. at each new frame).

Details of the tracking task may be summarised as follows:

1. FAST features [182] are detected in the current image at four image pyramids levels
(i.e. four versions of the same image, each down-sampled by a factor of two relative to
the preceding level). A small image patch around each feature point is also recorded,
assuming the feature to be locally planar.

2. A ‘prior’ estimate of the camera’s pose (position and orientation) is calculated based on
its previous position using a decaying velocity motion model (similar to an alpha-beta
filter [183]).

3. Known 3-D map points are projected into the current image frame. The pin-hole model
(see Equation 2.8) is used and distortion is accounted for using the FOV-model [160]
(Section 2.3). The planar feature patches are warped to accommodate the change in
camera pose (similar to Equation 3.17 but using a simplified affine rather than full
perspective model).

4. These projected points are matched to detected points in the current image using a
fixed-range search around their predicted locations. An initial coarse search is done
with only 50 features.
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5. The camera pose is updated using the matches of the 50 points. A further update of
the pose is performed using up to 1000 remaining points, searching over a smaller
window.

The mapping thread is responsible for building the 3-D map of feature points relative
to the global reference frame defined during initialisation. This does not run at frame rate
(nor does it need to), but rather performs more intensive map updates when necessary,
independently of the tracking thread. The mapping task may be summarised as follows:

1. The first map is built initially using a stereo technique. This is the stereo initialisation
step. Two images of the same scene are manually captured with a moderate translation
of the camera between them. These two images are the first two keyframes. Because
the magnitude of this motion is not known exactly, assumptions are made and the map
is only reproduced up to an arbitrary scale factor.

2. The map is continually expanded and refined with the addition of new keyframes. New
keyframes are added when necessary, provided at least 20 frames have passed since
the last keyframe and there is a minimum distance from other keyframes. This avoids
the pose drift behaviour caused by image sequences from a stationary camera [123].

3. For every new keyframe, local bundle adjustment [124] is performed to iteratively
optimise reprojection errors over all map points and keyframes.

4. When no new keyframes are being added, and the camera is viewing previously
explored sections of the map, the mapping thread uses this ‘free time’ to refine the ex-
isting map. This is done using global bundle adjustment, which is too computationally
expensive to be calculated in real-time.

The stereo initialisation step is important, as this defines the initial map upon which all
updates are based. Features are detected in an initial image, making up the first keyframe,
and these features are then continuously tracked. A small translation of the camera relative to
the scene is then required before the second keyframe is taken, capturing the new locations of
these features. For typical hand-held camera applications, Klein and Murray assume the size
of this translation in world co-ordinates to be 10 cm in order to generate the initial map using
the five-point algorithm [184]. As the exact magnitude is not actually known and can vary,
the resultant Cartesian map is only accurate up to a scale factor. Rotations are independent of
this assumption.
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3.4.3 Modification and implementation

The C++ source code for PTAM is open source and required relatively minor modifications
for application here. The algorithm provides two primary outputs: a 3-D map of feature point
locations, and the camera pose in the form of a 3×1 translation vector and a 3×3 rotation
matrix. The rotation matrix is relative to the dominant plane observed during initialisation
(with arbitrary datum), and the translation vector represents the motion of the camera relative
to its original location.

Of interest here is the rotation matrix and particularly the yaw angle of the camera relative
to the observed scene (i.e. the trailer). A general 3×3 rotation matrix can be decomposed
into a combination of sequential rotations about each axis, known as the Euler angles: roll
(φ ), yaw (ψ) and pitch (θ ). This is summarised as follows:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

= Rz(φ)Ry(ψ)Rx(θ) (3.37)

where

Rz(φ) =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 Ry(ψ) =

 cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ



Rx(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ


Euler angles may be extracted from the rotation matrix using a combination of the above

definitions and logic to reject multiple solutions. The method of [185] was used for this
purpose.

The above rotations are in the camera co-ordinate frame. The yaw angle may be taken
to be the yaw angle of the trailer relative to the tractor provided pitch and roll variations
are small. In the case of pitch and roll however, one must take care to note the effect of the
transformation from camera to trailer co-ordinates. For example, assume that the trailer is
pitched at 3◦ about its own lateral axis. In the camera reference frame this would register as
a 3◦ pitch angle only when the articulation angle is zero. At an articulation angle of 90◦, this
would register as a 3◦ roll angle.

71



Development of an articulation angle sensor

More generally, this can be accounted for as follows:φ

ψ

θ


trailer

=

 cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ


φ

ψ

θ


camera

(3.38)

The existing motion filter of the PTAM algorithm (a decaying velocity model) was found
to work acceptably well and there was no need to modify it or introduce an UKF as before.

The algorithm was implemented in C++ on a 64-bit Linux laptop computer with a dual-
core 2.4 GHz Core i3 processor and 4GB of RAM (detailed specifications can be found in
Appendix A).

3.5 Simulation scenarios

To generate simulation data, sinusoidal steer signals were input to the dynamic vehicle model
to generate articulation angle responses. The articulation angle signals were then input to
the CAD model to generate the accompanying image sequences for processing by the two
algorithms. Speed was kept constant at 6 km/h. The steer input was also used as the input for
the UKF, with added noise of standard deviation 0.1◦. For the UKF, the measurement noise
covariance, W , was determined experimentally to be (0.48◦)2. The process noise, Q, was
tuned to (0.06◦)2 through trial and error on a few initial datasets.

Three tests were conducted:

1. A reference test with Γ < Γlim (< 69.95◦), with no UKF, no down-sampling and using
an image search increment of 0.1◦. Although this is not the proposed configuration
of the template-matching algorithm and is too slow for practical purposes, the results
provide useful insights into its performance.

2. The reference test was repeated, with one stage of down-sampling and an image search
range of 0.2◦ for the TM+UKF algorithm. This was also processed using the PTAM
algorithm.

3. A test with large articulation angles (up to almost 90◦) was conducted to assess PTAM’s
performance once the sides of the trailer become visible. This test was processed with
PTAM only.

The stereo initialisation process required by the PTAM algorithm was carried out manually
at the beginning of each test run. The first keyframe was obtained for an image close to
Γ = 0◦ at the start of the test. Once the trailer began to rotate, the second keyframe was
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captured after some lateral displacement of the features was evident (likely all in excess of
10 cm). No further manual input was required beyond this point.

In addition, a parametric study of the sensitivity of TM+UKF algorithm variations of
±10% and ±20% in the values of trailer front overhang (h), hitch location (d, c1) and trailer
wheelbase (l2) was carried out.

3.6 Simulation results and discussion

3.6.1 50◦ reference simulation (TM only)

A time history plot of the TM results for the reference simulation is shown in Figure 3.15
with the accompanying error signal. Error variation as a function of articulation angle is
shown in Figure 3.16. The RMS (Root Mean Squared) and maximum errors were 0.26◦ and
0.69◦ respectively, and the average frame rate was 1.3 fps. The standard deviation of errors
was 0.2◦. RMS errors were within the 0.4◦ target, and maximum errors just above the target
of 0.6◦. Frame rate was expected to be low giving the lack of down-sampling and the 0.1◦

search increment.

The error at the first data point (Γ = 0◦) was 0◦ as expected. Here the observed image
was identical to the 0◦ warped image with the exception of cropping. For the remainder of
the test however, the signal is seen to be noisy. Given the idealised nature of the simulations
with only a yaw degree of freedom and no image distortion, the primary cause of errors must
have been either due to the image warping or image matching processes. The source of this
was found to be aliasing, as described in Section 3.2.2.

This effect is best exhibited by considering plots of the variation of maximum correlation
coefficient within the search range at various points throughout the simulation. Figures 3.17a
and 3.17b show the aliasing behaviour at low and high values of Γ respectively. The peaks
and troughs are clear. At Γ ≈ 3.5◦ the spacing between peaks is approximately 5 increments,
or 0.5◦. At Γ ≈ 41.5◦ the spacing is approximately 9 increments, or 0.9◦. Both these results
agree with the incremental motion behaviour exhibited earlier in Figure 3.12.

Figure 3.18a shows how a good result (small error) was obtained when the true value of
Γ was near a peak. Similarly, Figure 3.18b shows how a poor result was obtained when the
true value of Γ was near a trough. Further, when the true value of Γ lies near a trough, the
two peaks either side of it are often similar in magnitude, resulting in large ‘jumps’ in error
(equal to the peak spacing in magnitude) as the estimate jumps from one peak to the other on
sequential time steps. This is demonstrated in Figure 3.19 for t ≈ 24 s. This sharp jump in
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error is clear in Figure 3.15, and was repeated cyclically at the same value of Γ. Figure 3.16
further demonstrates this at Γ ≈ 38◦.

The variation of error with articulation angle exhibits some clear striations (Figure 3.16).
These appear to have been a result of the aliasing process. As new observed images are
compared to the database, the distribution of the peaks and troughs changes. It is therefore
possible that a match follows one peak as the peak moves, before jumping to an adjacent
peak. For −Γ, the peak movement is exhibited in the individual striations, and the jumps
are exhibited by the vertical jumps in error between striations. The behaviour appears
slightly different for +Γ, but the magnitude of the vertical jumps is still coherent with the
aliasing explanation. The nature of the horizontal spacing between striations is unclear. The
asymmetry about Γ = 0◦ is likely a result of imperfect camera misalignment in the CAD
model (described in Section 3.1.2).

In the absence of any external disturbances therefore, the magnitude of errors exhibited
are constrained to the magnitude of the aliasing effect, which in turn is a function of the
system geometry and image resolution. For the current geometry the maximum peak spacing
is 0.45◦ which correlates well with the observed noise in the error signal (a standard deviation
of 0.48◦). It can therefore be concluded that in the ideal case, the accuracy of the template-
matching algorithm is limited by aliasing.

3.6.2 50◦ simulation (TM+UKF, PTAM)

Results for the 50◦ simulation are shown in Figures 3.20 and 3.21. Template-matching results
with and without the UKF (TM, TM+UKF) and PTAM results are shown. Figure 3.21 shows
PTAM and unfiltered TM results only. For the TM+UKF case, RMS and maximum errors
were 0.30◦ and 0.73◦ respectively, down from 0.49◦ and 1.65◦ without the filter. Average
frame rate was 7.3 fps, meaning that measurements could be provided to an external control
processor at 7.3 Hz, at a time delay of 0.14 s.

Errors in the unfiltered signal approximately doubled with the introduction of down-
sampling and a larger search increment as expected, but with the benefit of a near six-fold
increase in frame rate. The UKF effectively corrected for this loss in precision, yielding a
good combination of accuracy and frame rate.

The PTAM results exhibit very low noise (due to its inherent filtering), and yield RMS and
maximum errors of 0.60◦ and 1.14◦ respectively. These are comparable to the unfiltered TM
results, but approximately twice those of the TM+UKF case. The error varies consistently
as a function of articulation angle, suggesting some inaccuracy in an underlying calibration
parameter or the initialisation process. Frame rate was a consistent 20 fps, significantly better
than the TM+UKF algorithm.
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The variation of TM errors as a function of articulation angle exhibits similar striations
to before, but with vertical jumps equivalent to the new aliasing characteristics. These
are clearest for −Γ, with jumps now approximately 1◦ in size, doubled in accordance
with the single-stage down-sampling. The change in search increment does not affect the
aliasing behaviour. The horizontal spacing between striations appears to have increased too,
suggesting that these are also a result of the aliasing process. The asymmetry is attributed to
camera misalignment as before.

The variation of PTAM errors with Γ is smooth, varying in an approximately sinusoidal
manner and with some hysteresis. To some extent, errors are expected to increase with
increasing Γ, as PTAM’s ability to accurately match features from the first keyframe (near
Γ = 0◦) to the current oblique keyframe deteriorates. Small misalignments in the camera
could have resulted in camera rotation measurements not being aligned with the plane of
rotation of the trailer, which would introduce an approximately sinusoidal variation in errors,
possibly explaining the shape of the error trend here. The hysteresis is likely a side-effect of
the tracking algorithm.

3.6.3 90◦ simulation (PTAM only)

Results for the 90◦ test are shown in Figures 3.22 and 3.23. This test was only applicable
to PTAM given that Γ exceeds Γlim (69.95◦). RMS and maximum errors of 0.79◦ and 1.56◦

were obtained, marginally higher than the 50◦ test case. The error trend as a function of
articulation angle (Figure 3.23) is comparable to the 50◦ case in shape and magnitude, and
the same sources of error are suggested.

Keyframes from the trailer sides were detected in these tests unlike before, but these
were obtained at a more oblique view to the keyframes from the trailer front captured during
stereo initialisation. It is therefore possible that the error probability in these feature locations
is higher, contributing to increased errors overall for the large angle simulations. Longer
simulations could possibly show evidence of improved accuracy due to additional bundle
adjustment within PTAM’s mapping thread. Even so, performance is good and the algorithm
is able to cope with high values of Γ beyond Γlim. This is a significant benefit over the
TM+UKF algorithm.

Figure 3.24 shows additional details of the PTAM simulation. The initialisation process
is shown in Figure 3.24a, where features are detected and tracked over a relatively small
lateral translation of the trailer. The detected feature points on the front and sides of the
trailer are shown in Figures 3.24b to 3.24d. Initially only features on the front are in the map;
features on the trailer sides are added to the map as they become visible at higher values of Γ.
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The 3-D map of feature points is shown in Figure 3.24e, along with relative locations of
the camera at each keyframe. A top view is shown in Figure 3.24f, in which some outlying
features are evident, especially in the features on the trailer sides. The errors in the estimated
locations of these feature points will have contributed to the overall pose error as discussed
previously. The worst outliers are on the side of the trailer which is viewed at the highest
values of Γ. When these features were added, the front of the trailer (and hence the entire
initial map) had disappeared from view, making the mapping less accurate in this region
and hence reducing the accuracy of camera pose estimation over the entire map (i.e. all
articulation angles).

A summary of performance in all tests is given in Table 3.2.

3.6.4 Parameter sensitivity

The 50◦ test was used as the basis for a sensitivity analysis of the TM+UKF algorithm. The
effect of 10% and 20% variations in assumed values of trailer front overhang, hitch location,
and trailer wheelbase on RMS and maximum errors was studied. These were deemed to be
the most critical of the assumed parameters on which the TM+UKF algorithm is dependent.
Front overhang forms the basis of the image warping process, hitch location also forms the
basis of the image warping process and is also a parameter required by the UKF, and trailer
wheelbase is only required by the UKF.

Results are shown in Figure 3.25. Sensitivity to front overhang and hitch location is
significant as expected with up to 4-fold increases in errors. In all cases however the algorithm
suffered no robustness issues. It should be noted that the scaled values of these variations are
large: in this case a 20% variation in front overhang equates to 240 mm, and a 20% variation
in hitch location equates to 460 mm. In all cases RMS errors did not exceed 2◦.

It is likely that these values may be assumed known to within variations smaller than
those considered here, especially in countries where vehicle dimensions are tightly controlled.
In countries were vehicle dimensions are less tightly controlled, additional methods for
estimating or refining these values from the measured image data may be required.

There is only a small sensitivity to trailer wheelbase, which suggests that the performance
of the UKF may be fairly robust to vehicle parameter assumptions. Provided measurements
of steer angle and speed are available with suitable accuracy, the filter should perform well at
reducing noise and overall errors over a range of operating conditions.

Note, however, that steer angle sensing is not always available on tractor units, so this
may require an additional transducer in some cases. A simpler alpha-beta type filter as used
in PTAM may prove sufficient in future work, and would remove the need for steer angle
sensing.
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3.6.5 Performance benchmark

A comparison of performance with the published literature is shown in Figure 3.26. The
algorithms are compared against simulation results only from [30, 52, 73–75]. Results from
Bouteldja et al. [30] and Chu et al. [52] are based on state observers. Results from [30] are
in fact for tractor yaw estimation, not articulation angle, but these are deemed to provide an
acceptable comparison. Results from Harris [73] are based on two visual methods explored
with a similar camera configuration. All of Harris’s results required excessive computational
effort with frame rates below 0.2 fps. Recall that the system of Fuchs’ et al. [74, 75] requires
special trailer markers.

The only simulation results which perform better in terms of maximum error are one of
the tests of Chu et al. and the results of Fuchs et al. However, only articulation angles of up
to 3◦ were assessed in [52], and [74, 75] requires impractical special markers. Only one of
Harris’s results is comparable in performance to the TM+UKF and PTAM methods, but this
runs at very low frame rates. Overall both the TM+UKF and PTAM algorithms exhibit very
favourable performance over a large range of articulation angles compared to methods in the
published literature.

3.7 Conclusions

1. Two camera-based concepts for articulation angle estimation for articulated HGVs
have been developed, using a tractor-based rear-facing camera:

(a) a template-matching algorithm initially proposed in [73], with additional devel-
opment and the addition of an Unscented Kalman Filter, and

(b) the PTAM algorithm of [123], developed for augmented reality applications, with
novel application here.

2. In CAD-based simulations, a MATLAB implementation of the template-matching
algorithm exhibited RMS and maximum errors of 0.30◦ and 0.73◦ respectively at
7.3 fps. The algorithm is limited to planar trailer fronts and a maximum articulation
angle (dependent on trailer geometry), and requires some knowledge of vehicle geom-
etry to which its accuracy is sensitive. Precision was shown to be limited by aliasing.
Processing speed could be improved through implementation in C++.

3. The PTAM algorithm (implemented in C++) exhibited RMS and maximum errors of
0.60–0.79◦ and 1.14–1.56◦ respectively at 20 fps. The algorithm makes no assumption
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about the planarity of the trailer front, requires no knowledge of vehicle geometry, and
operates throughout the full range of articulation angles.

4. In this idealised environment with no disturbances, TM+UKF comes closest to the
target measurement accuracies, and being intensity-based it is potentially more robust
to low visual texture trailers. However, PTAM offers significant benefits in terms of
flexibility and computational efficiency, resulting in greater potential for commercial
implementation.

5. Performance of both algorithms was shown to be favourable compared to the published
state-of-the-art.

3.8 Tables and figures

Table 3.1 Simulation vehicle parameters

Parameter Tractor (1) Trailer (2)

Mass, m1, m2 7728 kg 8805 kg
Yaw moment of inertia, J1, J2 26478 kg·m2 84000 kg·m2

Wheelbase, l1, l2 3.7 m 9.7 m
Number of rear axles, na 1 1
CoG location rear of steer axle/hitch, a1, a2 1.051 m 3.0 m
Hitch offset ahead of tractor rear axle, c1 0.775 m -
Front overhang, h - 1.2 m
Tyre cornering stiffness co-efficient, C f , Cr, Ct 201 kN/rad
Camera to trailer front face, d 2.3 m

Table 3.2 Results summary: planar vehicle tests

TM TM+UKF PTAM

Test Γmax (◦) εmax (◦) εRMS (◦) εmax (◦) εRMS (◦) εmax (◦) εRMS (◦)

50◦ (ref.) 50 0.69 0.26 - - - -
50◦ 50 1.65 0.49 0.73 0.30 1.14 0.60
90◦ 84 - - - - 1.56 0.79
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(a) Correlation map (b) Template match location

Fig. 3.7 Normalised cross-correlation between image and warped template (Γ = 37◦)

(a) Greyscale image before edge detection (b) Binary image after edge detection

Fig. 3.8 Canny edge detection on an example trailer image
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Fig. 3.9 The effect of edge detection on the profile of maximum correlation coefficients in
the search range. Correct match shown with dashed line
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Fig. 3.17 Variation of aliasing between low angles (a) and high angles (b)
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Fig. 3.18 A good match (a) versus a bad match (b): the effect of aliasing

Articulation angle (°)
37.2 37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39 39.2

M
ax

. c
or

re
la

tio
n 

co
ef

fic
ie

nt

0.9

0.92

0.94

0.96

0.98

1
Observed match
Ground truth

(a) Before jump (ti)

Articulation angle (°)
37 37.2 37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39

M
ax

. c
or

re
la

tio
n 

co
ef

fic
ie

nt

0.9

0.92

0.94

0.96

0.98

1
Observed match
Ground truth

(b) After jump (ti+1)

Fig. 3.19 A jump of estimated articulation angle between two peaks in sequential data points
(TM).

88



3.8 Tables and figures

A
rt

ic
ul

at
io

n 
an

gl
e 

(°
)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Ground truth
TM
TM+UKF
PTAM

Time (s)
0 10 20 30 40 50 60 70

E
rr

or
 (
°)

-2
-1
0
1
2

PTAM

TM+UKFTM
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Fig. 3.22 Simulation results, Γ ≤ 90◦ (PTAM only)
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(a) Stereo initialisation (b) Features detected on front

(c) Features detected on left side (d) Features detected on right side

(e) 3-D feature map and keyframe locations (f) Top view of 3-D feature map

Fig. 3.24 PTAM feature tracking and initialisation
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Fig. 3.25 TM+UKF error sensitivity to ±10% and 20% variations in parameters (Γ ≤ 50◦)
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Chapter 4

Field tests of the articulation angle
sensor on a tractor semi-trailer

In the previous chapter, the template-matching and PTAM algorithms were developed and
shown to exhibit good performance when simulated in an idealised CAD environment. In
that environment there was no trailer motion outside of the yaw plane, lighting conditions
were consistent and favourable, and cameras were perfect. In practice, trailers will exhibit
pitch and yaw motion as the HGV travels on uneven road surfaces, lighting and weather
conditions will be variable, and cameras will be imperfect. These will affect the performance
of both these algorithms and this must be quantified to better understand the performance of
the systems in reality.

To investigate, a full-scale tractor semi-trailer combination was instrumented and on-road
vehicle tests were performed. This chapter details the experimental setup, testing procedure
and results. It also includes an investigation into the error behaviour of the template-matching
algorithm.

4.1 Experimental setup

4.1.1 Vehicle and instrumentation

Vehicle testing was carried out on an articulated vehicle combination consisting of a 4×2
Volvo tractor and a tri-axle, box-type ‘B-link’ trailer. The front axle of the tri-axle group
was lifted, making this effectively a tandem-axle trailer. Although steerable, the trailer axles
were not steered during testing. The vehicle is shown in Figure 4.1a with some important
dimensions. Parameters d and h (Figure 3.3) were measured to be 886 mm and 1575 mm
respectively.

93



Field tests of the articulation angle sensor on a tractor semi-trailer

In this experiment the B-link trailer is intended to represent a semi-trailer, and for the
purposes of this testing there are no significant differences between the two, apart from the
wheelbase which is slightly shorter than a conventional semi-trailer.

A Point Grey Flea3 USB 3.0 camera1 was fitted to a bracket behind the tractor cabin,
facing the front of the semi-trailer (Figure 4.1b). The camera was mounted centrally relative
to the sides of the tractor cab and at an arbitrary height above the kingpin while maintaining
a reasonable view of the front of the trailer. By eye, the optical axis of the camera was
aligned with the lateral centre of the trailer. The lens used was a Fujinon YV2.8×2.8SA-2
wide-angle lens with an adjustable focal length of 2.8–8 mm. The focal length was set near
its smallest value, giving a wide field of view.

The superstructure of the semi-trailer was a shipping container unit, resulting in a
corrugated front face (i.e. not strictly planar). As the template-matching algorithm is limited
to purely planar surfaces it was necessary to fix a planar surface to this face. To account for
the loss in visual detail, artificial visual texture (of arbitrary design and position) was added
on top of this. For the sake of the PTAM algorithm, some visual texture was also added to
the sides of the trailer for higher articulation angles (see Figure 4.1c).

A schematic of the vehicle instrumentation is provided in Figure 4.2. Tractor speed and
steer angle measurements were required for the UKF, and were acquired via a speed sensor
on the tractor drive axle and a string potentiometer steer angle sensor on the tractor steer axle.
A ‘ground truth’ articulation angle measurement was obtained with a VSE articulation angle
sensor [66]2. This was mounted on the kingpin of the semi-trailer (Figure 4.1d), and was
calibrated before testing and was zeroed before each test.

Analogue sensor signals were logged using ‘ICON’ control computers (by Mechatronika
Systems Ltd) on both tractor and trailer. Only their analogue-to-digital functionality was
used here. The ICON has an output resolution of 4095 counts over a ±10.4 V range, and
the gain from measured articulation angle to ICON output was found to be 8.52◦/V, giving a
resultant reference articulation angle resolution of approximately 0.05◦. This is sufficiently
less than the target maximum error of 0.6◦, and so deemed suitable.

Greyscale images were captured via USB 3.0 at 20 fps at a resolution of 640× 480
with a dedicated Linux-based computer unit in the tractor cab. Image trigger signals and
sensor signals were synchronised via a host PC running SIMULINK xPC Target. A CANbus
link was used to communicate between the tractor and trailer ICONs and the xPC ‘target’
computer, as well as between the Linux computer and xPC target computer. A personal

1Model FL3-U3-13S2M-CS
2Recall that the VSE sensor is a trailer-based sensor, requiring trailer modifications at the kingpin and a non-

standard communication link between tractor and trailer. This makes it unsuitable for commercial application,
but its high precision makes it attractive for ground truth measurements for research and development purposes.
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laptop computer was used as the xPC ‘host’ computer for data logging and general test
control.

Sensors for steer angle, articulation angle and speed, along with the tractor and trailer
ICON units and the xPC target computer, were already installed for previous work on
these vehicle units. The camera, Linux computer and host computer were commissioned
specifically for this work. Existing calibration data for the steer angle sensors were used,
while new calibrations were carried out for the speed and articulation angle sensors. These
sensors were calibrated before testing.

As discussed previously, the desired frame rate for this system is 10 fps. PTAM can
achieve up to 20 fps, but the template-matching algorithm in its current form is not able to do
so. Images were captured at 20 fps to best investigate PTAM’s performance, but processed
off-line at whatever frame rate was achievable by each algorithm. A efficient implementation
of the template-matching algorithm (in embedded C-code for example) would likely have a
comparable frame rate to PTAM. Therefore both algorithms were compared using identical
image sequences.

4.1.2 Test scenarios

Testing was carried out on rough tarmac at Bourn airfield near Cambridge. Two trailer front
faces were considered: a planar front (a predominantly flat surface) and a non-planar front
(with a 3-D protrusion added). The planar case is shown in Figure 4.3a and Figure 4.3b. This
case was applicable to both TM+UKF and PTAM algorithms. The non-planar front is shown
in Figures 4.3c, 4.3d and 4.3e. Here a mock refrigeration unit (a common non-planar addition
to trailer fronts) was affixed to the front of the trailer. The dimensions of the non-planar
protrusion are shown in Figure 4.3f. This case was only applicable to PTAM.

For the planar case, two types of manoeuvre were carried out: a periodic step steer input
with articulation angles up to 30◦ and a general driving manoeuvre (a pseudo-random set of
turns). In both cases articulation angles were sufficiently small to maintain an acceptable
view of the front of the trailer. Three tests of each scenario were conducted. An example of
one of the periodic step steer inputs is shown in Figure 4.4.

For the non-planar case, three types of manoeuvre were carried out: two periodic step
steer input cases with articulation angles of up to 30◦ and 50◦ respectively, and a general
driving manoeuvre. Two tests of each case were conducted. The higher articulation angles
in these tests enabled the effectiveness of PTAM to be assessed when the front trailer face
disappears from view, when keyframes from the side of the trailer are obtained. An example
image showing the visible side of the trailer is given in Figure 4.3e.
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Vehicle speed was approximately constant at 5 km/h for the step steer tests and variable
in the range 0–10 km/h for the general driving tests3. Steering input was manual in both
cases, though controlled to an approximately repeatable steer amplitude and frequency in the
step steer tests. The road surface was not necessarily level and was significantly pot-holed,
resulting in some pitch and roll motion of the trailer during tests. Lighting conditions were
mostly favourable, though light intensity was variable between tests and in some cases harsh
shadows were evident on the trailer face.

Hereafter, the 30◦ and 50◦ periodic steer tests are denoted ‘per30’ and ‘per50’ respectively,
and general driving scenarios are denoted ‘gen’. The non-planar cases are indicated with the
suffix "_3d".

4.2 Template-matching implementation

The template-matching algorithm was implemented in MATLAB as before with minor
updates, including updated image cropping parameters, the addition of real-time distortion
correction and updated noise covariances for the UKF. All other parameters were unchanged,
including an image resolution of 640×480, a database search step size of 0.2◦, a region of
interest window of 60×40 pixels for locating template matches in sequential frames, and
one level of down-sampling for NCC. Image sequences were processed offline on the same
3.2 GHz desktop computer used in the previous chapter (see Appendix A).

Observed images were automatically cropped to a size of 640×200. For the particular
visual scenario used, this was found to have little effect on the performance of the algorithm,
while significantly reducing computation time. Template images, generated from a cropped
640× 200 datum image, were automatically cropped further as a function of articulation
angle so as to exclude pixels with no information as a result of the warping process.

The camera was calibrated using the ‘Camera Calibration Toolbox for MATLAB’ [163],
which uses the method of Zhang [161] and distortion model of Heikkilä [159] (Section 2.3).
A checkerboard pattern with a 7× 10 grid and a square size of 25.5 mm was used, and
reprojection errors of less than 0.5 pixels were obtained. One of the calibration images is
shown in Figure 4.5a with detected corners shown in Figure 4.5b. Camera calibration results
are given in Appendix C. Distortion correction was performed in real-time at each frame
using the OpenCV library [164]. An example image before and after the distortion correction

3The speed and articulation range considered in these tests are typical of an autonomous reversing manoeuvre
for example. In comparison, jackknife control or combined braking and steering control would operate under
significantly higher speeds. Higher speeds may introduce practical challenges such as vibration-induced motion
blur, but would also typically present a smaller required measurement range of Γ.
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step is shown in Figure 4.5c and Figure 4.5d respectively. The computational cost of this
step was small compared to other steps in the template-matching process.

For the Unscented Kalman Filter, the measurement noise covariance, W , was determined
experimentally to be (1.45◦)2. The process noise, Q, was (0.06◦)2 as before, tuned through
trial and error on a few initial datasets.

A datum image for the TM+UKF algorithm was collected only once for the planar trailer
and was used for all six tests. This was obtained during a preliminary straight line driving
manoeuvre. Care was taken to avoid a test with harsh shadows for the datum image. The
tests therefore embodied the realistic scenario of using a datum image which was obtained
under potentially different lighting conditions.

4.3 PTAM implementation

As described in Section 2.3, PTAM uses a simplified distortion model with only one (radial)
distortion coefficient. The open-source implementation of the PTAM algorithm includes a
camera calibration module which incorporates this model, and this was used to recalibrate
the camera for PTAM processing using the same 7×10 checkerboard. Camera calibration
results are provided in Appendix C.

Full image resolution was used (no cropping). No additional changes to the standard
PTAM algorithm from [123] were made. Results for PTAM were processed offline on the
2.4 GHz laptop computer used previously (see Appendix A for specifications).

4.4 Results: planar trailer front

Results for each of the six vehicle tests with the planar trailer front are given in Fig-
ure 4.6. Unfiltered template-matching results (‘TM’), template-matching results with the
UKF (‘TM+UKF’), and PTAM results are shown. Although the overall template-matching
algorithm includes the UKF, the unfiltered results are included as these provide useful insights
to accompany the following discussion. Error signals (relative to the VSE sensor) are also
shown. A summary of the maximum and RMS errors is given in Table 4.1 and a comparison
of error performance between TM+UKF and PTAM is shown in Figure 4.7.

Average frame rates in the region of 6–10 fps were achieved for TM+UKF, slightly less
than the 10 fps target but deemed acceptable for a prototype MATLAB implementation of
the algorithm. Variations in frame rate were due to the manner in which the template images
were cropped according to articulation angle, resulting in smaller images at larger articulation
angles. Frame rates for PTAM were 20 fps, well within the requirement.
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Some general observations may be made from Figure 4.6. Firstly it is clear that the
unfiltered TM results are noisy as was observed in the CAD simulations. A portion of this
noise may be attributed to aliasing, the main source of noise in the idealised CAD simulations.
However, unlike in the CAD simulations, another contribution probably comes from small
wavelength and low amplitude undulations in the road surface during testing.

Where larger amplitude and higher wavelength variations in the road surface were
encountered these are clearly observable in the image sequences as roll and/or pitch motion
of the trailer. Examples of this can be seen in Figure 4.6c at around t = 48–49 s and
Figure 4.6d at around t = 85–92 s.

In the first case a sharp outward roll motion is evident from the image sequence, resulting
in a seemingly increased articulation angle (as the trailer face becomes narrower). This
agrees with the observed TM signal which over-estimates Γ in this period.

In the second case, an increase in trailer pitch is evident as the vehicle slows to a stop,
with Γ close to zero. The result is that the trailer face appears closer to the camera, yielding a
mismatch between the observed images and the saved datum image (and template images
near 0◦) which will be at a smaller scale. Visually, this is neither an apparent increase or
decrease in Γ, and should arbitrarily result in incorrect template matches in one direction or
the other. In this case a negative error is observed.

Consistent regions of error are clear in Figures 4.6a, 4.6b and 4.6c between the error
peaks at A and B and from C to D (shown on the plot of each error signal). These errors are
also clear in Figure 4.6d at 53–60 s and Figure 4.6f at 10–20 s, but are less obvious because
the variations in articulation angle are not consistent and repeatable; although the errors
appear to exist at articulation angles consistent with the periodic manoeuvre results. These
errors could not be correlated with observed variations in roll and pitch motion in the image
sequences. Rather, these will be shown to be a particular subset of the errors as discussed in
the following section and are denoted the ‘recurring’ component of the error trend.

In all cases the UKF sufficiently corrects for higher frequency noise due to aliasing and
road roughness. In some cases it also reduces the effect of lower frequency variations such
as in Figure 4.6c at t = 48–49 s, provided the time interval is sufficiently small. On average it
has the effect of reducing maximum errors from 5.88◦ to 3.92◦, and RMS errors from 1.84◦

to 1.32◦ (see Table 4.1 and Figure 4.7).

Superior results were achieved when datum images specific to each test run were used,
but the results presented here offer a more realistic indication of real-world performance with
only one datum image obtained for the given trailer.

Figure 4.8 shows details of the variation of the maximum correlation coefficient during
several ‘snapshots’ of the ‘per30 C’ test. Each plot shows the results for 11 image comparisons
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per time step (a search window of ±2◦ with a search increment of 0.2◦ gives a total of 11
image comparisons). The maximum correlation coefficient in the search range is highlighted
for each, which represents the selected ‘match’ and the estimated value of Γ.

For each of these matches (i.e. the one circled data point out of 11 in Figure 4.8), the
associated correlation map and overlaid image match is shown in Figures 4.9 and 4.10
respectively. In Figure 4.10, the bounding box shows the border of the template image, and
an averaged image is shown in the region of overlap. A number of observations may be made
from each of these snapshots (in order of appearance):

1. Figures 4.8a, 4.9a, 4.10a: This is a good match at a small Γ, with a smooth variation in
maximum correlation coefficients (Figure 4.8a), a well defined peak in the correlation
map (Figure 4.9a) and an easy image match (Figure 4.10a). Good performance is
expected near the datum in the absence of disturbances.

2. Figures 4.8b, 4.9b, 4.10b: This result comes from one of the distinct peaks in errors just
after the transition from −Γ to +Γ. The match result looks good (Figure 4.10b) and
the variation in correlation coefficients is smooth. However, the maximum correlation
coefficient is at the extreme of the search range (Figure 4.8b) indicating that the actual
maximum is likely outside of the search range. After a few more time steps the search
window will quickly move towards higher Γ until the peak is again within the search
range. Although the error is high, it seems the template match has performed well,
indicating some other source of the error.

3. Figures 4.8c, 4.9c, 4.10c: This is in the region of steady positive errors where the
template-matching results appear smooth and consistent but a moderate error is exhib-
ited. This is therefore possibly an indication of a physical phenomenon.

4. Figures 4.8d, 4.9d, 4.10d: This data point was taken from one of the points associated
with a transient trailer pitch motion, which is not associated with the other recurring
error trends. It is clear from 4.10d that the best template match has not quite captured
the observed image correctly. Significant offset between template and observed images
is clear, notably in the upper half of the template image. This error correlates well
with the transient pitch motion of the trailer. The trailer has pitched forward, rotating
the trailer face outward at the top. The warped template images do not have this pitch
component inherent in them.

A final observation to make is that a second peak in the correlation map of Figure 4.9d
is evident in the lower right. This is where the background scene has become visible
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(see Figure 4.10d) and illustrates the need for the region of interest window discussed in
Section 3.2.2.

Overall, from Figure 4.7, PTAM yields the superior performance with the smallest
average maximum and RMS errors of 1.83◦ and 0.73◦ respectively. The PTAM signal is
smooth and displays only a repeatable increase in error as a function of articulation angle,
especially for −Γ. This is likely attributable to the simpler distortion model of PTAM, the
inaccuracies of which would become more pronounced near the borders of the image, giving
correlations with images at higher Γ. It is also clear that PTAM is robust to the pitch and roll
variations discussed above.

A qualitative view of the PTAM algorithm for the "per30 C" test is shown in Figure 4.11.
Figures 4.11a and 4.11b show the initialisation step and features detected. As expected, most
detected features are located on the clear visual features of the attached visual texture, though
some have been detected on the bare trailer face.

All features are tracked effectively as Γ increases as shown in Figure 4.11c and also
under variations in lighting intensity as shown in Figure 4.11d (most features are retained
from Figure 4.11b). The generated scene map of feature points is shown in Figure 4.11e
where the reference plane has been fixed to the features on the planar trailer face (the plane is
also shown in Figures 4.11a to 4.11d), and the path of relative camera motion is shown as
an arc in front of this plane. A view perpendicular to the plane of the trailer front is shown
in Figure 4.11f in which some erroneous out-of-plane feature points can be observed. The
algorithm was shown to be robust to these outliers.

4.4.1 Error trends

As mentioned previously, certain errors in the unfiltered template-matching results (the
‘recurring’ errors) could not be attributed to any obvious pitch or roll motions of the trailer.
These errors are now investigated in detail.

The recurring error behaviour is best illustrated by examining variations of the error with
articulation angle, as shown in Figure 4.12 for each of the six tests. PTAM errors are included
for comparison. The repeatability of the error trends between periodic and general driving
tests is confirmed by overlaying results from all six tests as shown in Figure 4.13.

For the purpose of discussion the TM error trend (Figure 4.13a) can be separated into two
components. Ignoring for a moment the range −15◦ ≤ Γ ≤ 10◦, there appears to be a small,
approximately linear variation in errors with Γ. This is the first component and is denoted the
‘smooth’ trend component. At small values of Γ there is a second component which appears
to override the first. In the range −5◦ ≤ Γ ≤ 5◦ there is a strong linear trend peaking at the
error maxima of approximately −3◦ and 5◦. This is denoted the ‘zero-crossing’ error trend
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component, given that the peak errors appear either side of the zero-crossing region. In the
remaining ranges −15◦ ≤ Γ ≤ −5◦ and 5◦ ≤ Γ ≤ 30◦ there is a transition region between
the two components.

In comparison, the PTAM error trend (Figure 4.13b) exhibits a smooth variation with
articulation angle, noted previously to be likely due to PTAM’s simplified camera distortion
model. The trend is similar to the smooth component of the template-matching trend in that it
is an approximately positive variation with Γ. Although the magnitude of this gradient is not
completely comparable to that of template-matching, the common trend may be indicative of
a common physical phenomenon, in addition to the camera distortion model.

It should be noted that a steady state offset of magnitude +2.7◦ was observed in the raw
output of PTAM, which was accounted for in all tests as part of the calibration process. It
is interesting that this offset is comparable to the offset of the smooth component of the
template-matching trend. The source of this offset is unclear: it may be indicative of a camera
yaw offset, ‘crabbing’ motion of the trailer4, an irregularity in the structure of the trailer
superstructure, or characteristic of the initialisation process. This steady state error could be
zeroed out easily.

The zero-crossing component of the template-matching error trend (at −5◦ ≤ Γ ≤ 5◦)
is not at all replicated in the PTAM trend, suggesting that this is purely a symptom of the
template-matching algorithm itself, possibly in response to a physical phenomenon.

To investigate the source of the template-matching errors in more detail, it is useful to
revisit the underlying assumptions of the system model. These were as follows:

1. Trailer motion is constrained to rotation in the yaw plane about a vertical axis located
at the fifth wheel. This implies that there is no out-of-plane trailer rotation (pitch and
roll) and no translation of the kingpin relative to the fifth wheel (i.e. no fifth wheel
lash).

2. The z-axis of the camera is perpendicular to the vertical axis of the fifth wheel, and
is parallel to the yaw-plane. This means that there is no constant yaw or roll offset
between the camera and trailer.

3. The geometry of the system in terms of d and h is known accurately.

4. The camera properties are known accurately.

4Crabbing motion is when axle misalignment causes a discrepancy between the vehicle’s heading and its
direction of motion. For rigid vehicles this would require a small steer input at the front axle to maintain straight
forward motion. For a trailer with misaligned axles, it could result in a small steady articulation angle when the
lead vehicle is following a straight path.
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5. The datum image is obtained with the trailer at exactly zero articulation angle.

Variations from these ideal conditions may exist in multiple forms. The most likely
scenarios include:

1. misalignment in the mounting of the camera, yielding a constant rotational and/or
translational offset;

2. a constant pitch or roll offset between the tractor cab and semi-trailer as a result of axle
ride height setup, cab suspension setup or kingpin lash;

3. transient variations in pitch or roll between the tractor cab and semi-trailer due to
undulations in the road surface;

4. inaccuracies in the measurements of d and h; and

5. an inaccurate datum image, with inherent offset in pose.

Variations in pitch and roll (either constant or transient) would have a dual effect, firstly
through deviations in the assumed yaw-plane motion model, and secondly though variations
in the values of d and h from their assumed nominal values. Furthermore, a constant offset in
pitch also raises the possibility that the nominal values of d and h were measured with some
inherent pitch offset, and that the assumption that N = [0, 0, 1]⊤ for the datum image is no
longer valid.

Given the transient pitch and roll motion observed during testing due to road undulations,
it is also possible that some rotation and/or translation is inherent in the datum image. This
would also affect the assumed values of d, h and N.

4.4.2 Pitch, roll and translation

A useful feature of the PTAM algorithm is that it outputs a complete 3-dimensional estimate
of the relative pose. It can therefore be used to quantitatively investigate pitch, roll and
translational motion between the camera and trailer, and hence help to evaluate some of the
above hypotheses about the template-matching algorithm.

PTAM’s accuracy in articulation measurement has been shown to be reasonable, with
average maximum and RMS errors of 1.82◦ and 0.73◦ respectively. Its accuracy in pitch and
roll estimation should be comparable, however it should be noted that no reference signals
are available to confirm this or to zero these signals.

Figure 4.14 shows the relative pitch and roll motion outputs of PTAM, for all six tests
overlaid. Both signals have been processed so as to represent pitch and roll motion in a
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reference frame fixed to the trailer. This is covered in Section 3.4.3. A pitch offset of
approximately 2–2.5◦ is evident at small Γ, with some variation with Γ. Transient variations
in pitch in individual tests are also visible, showing variations of up to approximately ±1◦.

Roll motion is approximately zero for small Γ; an offset here would be meaningless as
the roll-orientation of the plane fixed to the trailer front during initialisation is arbitrary. A
negative gradient trend with Γ is evident, as are transient variations of up to approximately
±1◦. A pitch or roll offset with no variation with Γ would indicate a pure pitch or roll in the
trailer reference frame. Given that there are some variations with Γ, this is either indicative
of an offset in the camera mounting, or of some other physical phenomenon.

It should be recalled that an offset of approximately 2.7◦ was observed in the raw data
for Γ, which should be incorporated into the discussion at this point. A yaw offset may also
be indicative of a lateral camera offset. A lateral offset in the mounting of the camera, and
subsequent adjustment of the camera’s yaw orientation so as to centre the trailer in the field of
view, would result in both a yaw offset and lateral offset in the camera mounting. Similarly, a
roll offset in the trailer might result in a camera yaw offset, as it’s yaw orientation is adjusted
to account for the lateral shift of the trailer due to its roll angle. Therefore the yaw offset, if a
result of camera mounting error, may be indicative of either trailer yaw offset or trailer roll
offset.

4.4.3 CAD variations

To investigate the effects of out-of-plane rotations and translations in a controlled environ-
ment, the original CAD model was updated to match the dimensions of the test vehicle
(including measured values of d and h). To replicate the visual characteristics of the real tests,
an undistorted image of the planar front of the real trailer was superimposed onto the front of
the CAD trailer. The side of the trailer was similarly reproduced. Pitch and roll degrees of
freedom were added to the trailer and the camera location was made to be adjustable. The
updated CAD model is shown in Figure 4.15.

Variations in trailer roll, pitch, yaw and camera yaw and offset were applied to the
CAD model, and simulations were rerun with a basic sinusoidal articulation variation over a
comparable range of Γ. The resultant error trends as a function of Γ were then compared to
those of the vehicle tests. A comparable error trend from the variation of one variable would
suggest that that variable may have been the underlying cause of errors in the vehicle tests.

Results for a subset of these tests are given in Figure 4.16. These are overlaid on the TM
results for all six vehicle tests for comparison. A baseline CAD simulation with no offsets
or irregularities is shown in Figure 4.16a, and the trend is largely as expected though with
some minor deviations near Γ = 0◦. The noise component of the CAD errors is significantly
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smaller than the vehicle tests. The noise component for the CAD simulations is most likely
from aliasing which will also be inherent in the vehicle data; the additional noise in the
vehicle data is assumed to be due to transient pitch and roll variations.

The addition of 2◦ pitch angle to the trailer (Figure 4.16b) produced an error trend
similar to the vehicle tests in both the smooth component and the zero-crossing component.
However, an offset between CAD and vehicle tests of approximately 1◦ is evident in the
smooth component of the trend. The addition of trailer roll (Figure 4.16c) produced a
convincing trend for positive Γ only, but with magnitudes more comparable with vehicle
tests than the case of trailer pitch. It is possible that the trailer roll angle could have changed
direction in the transition at Γ = 0◦, in which case the CAD data for +Γ in Figure 4.16c
would be reproduced symmetrically about the vertical axis but inverted for −Γ, which would
produce a trend similar to the vehicle test data shown in the background for all Γ.

Camera yaw offset (Figure 4.16d) did not replicate vehicle test trends particularly well.
Camera lateral offset (Figure 4.16e) produced a somewhat convincing trend for −20◦ ≤ Γ ≤
0◦, but not at all for +Γ. The combined effect of trailer roll and camera yaw (Figure 4.16f)
did not in general replicate the error trends from the vehicle tests.

Given these observed trends, along with the observed PTAM pitch offset of 2–2.5◦ and
the equally notable 2.7◦ PTAM yaw offset, in combination with physical considerations and
observed image sequences, it was concluded that trailer pitch and camera offset (accompa-
nying trailer yaw) were the most likely causes of the error trends. These are investigated in
more detail in the following section.

4.4.4 Correction models

With the goal of removing the contribution of these effects from vehicle test results, correction
models were developed to account for both trailer pitch and camera offset. These were
assessed using the CAD simulations.

Consider the general effects of irregular motion on the assumed motion model of the
template-matching algorithm, particularly that of the image warping step. From Equations
3.16 and 3.17, the affected parameters could be one or more of the following: d, h, N, R, T,
or the datum image could be inaccurate. (The camera calibration matrix can be neglected in
this discussion).

It should be noted that whether an offset is inherent in the camera mounting or in the
trailer, this will change the parameters affected. For example, pitch offset in the camera
mounting would affect only the value of N, the assumed orientation of the plane relative to
the camera optical axis in the datum image. However, a positive pitch in the trailer about the
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kingpin would also affect d as the trailer face pitches closer towards the camera, and possibly
also h, depending on whether the plane of articulation changes or not.

The proposed trailer pitch correction model is illustrated in Figure 4.17, showing a
simplified side view of the trailer-camera system. Assuming articulation to still occur in a
plane aligned with the trailer yaw plane (i.e. h is unchanged), only parameters d and N would
be affected. d is the distance from the camera to the datum plane normal to the datum plane
(not to the optical axis).

For a pitch angle of θ , d would be corrected to dnew as indicated in the diagram. The
component of the change in d in the z-direction (along the optical axis), ∆dz, and the resultant
corrected value of d, dnew, may be derived by geometry and shown to be:

∆dz = [H sinθ −h(1− cosθ)]+ tanθ [hsinθ +H(1− cosθ)]

dnew = (d −∆dz)cosθ
(4.1)

where H is the height of the optical axis above the pitch centre, assumed to be at the kingpin.
For the test vehicle H was measured to be 1750 mm.

Accompanying this would be a change in N to reflect the non-zero pitch angle of the
datum plane. This can be incorporated by pre-multiplying the nominal value of N by the
pitch component of a rotation matrix as follows:

Nnew =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ


0

0
1

=

 0
−sinθ

cosθ

 (4.2)

Consider now the effect of camera offset. In Equation 3.15, the x, y and z components
of T were derived under the assumption of perfect alignment between the camera and hitch
point. If we now assume an offset of ∆x, additional terms will be introduced to the x- and z-
components of T. The proposed offset correction model is illustrated in Figure 4.18, showing
a simplified top-down view of the trailer-camera system. The corrected value of T may be
deduced from geometry and shown to be:

Tnew =

 (h+d)sinΓ

0
(h+d)(1− cosΓ)

+

∆x(cosΓ−1)
0

∆xsinΓ

 (4.3)

The effect of a camera yaw offset to realign the optical axis with the centre of the trailer
could be accounted for by suitably adjusting N in a manner similar to the pitch correction
above. This was not considered here.
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The effectiveness of the pitch correction was assessed by implementing it in the CAD
simulation with 2◦ pitch. Uncorrected and corrected simulation results are shown in Figures
4.19a and 4.19b respectively. It is clear that the smooth error component has been corrected,
but that the zero-crossing trend at small Γ has been largely unaffected.

As part of an investigation into the cause of this, the edge detection template-matching
method (see Section 3.2.2) was implemented in place of the standard template-matching
method. Results for the 2◦ pitch case with no pitch correction but with edge detection are
shown in Figure 4.19c. Interestingly, this has resulted in an almost complete correction of
the zero-crossing component of the error trend. Results with both pitch correction and edge
detection are shown in Figure 4.19d, showing an almost perfect reproduction of the baseline
CAD case shown in Figure 4.16a.

The offset correction model was applied to the 50 mm camera offset CAD simulation.
Uncorrected and corrected simulation results are shown in Figures 4.20a and 4.20b respec-
tively. Again, it is clear that only the smooth component has been corrected, and not the
zero-crossing component. Figure 4.20c shows the result with both offset correction and edge
detection—again a close reproduction of the original unperturbed CAD scenario, although
some outliers are evident at small Γ.

The correction models have been validated and shown to adequately correct for pitch and
camera offset in the smooth component of the error versus Γ trend. However, it was also
shown that the zero-crossing component of the trend appears to be a unique characteristic of
the NCC template-matching method.

In this case the addition of edge detection to the template-matching step appeared to
correct for this behaviour. To explore this further, edge detection was used in reprocessing of
the vehicle test data. Although errors seemed to be reduced in general, a small disturbance
such as a small pitch or roll motion would result in a sudden and irreversible drift in error
rendering the algorithm significantly less robust. This behaviour reflects the findings of
Section 3.2.2. As a result, edge detection was not included for further processing and analysis.

Pitch correction was found to have the dominant effect on vehicle test results, and no
conclusive improvements were exhibited by the inclusion of camera offset correction (of any
reasonable magnitude). It was found that a pitch correction of 2.2◦ gave the best improvement
of the results, removing the high Γ component of the errors. As expected, the large errors at
small Γ remained.

4.4.5 Corrected results

Errors as a function of Γ are shown in Figure 4.21 with and without pitch correction. The
remaining errors at small Γ are still clear, though reductions in the steady errors at higher Γ
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are evident. The correction effect evident in Figure 4.21 is small, though it is clear that the
‘smooth’ trend component has been flattened to some degree.

A summary of maximum and RMS errors for the individual tests is given in Figure 4.22,
with tabulated results in Table 4.2. The pitch correction reduced the average maximum error
and average RMS error by 0.47◦ and 0.26◦ respectively in the TM+UKF results. This yielded
an average maximum error of 3.45◦, about twice that of PTAM, and an average RMS error of
1.06◦, about 50% more than that of PTAM.

The ‘gen A’ vehicle test exhibited the poorest TM and TM+UKF performance, largely
due to its prolonged duration in the 5–10◦ range of Γ between 50 and 60 s. In all cases except
‘per30 B’ and ‘per30 C’, PTAM errors are consistently smaller than those of TM+UKF. In
the exceptions it is likely that the initialisation of PTAM could have been improved.

The largest effect on performance has been shown to be a symptom of the normalised
cross correlation template-matching method used. The underlying mechanism of this effect
has not been clearly determined, however if this could be addressed then the performance of
the template-matching system would be notably improved.

4.4.6 Parameter sensitivity

The assumed trailer dimensions to which the base algorithm is sensitive are the front overhang,
h, and the hitch location, h+ d (Figure 3.4). Although the hitch location is technically a
tractor parameter, it is moveable to some extent and so is included for consideration here. In
addition, the UKF introduces sensitivities to the assumed trailer wheelbase and the number
and spread of the trailer axles, and is also sensitive to the hitch location.

For the parameter sensitivity study, the ‘per30 C’ test was processed using the TM+UKF
algorithm with pitch correction. Parameter variations of ±10% and ±20% of trailer front
overhang, hitch location, trailer wheelbase, and axle spread were investigated. Variations of
axle spread were deemed to be an adequate representation of variations in number of axles as
well.

Sensitivity results are shown in Figure 4.23 in the form of maximum and RMS errors. A
parameter value of 100% represents the baseline value as used in the previous results. Figures
4.23a and 4.23b demonstrate some sensitivity to trailer front overhang and hitch location,
with between 60% and 110% increases in RMS error due to 20% parameter variations. It
should be noted however that these parameter variations are substantial, equivalent to a ±2 m
change in wheelbase, and ±0.3 m change in hitch location. These are likely at the upper
end of expected variations in practice. Sensitivity to ±10% parameter variations are notably
smaller at between 15% and 37%.
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Maximum errors are less indicative of overall performance (as these can occur in re-
sponse to irregular disturbances), and so the observed variations in maximum error are less
informative. This is partially evidenced in the reduction in maximum errors with parameter
variations in two instances. Nevertheless, variations in maximum error ranged from 11% and
52% for 20% parameter variations. Overall, RMS and maximum errors remained within 1.7◦

and 3.7◦ respectively for 25% variations in trailer overhang and hitch location.

Considering the UKF, Figures 4.23c and 4.23d demonstrate that sensitivity to trailer
wheelbase and axle spread is comparatively minor. A 31% increase in RMS error was
observed for a 20% reduction in trailer wheelbase. Only a 5% increase in RMS error was
observed for an equivalent increase in wheelbase. For standard European semi-trailers (for
example), vehicle weight and dimension regulations coupled with pressure to maximise
legislated loading capacity result in fairly consistent designs in terms of length, wheelbase
and overhang. Therefore, given the relatively minor sensitivity to the basic parameters, a
default set of parameters could be assumed in practice with only relatively minor variations
in performance. Sensitivity to axle spread is negligible in this case, with a maximum 1%
increase in RMS error with a 20% variation in axle spread.

In practice, it is reasonable to assume that some basic trailer data may be available, or
that trailer dimensions within a particular country or state would be fairly constrained to a
small range of variations. However, small variations from the assumed values may occur.
Tractor data such as wheelbase can be assumed known.

In comparison, PTAM should not be sensitive to any of these variations, as none of these
parameters are required or assumed. These parameters would have a small effect on the
range of trailer yaw rates during turning, and possibly the maximum articulation angles
experienced, but these effects are expected to be negligible.

Furthermore, it was observed that the PTAM results exhibited well-filtered behaviour, with
only a simple decaying velocity filter which makes no assumptions about trailer geometry.
It is hence possible that a simpler filter could suffice for the TM algorithm, nullifying the
requirement for trailer wheelbase and axle spacing information.

4.5 Results: non-planar trailer front

PTAM results for the non-planar trailer are shown in Figure 4.24. Qualitatively, performance
is good with repeatable error fluctuations with Γ. Tracking is accurate and continuous up to
larger values of Γ at which the front face of the trailer is obscured and features on the side of
the trailer are detected and added to the scene map.
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The initialisation step and tracked features are shown for the ‘gen_3d B’ test in Figures
4.25a and 4.25b. About a quarter of initial feature points are located on the non-planar
refrigeration unit, and so the reference plane is still fixed to the largely planar front trailer
surface. However, as there was more uncertainty in the automatic placement of this plane
(relative to the planar tests), PTAM was zeroed at the beginning of each non-planar test.

At moderate Γ some feature points become occluded behind the refrigeration unit (Fig-
ure 4.25c) which has no effect on performance. At even higher Γ, the front of the trailer is
almost entirely obscured. However, as the side of the trailer starts to become visible, features
on the side of the trailer are detected and added to the scene map with no effect on the
smoothness or accuracy of tracking (Figure 4.25d).

The scene map and relative camera motion is shown in Figures 4.25e and 4.25f (top
view). Non-planar feature points are visible both on the refrigeration unit and on one side of
the trailer.

Maximum and RMS errors are given in Table 4.3, and summarised in Figure 4.26.
Average maximum and RMS errors were 2.73◦ and 1.19◦ respectively. Comparing results
for the 30◦ tests with those of the planar tests shows comparable performance. However, the
tests at larger Γ exhibited greater errors. It was shown previously that PTAM errors were
approximately proportional to Γ, possibly the result of the camera distortion model. This
seems to be the case here.

For more severely non-planar trailer geometries, some additional caution may be neces-
sary during the initialisation phase to ensure a correct reference camera pose. The horizontal
mounting of the camera for this work was not a strict requirement for the operation of either
template-matching or PTAM algorithms, provided the initial pose of the camera was known.
Variations in this would allow for more complex trailer scenarios to be included. For example,
for flat-bed trailer types, a downwards-tilted camera with PTAM could be used, so as to work
both with laden and unladen trailers. Similar mounting considerations could give rise to
workable solutions for trailers with less regular fronts such as car-carriers. The hitching of a
new trailer could be automatically detected, and a new initialisation process could detect the
new trailer geometry, regardless of the trailer type.

4.6 Performance benchmark

A comparison of the final results with the published state-of-the-art is shown in Figure 4.27.
Maximum errors observed in individual vehicle tests are shown as a function of maximum
articulation angle tested. Showing this as a function of articulation angle accounts for some
tests which may have only been performed over a small articulation range. It is clear that both
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the TM+UKF and PTAM algorithms exhibit significantly improved accuracy over existing
systems. TM+UKF is however limited to a maximum articulation angle defined by the trailer
geometry. PTAM is observed to offer the best performance over a theoretically unlimited
range, and without the restriction of planar trailer fronts.

4.7 Conclusions

1. The TM+UKF and PTAM algorithms were assessed in tests on a full-scale tractor
semi-trailer combination. Both planar and non-planar trailer front face scenarios were
investigated.

2. The TM+UKF algorithm achieved average RMS and maximum errors of 1.32◦ and
3.92◦ respectively at 6–10 fps for a planar trailer front at articulation angles up to 37◦.
Error trends highlighted a pitch offset between camera and trailer. Correcting for this
resulted in RMS and maximum errors of 1.06◦ and 3.45◦ respectively.

3. The NCC image comparison method was shown to result in peak errors at low articula-
tion angles which could not be corrected. This would need to be addressed in future
work on the TM method.

4. The PTAM algorithm achieved average RMS and maximum errors of 0.73◦ and 1.82◦

respectively at 20 fps for the same planar front tests. Additional tests for a non-planar
trailer front at articulation angles up to 55◦ yielded average RMS and maximum errors
of 1.19◦ and 2.73◦ respectively, also at 20 fps.

5. Transient pitch and roll motion caused by road irregularities was shown to have a
detrimental effect on the accuracy of the TM+UKF algorithm, but not on the PTAM
algorithm.

6. The TM+UKF algorithm was shown to be moderately sensitive to assumed values
of hitch location and trailer front overhang, but with RMS errors remaining within
1.7◦ for 20% variations in these parameters. Sensitivity to trailer wheelbase and axle
spacing was shown to be small, suggesting that a simple filter which does not require
vehicle information may be sufficient.

7. Both algorithms were shown to have superior accuracy to the current state-of-the-art
in vehicle tests at the range of articulation angles tested. Errors were in excess of the
target values, but could be reduced through further refinement in future work.
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4.8 Tables and figures

Table 4.1 Results summary: planar vehicle tests

TM TM+UKF PTAM

Γmax (◦) εmax (◦) εRMS (◦) εmax (◦) εRMS (◦) εmax (◦) εRMS (◦)

per30 A 31 4.21 1.73 4.21 1.40 2.30 0.81
per30 B 29 5.64 1.61 2.37 1.04 2.57 1.04
per30 C 29 5.83 1.82 3.39 1.14 1.75 0.82
gen A 37 7.22 2.07 7.24 2.04 1.20 0.58
gen B 33 5.58 2.01 3.67 1.32 1.51 0.70
gen C 23 6.82 1.81 2.63 0.97 1.62 0.40

Ave. of tests 5.88 1.84 3.92 1.32 1.82 0.73

Table 4.2 Results summary: planar vehicle tests (with correction)

TM TM+UKF PTAM

Γmax (◦) εmax (◦) εRMS (◦) εmax (◦) εRMS (◦) εmax (◦) εRMS (◦)

per30 A 31 4.01 1.36 3.69 1.04 2.30 0.81
per30 B 29 5.79 1.25 2.42 0.86 2.57 1.04
per30 C 29 5.48 1.34 2.70 0.75 1.75 0.82
gen A 37 6.72 1.73 6.75 1.79 1.20 0.58
gen B 33 4.68 1.53 2.83 1.02 1.51 0.70
gen C 23 6.82 1.68 2.30 0.88 1.62 0.40

Ave. of tests 5.58 1.48 3.45 1.06 1.82 0.73

Table 4.3 Results summary: non-planar vehicle tests (PTAM only)

Γmax (◦) εmax (◦) εRMS (◦)

per30_3d A 31 2.26 1.14
per30_3d B 28 1.71 0.87
per50_3d A 50 3.46 1.58
per50_3d B 44 2.74 1.07
gen_3d A 35 2.44 1.20
gen_3d B 55 3.77 1.31

Ave. of tests 2.73 1.19
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Field tests of the articulation angle sensor on a tractor semi-trailer

(a)

(b) (c) (d)

Fig. 4.1 Test vehicle and instrumentation: (a) test vehicle (dimensions in mm), (b) camera
behind the cab, (c) visual texture on trailer front, (d) VSE articulation angle sensor viewed
from the top of the kingpin assembly
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Fig. 4.2 Vehicle instrumentation layout
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(a) Planar front near Γ = 0◦ (b) Planar front at non-zero Γ

(c) Non-planar front near Γ = 0◦ (d) Non-planar front at non-zero Γ

(e) Non-planar front at large Γ (f) Artificial refrigeration unit

Fig. 4.3 Trailer front scenarios
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Fig. 4.4 Example periodic step steer input

(a) (b)

(c) (d)

Fig. 4.5 Camera calibration: (a) image of checkboard, (b) checkerboard corners detected, (c)
disorted trailer image, (d) undistorted trailer image
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Fig. 4.6 Vehicle test time histories, planar trailer
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Fig. 4.7 Vehicle test errors, planar trailer front
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Fig. 4.8 Variations of maximum correlation coefficient over the search range for individual
time steps, ‘per30 C’ vehicle test.
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(a) t = 31.10 s, error = 0.35◦ (b) t = 32.10 s, error = 3.70◦

(c) t = 35.70 s, error = 1.68◦ (d) t = 48.95 s, error = 3.07◦

Fig. 4.9 Cross correlation maps for individual time steps, ‘per30 C’ vehicle test

(a) t = 31.10 s, error = 0.35◦ (b) t = 32.10 s, error = 3.70◦

(c) t = 35.70 s, error = 1.68◦ (d) t = 48.95 s, error = 3.07◦

Fig. 4.10 Template match results for individual time steps, ‘per30 C’ vehicle test.
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(a) Initialisation (b) Detected features

(c) Moderate Γ (d) Reduced light intensity

(e) Scene map (oblique view) (f) Scene map (side view)

Fig. 4.11 PTAM frames, ‘per30 C’ vehicle test
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Fig. 4.12 Errors vs. articulation angle, vehicle tests, planar trailer
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Fig. 4.13 Errors vs. articulation angle, planar trailer, all tests overlaid
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Fig. 4.14 Pitch and roll angle vs. articulation angle, planar trailer, vehicle tests, all tests
overlaid

120



4.8 Tables and figures

(a)

(b) (c) (d)

Fig. 4.15 CAD reproduction of test vehicle for error investigation. (a) Overview shown at
30◦ articulation, (b) front face detail, (c) with a large pitch angle, (d) with a large roll angle
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Fig. 4.16 Errors vs. articulation angle for the six CAD variations. Vehicle test results are
shown in grey for comparison.
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Fig. 4.17 The effect of trailer pitch angle on parameters d and N (side view)
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Fig. 4.18 The effect of camera-kingpin offset on relative trailer-camera motion (top view)
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Fig. 4.19 Correction results for the 2◦ trailer pitch CAD scenario. Vehicle test results shown
in grey for comparison.
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Fig. 4.20 Correction results for the 50 mm camera offset CAD scenario. Vehicle test results
shown in grey for comparison.

Articulation angle (°)
-40 -30 -20 -10 0 10 20 30 40

E
rr

or
 (
°)

-6

-4

-2

0

2

4

6

8

(a) No correction

Articulation angle (°)
-40 -30 -20 -10 0 10 20 30 40

E
rr

or
 (
°)

-6

-4

-2

0

2

4

6

8

(b) With 2.2◦ pitch correction

Fig. 4.21 The effect of pitch correction on the error trends of vehicle tests, planar trailer, all
tests overlaid
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Fig. 4.22 Vehicle test errors, planar trailer front, with corrections

0

1

2

3

4

5

70% 80% 90% 100% 110% 120% 130%

Er
ro

r(
°)

 

Parameter variation 

Max.

RMS

(a) Trailer front overhang (h)

0

1

2

3

4

5

70% 80% 90% 100% 110% 120% 130%

Er
ro

r(
°)

 

Parameter variation 

Max.

RMS

(b) Hitch location (d, c1)

0

1

2

3

4

5

70% 80% 90% 100% 110% 120% 130%

Er
ro

r(
°)

 

Parameter variation 

Max.

RMS

(c) Trailer wheelbase (l2)

0

1

2

3

4

5

70% 80% 90% 100% 110% 120% 130%

Er
ro

r(
°)

 

Parameter variation 

Max.

RMS

(d) Axle spread (ρ)

Fig. 4.23 Sensitivity of the TM+UKF algorithm to variations in assumed vehicle parameters
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Fig. 4.24 Vehicle test time histories, non-planar trailer, PTAM only
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(a) Initialisation (b) Detected features

(c) Moderate Γ (d) Very large Γ

(e) Scene map (oblique view) (f) Scene map (top view)

Fig. 4.25 PTAM details, "gen_3d B" vehicle test
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Fig. 4.26 Vehicle test errors, non-planar trailer front, PTAM only
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Fig. 4.27 Performance benchmark against published vehicle test data
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Chapter 5

Field tests of the articulation angle
sensor on a truck and full-trailer

In Chapter 3, a vision-based articulation angle sensor for articulated vehicles was developed.
The concept is able to measure articulation angle at a single point of articulation, suitable
for vehicle combinations such as tractor semi-trailers, and truck and centre-axle trailer
combinations. In Chapter 4, the concept was validated on a full-scale tractor semi-trailer
combination.

These combinations are common in Europe, and so it is important that the articulation
angle sensor is compatible with them. Long Combination Vehicles (LCVs), with more
than one articulation point, are increasing in use in Europe and are already common in
countries including Sweden, Australia, New Zealand and South Africa. It is hence valuable
to extend the applicability of the articulation sensor to include these combinations. In order
for technologies such as reversing assist or jackknife control to be compatible with LCVs,
articulation angle measurements at multiple points of articulation are required.

Common LCVs include ‘B-double’ and ‘truck and full-trailer’ combinations, illustrated
in Figure 5.1. Extending the applicability of the articulation angle sensor in its current form to
a B-double would be challenging, given that the first trailer (the ‘B-link’) would obscure the
view of the second trailer (the semi-trailer). Alternative camera mounting options including
an elevated mount above the tractor or cameras mounted to the side mirrors may be possible,
but these present practical limitations and may require significant modifications to the current
sensor concept. These camera-mounting options are illustrated in Figure 5.1a.

Extending the applicability of the articulation angle sensor to a truck and full-trailer
combination can be achieved with relatively minor changes to the current concept. Mounting
the camera at the rear of the rigid truck provides a field of view which incorporates both the
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dolly and the semi-trailer without obstruction, so that the articulation angles of both can be
calculated. This is illustrated in Figure 5.1b.

The truck and full-trailer combination, typically 25.25 m in length, has been widely
adopted in Sweden and Finland and is known locally as the ‘Nordic combination’. Although
the combination is not yet widely adopted in other European countries, EU Directive 96/53
EC [39] permits any EU member state to implement LCVs including the Nordic combination.
Given the combination’s successful and wide-spread adoption in Scandinavia, it is likely that
adoption could increase throughout Europe in the near future through Directive 96/53 EC.

In this chapter, the articulation angle sensing concept is developed further in order to
measure multiple articulation angles from a single truck-mounted camera. The PTAM-
based method was taken forward for this, owing to its superior performance and robustness
compared to the template-matching method demonstrated in previous chapters. This chapter
focusses on the implementation of the concept on a truck and full-trailer combination,
however the methodology could be used to extend its use to other multiply-articulated vehicle
combinations in future work.

5.1 Experimental setup

5.1.1 Vehicle and instrumentation

A Nordic combination vehicle was made available for testing by Volvo Group Trucks
Technology, Sweden, and is shown in Figure 5.2. The combination consisted of a 6× 2
rigid truck (with the tag axle lifted), a 2-axle converter dolly, and a 3-axle semi-trailer. The
available truck was bare of any superstructure, but the addition of typical superstructures
would not be expected to obscure the camera field of view. The semi-trailer had a planar
front, though as discussed previously this is not a requirement.

The same Point Grey Flea3 USB camera with Fujinon lens used previously (see Chapter 4)
was fixed to a length of steel square tube with brackets at each end, and attached to the truck
chassis via four strong magnets (Figure 5.2, bottom right). A layer of rubber was added
between the magnets and chassis to minimise the possibility of electrical grounding. The
camera was positioned approximately along the longitudinal axis of the truck, and facing
rearwards. From this location the field of view of the camera included both the drawbar of
the dolly and the front of the semi-trailer.

‘Ground truth’ articulation angle measurements were obtained via a VSE sensor at
the fifth wheel (as used in Chapter 4), and a custom drawbar sensor provided by Volvo
at the pintle hitch (Figure 5.2, bottom left). The pintle hitch sensor consisted of a rotary

132



5.1 Experimental setup

potentiometer mounted at the hitch axis, with a steel arm joining it to a bracket clamped to
the drawbar. Measurements from the VSE sensor had a resolution of 0.05◦ as before. The
drawbar sensor had a comparable resolution, but an estimated accuracy of approximately
0.5◦ (provided by Volvo Group Trucks). Gains for the two sensors were pre-calibrated by
Volvo. Offsets were obtained on the day of testing during straight-line driving along the oval
track at the test site (see next section).

Although previous results showed that artificial markers were not necessary for the
PTAM-based concept, some visual texture was added to the semi-trailer and drawbar for
these tests. Additional tests without the markers were conducted to evaluate sensitivity to this.
The semi-trailer with and without markers, together with the marked drawbar, are shown in
Figure 5.2, top.

From the point of view of the OEM (i.e. Volvo in this case), it is important for ancillary
equipment such as a reversing assist camera to be mounted below the top of the main I-beams
of the truck chassis. This allows for a variety of superstructures to be fitted. The test truck was
already fitted with an analogue reversing support camera, which was mounted in what would
be an ideal location for the articulation sensing camera (shown bottom right in Figure 5.2).
The location of the digital camera was sufficiently near to the existing analogue camera that
the fields of view were assumed to be comparable.

A summary of the instrumentation and communications layout is illustrated in Figure 5.3.
The camera was connected via USB 3.0 to a laptop computer in the truck cab. The camera
was calibrated using the PTAM calibration module described previously, using the same
7×10 checkerboard. Calibration results are given in Appendix C. Analogue signals from the
two articulation angle sensors were digitised and logged using a dSPACE MicroAutoBox®
in the cab, provided by Volvo.

Synchronisation signals were sent from the Autobox via CANbus to the laptop. On the
laptop a Python script was used to capture images and log sensor data at 20 Hz. Images
were captured using the FlyCapture and OpenCV libraries for Python, while the PCANBasic
library was used to interpret CAN messages from the Autobox.

Processing of image sequences in PTAM was performed offline on the same 2.4 GHz
laptop computer as before (and the same laptop computer used to log data here). Detailed
specifications are provided in Appendix A.

5.1.2 Test scenarios

Testing was carried out in September 2016 at Hällered, Volvo’s vehicle proving ground near
Gothenburg, Sweden. The trailer storage yard next to the mechanical workshop was chosen
to perform tests. This provided the visual scenery and manoeuvres most representative of
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truck loading and unloading areas, where reversing assist systems would be most applicable.
Straight sections of the oval track at Hällered were used to obtain the offsets of the reference
articulation angle sensors before testing.

Selected low-speed manoeuvres were carried out in the yard, around parked trailers and
around the workshop building. The testing site and manoeuvres are illustrated in Figure 5.4.
Six manoeuvres were carried out:

1. a left turn (anti-clockwise) loop around the central trailer parking area (‘left turn’),

2. a right turn (clockwise) loop around the central trailer parking area (‘right turn’),

3. an arbitrary driving route around the workshop (‘arbitrary A’),

4. a shorter arbitrary driving route around the workshop (‘arbitrary B’),

5. a short duration manoeuvre over an uneven unpaved surface (‘uneven’), and

6. the ‘left turn’ manoeuvre, with semi-trailer markers removed (‘no markers’).

The left turn manoeuvre was an easily repeatable manoeuvre, and so was chosen for the
no markers test to offer a good comparison of performance. The right turn manoeuvre would
have equally sufficed. Three runs of each manoeuvre were performed.

Each test was started with the vehicle stationary and oriented such that both articulation
angles were non-zero. This ensured that when the vehicle started moving, lateral motion of
both the semi-trailer and drawbar relative to the camera would occur, as was necessary for
the stereo initialisation process1. In some cases the motion was found not to be sufficient,
and so the initialisation was performed later in the manoeuvre.

Each manoeuvre included a section where the vehicle was travelling straight, so as to
zero the co-ordinate frame. The stereo initialisation and zeroing processes are discussed in
more detail in the following section.

5.2 PTAM implementation

Sample images from the camera are shown in Figure 5.5 at both zero and non-zero articulation
angles. For the purposes of extracting the two independent articulation angles, the images

1Recall from Chapter 3 that the PTAM stereo initialisation process involves taking two images of the scene
from two viewpoints separated by some relative translation. These are the first two ‘keyframes’ which are used
to define the initial 3-D map of the scene. Because no depth information is known (from a stereo camera for
example), the 3-D map is only known up to an arbitrary scale factor. Additional keyframes can be added over
time as new features are detected. In this case the camera is fixed to the truck, the reference body, and the
scene is moving relative to the camera. Therefore translation of the trailer or drawbar relative to the camera is
required in order to capture the two keyframes for stereo initialisation.
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were partitioned into two regions of interest: semi-trailer and drawbar. These partitions are
shown in the figure. The sizes of the partitions were 440×270 and 560×180 pixels for the
semi-trailer and drawbar respectively, and were centred laterally.

The precise dimensions of these regions were chosen by trial and error to give a good field
of view of the target object within the range of articulation, whilst minimising unnecessary
background visuals. It is likely that an optimum size of these partitions could be found which
would be suitable for most or all anticipated trailers and geometries; this was not investigated
in this work.

The two partitions were processed separately by applying suitable masks over the image
outside of the region of interest. It is envisaged that in future work suitable modifications
could be made to the PTAM algorithm to process both regions simultaneously. This could
be achieved by adding another two processing threads (a tracking and a mapping thread for
the second partition). Alternatively, the two regions could be processed sequentially at each
frame. The small lag caused might be acceptable, otherwise suitable delay compensation
techniques could be adopted.

The total number of features tracked in both semi-trailer and drawbar regions of interest
are likely to be equal to or less than when the full frame was used in the semi-trailer tests of
Chapter 4. For the same number of keyframes, the processing demand varies proportionately
with the number of features (see [123]). As such, with the same number or fewer features,
the total processing demand in a sequential processing routine should yield comparable
framerates to the full-frame tests.

From Figure 5.5 the view of the semi-trailer can be seen to be similar to that of the tractor
semi-trailer tests (see Figure 4.3). However, the semi-trailer is further away from the camera,
and given the added articulation point we can expect more lateral translational motion. Any
effect of these differences should be evident in the results.

The drawbar view is slightly different in that the dominant plane is horizontal instead
of vertical. However, this was found not to be of significant importance. What is important
about the drawbar is the proximity of the camera to the point of rotation. If the camera was
located on the axis of rotation stereo initialisation would not be possible, as this requires
relative translation between the two initial keyframes.

The location of the camera was sufficiently offset from the axis of rotation to ensure
that stereo initialisation of the drawbar was possible in all cases. However, relatively large
rotations of the drawbar were required between the two keyframes to ensure an adequate
initialisation. In future work, an increased offset position of the camera might help reduce the
initialisation articulation angle. The stereo initialisation procedure was otherwise identical to
Chapter 4.
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An additional initialisation step was introduced to zero the articulation measurements
during processing, in a manner which could be easily carried out during real-time processing.
After stereo initialisation, the reference co-ordinate frame is not necessarily aligned with the
longitudinal axis or yaw plane of the truck, depending on the features found or the orientation
of the trailer between the first two keyframes.

When the trailer was known to be travelling straight, with both articulation angles
approximately zero, a command was given in the C++ script which obtained the instanta-
neous rotation matrix of the pose. Subsequent rotation matrices were post-multiplied by
this reference matrix to adjust the co-ordinate frame accordingly, before performing Euler
decomposition to extract the articulation angle.

An example of the stereo initialisation and zeroing procedure is given in Figure 5.6,
showing a time history of PTAM and ground truth measurements. When some lateral
movement of the semi-trailer or drawbar begins, the first keyframe is obtained. Once sufficient
additional lateral motion has occurred, the second keyframe is obtained at approximately 12
seconds, defining the initial stereo map. Hereafter the co-ordinate system is not necessarily
aligned with the vehicle, as is evident in the measurement bias. At approximately 72 seconds,
it was observed that the trailer was straight, and so the zeroing command was given, applying
a zeroing correction to subsequent measurements.

In processing, every run was processed once in full, with stereo initialisation and zeroing
as described. However, to obtain meaningful error statistics over the full duration of the
run, each run was re-processed using the initial stereo map and zeroing correction, giving
initialised and zeroed articulation measurements from t = 0 seconds.

Processing time was 15 ms for the trailer and 13 ms for the drawbar including distortion
correction and stereo rectification. The total time is comparable to the original PTAM
algorithm, and permits frame rates of up to 20 fps.

5.3 Results

Example stereo initialisation keyframes and subsequent initialised feature maps are given
in Figure 5.7. The marked semi-trailer (a), unmarked semi-trailer (b), and drawbar (c) are
shown. Recall that the graphical planar grid superimposed on the trailer represents the
dominant plane found in the scene, based on the locations of detected features (intended for
Augmented Reality purposes in the original PTAM paper [123], but retained here for visual
feedback).

It is clear that the markers provided on the semi-trailer (Figure 5.7a) introduced additional
feature points compared with the unmarked semi-trailer (Figure 5.7b), but that the unmarked
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semi-trailer still provided sufficient features for initialisation and tracking. In both cases there
was a concentration of features around the service connections and along the bottom edge of
the semi-trailer around rivets, trailer name plates and trailer identification code (indicated in
Figure 5.7b).

These features are likely to exist on almost all trailers as a bare minimum, providing a
good lateral distribution of features which is necessary for yaw rotation measurement. This is
an important finding, and confirms that sufficient features may be found and tracked without
the need for any markers.

In the case of the drawbar (Figure 5.7c), it is clear that a number of features were obtained
from existing points such as service connectors, name plate, bolt heads and structural
discontinuities. The added markers contributed a number of additional features, but it is
assumed that only the base features would be sufficient given the observations with the
unmarked semi-trailer.

It is also clear that a larger rotation was required during the drawbar stereo initialisation
process. If the motion was too small, the initialisation would either fail or yield obviously
erroneous and/or erratic measurements. In practice, it would be straight-forward to detect
a failed initialisation, or to otherwise ensure sufficient motion between keyframes in an
automatic fashion. Adding a lateral offset between the camera and hitch axis would help
reduce the angle required for initialisation, by increasing the translation component of the
relative motion (T).

Time histories of articulation angle measurements for the six manoeuvres are shown in
Figure 5.8 (drawbar) and Figure 5.9 (semi-trailer). PTAM and ground truth measurements
are plotted, and the error signal between the two is shown beneath each plot. Results for
run 1 (of 3) from each manoeuvre are plotted. PTAM measures total relative pose, and so
in the case of the semi-trailer this is the sum of drawbar and semi-trailer articulation angles.
Therefore, in this case the sum of pintle hitch and VSE sensor measurements were used as
the ground truth.

Measurements from the pintle hitch sensor were unfiltered and exhibited a noise compo-
nent. The total ground truth articulation angle measurement between truck and semi-trailer
was hence also noisy, although the fifth wheel sensor measurements were not. To address
this, the pintle hitch articulation measurements were filtered in post processing using a
second-order low-pass Butterworth filter at a cut-off frequency of 0.1π rad/sample (2 Hz in
this case). The filtered signals were used to calculate the error signals.

The trends of the PTAM and ground truth measurements show good agreement, and
errors are mostly small with smooth variations with articulation angle. There is little evidence
of bias except for the scenario of the trailer on uneven ground (Figure 5.9e).
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Bias will occur if the system is inaccurately zeroed, and so it is important that this
step is performed correctly. This was difficult to perform accurately for the uneven ground
scenarios as there was no consistent region of zero articulation. This was a limitation of the
manoeuvring area used for these tests (see Figure 5.4). Small variations in initialisation and
zeroing accuracy can be expected in the other manoeuvres too due to the manual nature in
which they were performed, however it is likely that this process could be better automated
in future.

The manoeuvres conducted provided a large variation in background scenery, and the
results show no discernible sensitivity to this. Results with and without markers are very
similar (Figure 5.8a vs. Figure 5.8f, Figure 5.9a vs. Figure 5.9f), despite the lack of artificial
markers.

It is clear from Figures 5.8 and 5.9 that the PTAM measurements consistently underesti-
mate articulation angle compared to the ground truth. This is comparable to the observations
in Chapter 3 (Figure 3.23) but contrary to Chapter 4 where angles were overestimated relative
to the ground truth (Figure 4.13b). However, in all three cases an approximately linear sensi-
tivity was observed. Errors as a function of articulation angle for each of the manoeuvres are
shown in Figures 5.10 and 5.11, from which the consistency and approximate linearity of the
variations are clear.

A summary of RMS and maximum errors per manoeuvre is given in Figure 5.12. For
each manoeuvre, data for each of the three runs as well as the average result per manoeuvre
are presented. The larger errors for the semi-trailer can be attributed to respectively larger
articulation angles. The similarity in RMS and maximum errors between the ‘left turn’ and
‘no markers’ scenarios is clear for all three runs. The largest RMS and maximum errors were
obtained during the manoeuvres on the uneven road surface, and these results are distinctly
outlying compared to the other manoeuvres. All other manoeuvres yielded comparable
results.

The original purpose of the manoeuvres on the uneven road surface was to assess PTAM’s
robustness to erratic roll motion caused by undulating road surfaces. These manoeuvres
yielded significant periodic roll motion over the extent of the manoeuvre, and yet there is
no evidence of periodic variation in errors (the noise component is comparable to the other
manoeuvres). Therefore, these errors must originate from a different source.

One possible source is the difficulty with which these manoeuvres were zeroed, and this
is evident in Figure 5.9e. Secondly, there appears to be a consistent ‘spike’ in the errors
at around the same point in the manoeuvre in all cases, without an associated increase in
articulation angle (see Figure 5.9e at 60 seconds). From the image sequences it was observed
that this is the point when the truck transitions from the uneven road surface to the paved
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surface, resulting in a noticeable change in pitch angle between truck and trailer. This change
is more significant than the transient pitch variations experienced in other manoeuvres, and
appears to have a direct effect on the errors. In future work it is expected that this pitch angle
effect could be accounted for with corrections to the pose matrix R before calculating the
articulation angle.

Over all manoeuvres, using the three-run average results, RMS errors were in the range
0.79–0.93◦ (1.83◦) for the drawbar and 1.07–1.51◦ (2.35◦) for the semi-trailer. The values
given in parenthesis represent the outlying uneven road surface results. Maximum errors were
in the range 2.50–3.05◦ (4.60◦) for the drawbar and 3.44–4.04◦ (5.05◦) for the semi-trailer.

5.3.1 Error trends, Chapters 3, 4, 5

The approximately linear variation in errors with articulation angle observed in the drawbar
and trailer results for the Nordic combination was also observed in the results of Chap-
ter 3 (tractor semi-trailer, CAD simulations) and Chapter 4 (tractor semi-trailer, field tests).
Figure 5.13 shows the maximum error as a function of maximum articulation angle per
manoeuvre for the drawbar and semi-trailer of the Nordic combination, together with the
tractor semi-trailer results of Chapters 3 and 4. The sign of the maximum errors has been
included to differentiate between overestimates and underestimates of articulation angle. A
linear least squares fit has been included for each case. (A zero-intercept has been forced,
consistent with the behaviour observed in Figures 5.10 and 5.11.)

These results prompt some key questions:

1. Why do the errors increase approximately linearly with articulation angle?

2. What are the factors governing the magnitude and sign of these errors?

3. What are the differentiating factors between the test cases of Chapters 3, 4 and 5 which
have given rise to the differences in the magnitude and sign of the errors?

The first question can be addressed by considering the how PTAM estimates pose through
feature tracking. The primary set of features is captured during the stereo initialisation
process, contained in the first two ‘keyframes’. These two initial keyframes contain the
only set of features tracked, except for the few cases when larger articulation angles allowed
keyframes from the trailer sides to be added (Chapter 4, Figure 4.25d).

Estimating the current camera pose requires detecting the original keyframe features in
the current frame. To do this, the original features first undergo an affine warp (a simplified
version of Equation 3.17) to account for the change in viewpoint from the original keyframe
to the current frame. As the difference in viewpoint increases with increasing articulation
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angle, the similarity between the estimated warped feature and the actual observed feature
will have deteriorated, and so will the ability the accurately locate the new position of that
feature. The template-matching algorithm is a large-scale version of this same procedure.

This is further exacerbated when the feature points are not planar. The assumption that
features are locally planar (Section 3.4.2) is accurate for many of the features detected in
the current vehicle tests. The assumption is also generally accurate for non-planar features,
provided changes in viewpoint are small. However, the vehicle tests conducted in this work
include both non-planar elements and large changes in viewpoint. Non-planar elements range
from small discontinuities at welded joints (see Figure 4.25c, features in the left half of the
image) to highly non-planar elements such as the coiled service cables (Figure 5.7b).

It is therefore reasonable to expect that errors should increase approximately linearly
with increasing articulation angle relative to Γ ≈ 0◦ (where the initial keyframe was obtained
during initialisation). For the cases where additional keyframes from the trailer sides are
added, a sudden reduction in errors is not expected as the prior pose estimate for the new
keyframe is based on the existing estimates, which are based on the original keyframes.

If the image sequences were significantly longer in duration than investigated here, the
effects of global bundle adjustment could become evident (see Section 3.4.2), and should
help reduce errors. The addition of more keyframes from the trailer sides may also help to
improve errors over time during global bundle adjustment.

If this is the primary source of the observed error trend, then it must be established why
these errors should manifest themselves differently between the tests conducted in Chapters
3, 4, 5. From Figure 5.13 it is clear that neither the gradient of the linear trend nor the sign of
the errors (overestimating or underestimating) is consistent.

The reason for this could be a one of multiple factors, including camera location relative
to the trailer, the vertical distribution of features on the trailer face or camera calibration.
These factors were different for each set of tests, and so may help to explain the differences.

In Chapter 3, the camera was slightly below the centre of the trailer face, though features
were well distributed vertically (Figure 3.24b). In Chapter 4, the cameras were slightly above
the centre of the trailer, with a similarly good vertical distribution of features on the trailer
face, and a slight prominence towards the top half of the trailer (Figures 4.11c, 4.25c). In the
current chapter, the camera was mounted significantly lower than the centre of the trailer face,
and as a result features were predominantly in the lower portion of the trailer face. These
differences in camera position and feature distribution are consistent with the differences in
the sign of the errors.

In the vehicle tests, it is possible that small camera calibration errors could have resulted
in the increasing errors with articulation angle. For the case of the tractor semi-trailer and
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the drawbar of the Nordic combination, increasing articulation angle is directly correlated
with movement of the trailer face away from the centre of the image. For the semi-trailer of
the Nordic combination this is not always true given the two articulation points, but it is true
during much of the cornering manoeuvres conducted during these tests.

Errors in either focal length or the radial distortion coefficient (see Equation 2.11)
would therefore result in increasing errors with articulation angle, over- or underestimating
articulation angles consistently for both +Γ and −Γ as was observed. Errors in the principal
point (especially u0) would more likely give rise to overestimates in one direction and
underestimates in the other, which was not observed.

External factors such as a pitch angle offset also play a part in the observed error trends,
as was proposed to explain the high errors in the uneven road surface manoeuvres. In general,
this could be a result of either trailer pitch or pitch in the camera mounting. Alternatively,
it could result from the initial orientation of the reference plane from which PTAM takes
pose estimates. This reference plane is fitted to the dominant plane in the scene during
initialisation, which in all tests has been the majority of the trailer face. However, some
slightly out-of-plane features (such as on the services connectors) may have resulted in small
pitch offsets of the plane relative to the trailer.

It is possible that pitch angle offsets could be accounted for using the pitch angle
measurement from PTAM’s rotation matrix, but this will be sensitive to the initial orientation
of the dominant plane observed during initialisation. Alternatively, the correct alignment
axes of the trailer could be determined during some additional initialisation manoeuvring,
by determining the vertical axis of trailer articulation. Subsequently measured variations in
pitch angle could then be used to correct for the effect of pitch on articulation angle estimates.
An investigation into pitch angle correction and feature distribution effects is recommended
for future work.

5.3.2 Comparison with published results

Figure 5.14 shows an updated version of Figure 4.27, where the Nordic combination vehicle
test results have been compared to published results, as well as earlier results from this work.
Recall that maximum errors are used in the comparison as RMS errors were not available
from the literature. The three-run average result for each manoeuvre is plotted for simplicity.

The new results sit well with the previous PTAM results (with the exception of the uneven
road surface results), and further reinforce the performance benefits over published sensing
solutions and the template-matching approach. The Nordic combination tests also provide
results at the highest articulation angles assessed, 68◦ (arbitrary A, run 3).
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5.4 Conclusions

1. The PTAM-based articulation angle sensing concept was modified to be compatible
with a Nordic combination vehicle (or truck and full-trailer), and to independently
measure the articulation angles of both a drawbar and semi-trailer with one camera.

2. Vehicle tests were conducted on a Nordic combination at Hällered, Sweden. Testing
was conducted in a trailer parking and workshop area, giving a good visual representa-
tion of a trailer docking yard where such as system might be utilised.

3. Six low-speed manoeuvres were conducted with articulation angles of up to 68◦. Ma-
noeuvres included typical low-speed manoeuvring, driving over uneven road surfaces,
and tests with and without markers on the semi-trailer.

4. A new semi-automated zeroing process was introduced which should be straight-
forward to perform automatically in future work.

5. RMS errors were in the range 0.79–1.83◦ for the drawbar and 1.07–2.35◦ for the semi-
trailer. Maximum errors were in the range 2.50–4.60◦ for the drawbar and 3.44–5.05◦

for the semi-trailer. No differences in error were observed for comparable tests with
and without artificial markers. Manoeuvres on uneven road surfaces yielded large
errors inconsistent with the other manoeuvres. It was proposed that this was the result
of a combination of zeroing accuracy and large changes in truck-trailer relative pitch
angle during the manoeuvre.

6. Errors were shown to increase smoothly as a function of articulation angle, consis-
tently underestimating the angle relative to the ground truth. The increase in errors
with articulation angle was consistent with results observed in Chapters 3 and 4, but
variations in the magnitude and sign of the errors between these sets of results were
not consistent.

7. Increasing errors with increasing articulation angle are expected given PTAM’s inherent
feature-based method for pose estimation. Factors which could give rise to differences
in the magnitude and sign of errors between Chapters 3, 4 and 5 include vertical camera
location, vertical distribution of feature points, camera calibration, and pitch angle
offsets. An investigation into these effects is suggested for future work.
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5.5 Figures

(a) B-double

(b) Truck and full-trailer combination (or Nordic combination)

Fig. 5.1 Camera-mounting options for multiply articulated vehicles (vehicle illustrations
from [1])
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Fig. 5.2 Nordic combination test vehicle and detail (dimensions in mm)
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Fig. 5.3 Nordic combination instrumentation

Fig. 5.4 Testing location at Hällered proving ground, Sweden, showing test manoeuvres
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Fig. 5.5 Image regions of interest used for processing (zero and non-zero articulation angles
shown)

Fig. 5.6 Stereo initialisation and zeroing (semi-trailer, right turn, run 1)
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Fig. 5.8 Time histories, drawbar
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Fig. 5.9 Time histories, semi-trailer

149



Field tests of the articulation angle sensor on a truck and full-trailer

60 40 20 0 20 40 60
Artic. angle (deg)

6
5
4
3
2
1
0
1
2
3
4
5
6

Er
ro

r (
de

g)

(a) Left turn

60 40 20 0 20 40 60
Artic. angle (deg)

6
5
4
3
2
1
0
1
2
3
4
5
6

Er
ro

r (
de

g)

(b) Right turn

60 40 20 0 20 40 60
Artic. angle (deg)

6
5
4
3
2
1
0
1
2
3
4
5
6

Er
ro

r (
de

g)

(c) Arbitrary A

60 40 20 0 20 40 60
Artic. angle (deg)

6
5
4
3
2
1
0
1
2
3
4
5
6

Er
ro

r (
de

g)

(d) Arbitrary B

60 40 20 0 20 40 60
Artic. angle (deg)

6
5
4
3
2
1
0
1
2
3
4
5
6

Er
ro

r (
de

g)

(e) Uneven

60 40 20 0 20 40 60
Artic. angle (deg)

6
5
4
3
2
1
0
1
2
3
4
5
6

Er
ro

r (
de

g)

(f) No markers

Fig. 5.10 Errors vs. articulation angle, drawbar
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Fig. 5.11 Errors vs. articulation angle, semi-trailer
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Fig. 5.12 Overview of maximum and RMS errors for all runs
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Chapter 6

Development of a trailer off-tracking
sensor

In this chapter, a trailer off-tracking measurement concept is developed, which is able to
provide a direct trailer off-tracking measurement for Cheng’s path-following controller [32].
The new concept addresses previous shortcomings of the controller in that it is independent
of tractor-based measurements and parameters, and makes no assumptions about wheel slip.

The concept also addresses the shortcomings of Miao’s ground-watching navigation
system [3], in that it does not rely on a consistent ground surface from which to obtain image
data. This enables the system to operate under any road conditions, including wet and muddy
conditions off-highway.

6.1 Off-tracking estimation with visual odometry

A new method of trailer off-tracking measurement is proposed in this work which addresses
certain limitations of Cheng’s path-following controller [32] and Miao’s ground-watching
navigation system [3], which aims to achieve measurement errors less than 0.10 m (RMS)
and 0.15 m (maximum) (Section 1.6). The method utilises a stereo camera pair mounted
to the roof of a trailer (either along the side or rear edge) which captures stereo images of
the surrounding landscape. These images are processed using the VISO2-S visual odometry
algorithm [133] to determine the motion of the cameras (and hence trailer) relative to the
surroundings. Side-facing cameras would give the system flexibility for application to
multi-trailer combinations.

Trailer motion data are then manipulated to estimate trailer off-tracking by finding the
relative trajectories of the fifth wheel and trailer follow point. The adopted visual odometry
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Development of a trailer off-tracking sensor

algorithm is robust to outliers and to regions of moving scenery. The combined VISO2-S
and off-tracking calculation algorithm is denoted ‘VISO-OT’.

6.1.1 Visual odometry

PTAM was initially considered for the off-tracking estimation task, given the good per-
formance exhibited in the articulation angle estimation task. However, PTAM relies on
computationally expensive bundle adjustment for its accurate pose estimation which is best
suited for applications where the map is not steadily growing. From Klein and Murray’s
paper on PTAM [123]:

One way or the other, it becomes an increasingly expensive computation
as map size increases: For example, tens of seconds are required for a map
with more than 150 keyframes to converge. This is acceptable if the camera
is not exploring (i.e. the tracking system can work with the existing map) but
becomes quickly limiting during exploration, when many new keyframes and
map features are initialised (and should be bundle adjusted) in quick succession.

It was hence necessary to explore alternative options. Visual odometry was selected as a
suitable motion sensing solution for this application.

Visual odometry is the estimation of the pose and motion of a camera through a 3-
dimensional scene. Advances in visual odometry algorithms have resulted in its widespread
use in the areas of autonomous road vehicles and mobile robotics. Compared to other
odometry systems such as wheel speed sensors and GPS, visual odometry offers high
precision, low-cost hardware, and independence from traction conditions.

Although vehicle-based visual odometry is commonplace in autonomous vehicles (see
for example [133, 186]), little work has been done with heavy vehicles, with the exception of
the related work of Miao [3] and Harris [73].

Numerous visual odometry algorithms exist with varying degrees of accuracy and robust-
ness, and which utilise various combinations of cameras and other sensors such as Lidar. The
VISO2-S visual odometry algorithm of Geiger et al. [133] was adopted for this work. The
algorithm requires sequences of stereo image pairs from a stereo camera, and assumes the
stereo cameras have been calibrated and the calibration information is available. The ‘stereo
baseline’ (the lateral separation between left and right cameras) must also be known.

Although some other algorithms offer superior measurement accuracy [131], VISO2-S
does not require additional sensors and has a robust method of minimising the effect of
moving scenery which is important for transport applications. Furthermore, the open-source
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6.1 Off-tracking estimation with visual odometry

C++ source code is available online1 which is attractive for this proof-of-concept work. In
future development, more recent and more accurate algorithms could be explored.

Details of the VISO2-S algorithm may be found in [133] and can be summarised into the
following steps:

1. A stereo image pair is obtained and corner-like features are detected in each image.

2. ‘Circular’ feature matching is performed, comparing features between left and right
images (normal stereo matching) as well as between current and previous image pairs.
Features are accepted if matching succeeds through the entire ‘circular’ loop of four
images.

3. A ‘bucketing’ process [187] divides the images into a rectangular grid, and each
‘bucket’ may only store a maximum number of features. This ensures a good distri-
bution of features around the image, minimising the effects of bias and of moving
objects.

4. Ego-motion is estimated by minimising reprojection errors through Gauss-Newton
optimisation with respect to R and T, the rotation matrix and translation vector respec-
tively.

5. The ego-motion estimation incorporates a RANSAC strategy to remove outliers.

6. A constant acceleration Kalman Filter is used to minimise noise.

In performance tests on the KITTI dataset [188], the VISO2-S algorithm was shown to
yield 2.44% translation error and 0.0114 deg/m rotation errors on average with a 0.5 m stereo
baseline. The algorithm runs at 20 fps on a single processing core using the recommended
parameter settings.

Using a representative trailer length of 14 m (from fifth wheel to follow-point), translation
drift of 2.44% would result in approximately 0.0224 × 14 m = 0.3136 m of lateral off-
tracking between the fifth wheel and the rear of the trailer. It is expected that the accuracy of
VISO2-S can be improved nearer to the target maximum error of 0.15 m by using a larger
stereo baseline. This is discussed in more detail later.

A mono camera variation of the algorithm exists but is less accurate, less computationally
efficient, and relies on scene assumptions. Mono visual odometry is also more prone to drift
[82], though some drift may still exist with stereo cameras due to inaccuracies in camera
calibration.

1http://www.cvlibs.net/software/libviso/, last accessed 20 April 2017
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Development of a trailer off-tracking sensor

The use of a single camera is attractive in size- and mass-limited applications (such as
drones), but is of little consequence here. Consequently, stereo odometry was adopted for it
benefits in terms of accuracy, drift, and independence of any world assumptions. Drawbacks
include a small increase in hardware cost, and additional calibration steps.

6.1.2 Off-tracking calculation

Given visual odometry data from a stereo camera pair fixed to the trailer, the task remains to
calculate off-tracking between the rear of the trailer (the follow-point) and the trajectory of
the fifth wheel. Visual odometry data are in the form of a rotation matrix, R, and translation
vector, T, at each frame. R and T are relative to the prior vehicle location, and in that
vehicle’s reference frame.

Figure 6.1a illustrates the step-by-step (or frame-by-frame) yaw-plane motion of a tractor
semi-trailer combination at frames i, i− 1, i− 2, i− 3, etc. The camera origin has been
arbitrarily assumed to be at some distance a behind the fifth wheel and b ahead of the
follow-point.

The raw visual odometry data are shown in the form of ∆x, ∆y and ∆ψ: incremental
translation and rotation at each frame. Only rotations and translations in the yaw plane were
considered, assuming pitch and roll motions to be negligible relative to motion in the yaw
plane.

By making use of a data buffer or shift register, these data may be used to calculate
off-tracking. First, depending on whether the cameras are rear-facing, side-facing, or at some
intermediate angle between, translational data from the cameras must be rotated and aligned
with the vehicle co-ordinate frame.

To do this the camera-to-vehicle rotation parameter is defined as ψc2v. For perfectly
rear-facing cameras, ψc2v = 180◦, and for cameras pointing to the right, ψc2v = 90◦. The
co-ordinates can be rotated according to:[

∆x
∆y

]
i

=

[
cos(ψc2v) sin(ψc2v)

−sin(ψc2v) cos(ψc2v)

][
∆x
∆y

]
cam,i

(6.1)

The motion data from the cameras can then be transformed into fifth wheel motion
(denoted by the subscript F for ‘front’) as follows:[

∆x
∆y

]
F,i

=

[
∆x
∆y

]
i

+a ·

[
sin(∆ψi)

cos(∆ψi)−1

]
(6.2)

158



6.1 Off-tracking estimation with visual odometry

where a is the distance from the hitch to the reference point of the cameras. This is illustrated
in Figure 6.1b. These data are stored in a buffer which initially grows with each new frame.

To find the fifth wheel trajectory relative to the current vehicle reference frame, previous
data in the buffer must be rotated at each new frame. This can be done by first summing ∆ψ

from the current frame to each previous frame as follows:

ψ
(i)
i−k =−

k

∑
j=1

∆ψ
(i− j)
i− j , k = 1,2,3, . . . (6.3)

The counter, k, denotes the entry in the buffer, increasing from the current frame (k=1)
backwards. The superscript (i) denotes the co-ordinate frame (i.e. that of vehicle i).

For buffer entry k, and hence frame i− k, a rotation transformation from frame (i− k) to
frame (i) can then be applied to obtain ∆x and ∆y in the current reference frame:[

∆x
∆y

](i)
F,i−k

=−

[
cos(ψ(i)

i−k) sin(ψ(i)
i−k)

−sin(ψ(i)
i−k) cos(ψ(i)

i−k)

][
∆x
∆y

](i−k)

F,i−k

(6.4)

which is illustrated in Figure 6.1c.

The x and y locations of each data point in the current vehicle reference frame (centred
on the fifth wheel) may then be found by simple summation of ∆x and ∆y data:[

x
y

](i)
F,i−k

=
k−1

∑
j=0

[
∆x
∆y

](i)
F,i−k

(6.5)

This result is illustrated in Figure 6.1d.

At a given frame i, (x,y) data of fifth wheel path history points allow us to find the
off-tracking at the rear of the trailer. Assuming the dimension a+b to be known, the most
recent path history point for which

y(i)F,i−k ≤−(a+b) (6.6)

denotes the point beyond which the fifth wheel trajectory is past the rear of the trailer.

The value of k at which this condition is met is denoted kb, or the buffer length. The
buffer only needs to retain kb data points, with older data being discarded and the most recent
data added at each new frame in the data buffer.

159



Development of a trailer off-tracking sensor

The off-tracking, etr, may be calculated by linear interpolation as follows:

etr = x(i)F,i−(kb−1)+
(

x(i)F,i−kb
− x(i)F,i−(kb−1)

)y(i)F,i−(kb−1)+(a+b)

y(i)F,i−(kb−1)− y(i)F,i−kb

 (6.7)

If at least one trailer length has passed, the above calculation of off-tracking will be
possible. If not, the buffer will not contain sufficient data for off-tracking to be calculated. In
this case the next frame is obtained, and the buffer simply grows in size until sufficient data
are available and off-tacking can start to be calculated. Thereafter, the buffer size will vary
with the speed and path of the vehicle, only keeping data old enough to calculate off-tracking.

When a vehicle stops, it is possible to store the contents of the buffer. So in theory, the
calculation of a semi-filled buffer should only occur the first time a new vehicle combination
is launched.

Integration drift is inherent in visual odometry systems as a result of summing incremental
motion data in the above fashion. In typical automotive and mobile robotics applications,
these data are integrated indefinitely with time to obtain global position estimates, so the
integration errors can grow unbounded. However, in this application integration is performed
only from the fifth wheel to the rear of the trailer and so integration drift is bounded by the
length of the trailer and will not grow indefinitely with time. Further, the effects of any
outliers in the visual odometry data will be removed from the buffer after one trailer length
has passed.

6.1.3 Wide-baseline stereo

In Section 6.1.1, it was theorised that the accuracy of VISO2-S could be improved by using a
larger stereo baseline in an attempt to approach the desired error targets of 0.10 m (RMS)
and 0.15 m (maximum).

Increasing the baseline of a stereo camera pair can improve depth accuracy and hence
odometry accuracy [189]. However, the extent to which this can be utilised is limited due to
the increasing difference in perspective between the two cameras. This will reduce the quality
of feature matching and hence reduce the total number of successful matches between stereo
image pairs. For this reason standard stereo vision algorithms are sometimes adapted for
wide-baseline applications primarily by using more robust (but computationally expensive)
feature similarity metrics (see for example [190, 191, 189]).

There is also a practical limitation for vehicles and mobile robots, where the camera
baseline cannot practically exceed the dimensions of the vehicle or robot, or even some
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6.2 Simulation overview

proportion of it. For passenger cars, the stereo baseline is also limited by more convex shapes
of the bodywork, and by aesthetics.

For heavy goods vehicle applications, particularly on trailers, these constraints are
less problematic. Shapes tend to be rectangular and perpendicular, and dimensions are
significantly larger.

The most limiting dimensional constraint for rear-facing cameras would be that of
maximum vehicle width, which in the UK is legislated to 2.5 m. Larger baselines are
possible parallel to the sides of the vehicle for side-facing cameras. However, other practical
limitations become important in these cases, concerning ease of stereo camera calibration
and the rigidity of the camera mounting.

Wide baselines were considered as part of this investigation. In this case the scenery was
assumed to be sufficiently distant that no alterations to the stereo matching algorithm were
necessary.

6.2 Simulation overview

As a proof-of-concept, and to assess the theoretical accuracy of the VISO-OT system,
simulations were carried out in Autodesk Inventor [167] in which visually representative
road and roadside environments were constructed. A stereo camera pair was made to travel
through the scene while rendering images from each camera at a fixed frame rate. VISO-OT
was then used to process the image sequences and estimate off-tracking.

The ‘virtual environment’ is shown in Figure 6.2a. It included a gravel road, grassy
roadsides, trees, shrubs, fences, and distant clouds. Road width was set to 5 m (within the
UK rural road design guidelines), and the size of objects and textures were chosen to be
representative. Soft ambient lighting and shadows were incorporated and all scenery was
stationary. The scenery repeated every 100 m along the road.

A stereo camera pair of set baseline was made to follow a straight path along the road
at a given slip angle, representative of a trailer moving with constant off-tracking due to a
cambered road surface for example. This is illustrated in Figure 6.2b.

Stereo image pairs were rendered at each frame using Autodesk Inventor Studio, and
sequences of image pairs were obtained at 10 fps as the trailer travelled 100 m along the path
at a constant speed of 5 m/s.

Images were captured at a resolution of 1344× 391 with a 100◦ field of view. The
cameras were located 3 m above ground level with zero tilt or roll angles relative to the
ground. As in Chapter 3, the intrinsic cameras parameters were determined without the need
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Development of a trailer off-tracking sensor

for camera calibration, using only knowledge of the image size and field of view (Equations
3.13). In this case: f = 563.9 pixels, (u0,v0) = (671.5,195.5) pixels.

Each generated image sequence was post-processed using VISO-OT. Off-tracking mea-
surements were made, and metrics such as RMS error, mean error, mean number of feature
matches, and mean number of inlying feature matches were recorded for each 100 m run.

Batch processing of the simulations was achieved using an AutoIt script (open-source
script language for automation of tasks in Windows [192]). The script was used to:

1. update run parameters in an Excel spreadsheet, which were dynamically linked to
Autodesk Inventor,

2. perform the image rendering task in Autodesk Inventor and save image data to file,

3. execute a Python script to greyscale the images, and

4. execute the VISO-OT algorithm on the image sequence and write results to file.

For step 4, a MATLAB-based variant of the visual odometry algorithm was used for
simplicity. The algorithm is fundamentally identical to the C++ implementation. All CAD
and visual odometry processing was performed on the same 3.2 GHz desktop computer used
previously (see Appendix A for specifications).

The default input parameters for VISO2-S were used, including 50 RANSAC iterations
per optimisation, outlier flow and disparity thresholds of 5 pixels, a bucket size of 50×50
pixels and a maximum of 2 features per bucket.

For off-tracking calculations, the trailer length from fifth wheel to follow-point (a+b
in Figure 6.1) was taken to be 14 m. This is approximately representative of a UK longer
semi-trailer (LST). Given the trailer side-slip angle and knowing the trailer length, the
‘ground-truth’ off-tracking was known accurately in each case for comparison.

The simulation environment was devised so that many of the described simulation and
camera parameters were variable. These included trailer slip angle, camera location (e.g. rear
or side-mounted), stereo baseline, image resolution, field of view, run length and frame rate.
This allowed for sensitivity to variations from the ‘reference’ settings to be investigated.

Four broad categories of simulations were conducted:

1. a sensitivity study, to confirm that simulation results were not sensitive to limitations
of the simulation environment such as run length and the size of the virtual landscape;

2. a study of the effect of camera parameters, to confirm the choice of camera resolution
and field of view;
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6.3 Results

3. a study of the impact of varying the primary design parameters, such as camera baseline
and camera configuration;

4. a study of the performance of the system under a range of operating conditions such as
trailer slip, scenery density, and vehicle speed.

A reference parameter set was chosen from which variations were investigated. The
reference parameters were as follows: 14◦ trailer slip, 100 m longitudinal travel, 2.5 m
lateral offset from the road edge, a starting location of 50 m from the edge of the simulation
environment, 10 renders per image, 100◦ field of view, an image resolution of 1344×391,
and a frame rate of 10 fps. The reference parameters (50 m, 100 m, 10 renders) were chosen
to give a good balance of perceived realism, while ensuring a reasonable simulation time.

Note that unlike the articulation angle simulation model (Section 3.1), the current simula-
tion model is purely visual. Steady-state motion in a straight line is assumed, with constant
side slip and speed, removing the need for a dynamic vehicle model.

6.3 Results

Example camera views from the stereo camera pair are shown in Figure 6.3 for both rear
and side facing camera cases. Locations of matched features are shown in each image. The
example case shown is for a trailer slip of 10◦ and a baseline of 2.5 m (to maximise the
differences in perspective). Detailed results of the four simulation studies are presented in
the following sections.

6.3.1 Simulation design

Although it is clear that the simulation is an idealisation, it was important to assess that it
was not biased on account of limitations of the simulation environment, such as the distance
travelled through the repeating scenery. As such, a few simulations were conducted to assess
the sensitivity of a chosen reference case to some of the main simulation parameters.

Firstly, sensitivity to the following simulation parameters were assessed: longitudinal
offset (distance from the rear edge of the scene at the start of the run), travel distance, and
image renders (the number of computational passes to create realistic lighting and textures in
the scene, with increasing realism). This ensured that these did not have a systematic effect
on the results.

Results for these simulations are shown in Figures 6.4, 6.5 and 6.6. Each of these figures
shows the effect of the selected parameter on RMS error, mean error, mean number of feature
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matches, and percentage of matches that were inliers. All metrics were calculated over the
total travel distance for a run. Results are shown for both rear and side camera configurations.

In Figure 6.4 no systematic effects are observed due to variation of longitudinal offset
on RMS errors (which averages between 2 and 3 cm) or bias, nor in the feature matching
statistics. This suggests that the chosen reference value is suitable.

When considering the length of the simulation run it was expected that as run length
tended toward infinity, errors would asymptotically converge to a minimum due the increasing
number of data points and the nature of the RMS and mean error calculations. Over a short
range of variations, some random variations in these error metrics would be expected.
Conducting infinitely long simulations would be impractical. The range considered here of
100 to 250 m was chosen to be representative of a typical HGV manoeuvre.

The results for run length variations are shown in Figure 6.5. Here we also observe no
systematic effect of changing the run length from 100 m to 250 m, and so 100 m was deemed
to be suitable for these simulations to minimise simulation time.

Increasing the number of image renders used by Autodesk Studio increases the realism
of the textures and shadows of the images, but at significant computational expense. Theoret-
ically, infinite image renders would give the most realistic rendering of textures and shadows,
minimising any misleading artefacts as a result of insufficient rendering.

The sensitivity to number image renders, shown in Figure 6.6, shows that 10 renders
seems to be a good compromise. Using less than 10 renders gives noticeable increases in
RMS and mean errors, and reductions in features matched, while using more than 10 has
only a small effect on these metrics but significantly increases rendering time (not shown).

Sensitivity to the lateral offset of the vehicle from the road edge was also considered,
partly to validate the simulation design but also to give insight into the effect of the average
distance to features. These results are shown in Figure 6.7. Although some noise is present
in the side camera results, there is no evident effect on errors. There is only a small increase
in features with increasing lateral offset, expected due to the increasing similarity of features.
Overall the selected offset is suitable and unbiased.

From these results, it can be concluded that the selected reference parameters for lon-
gitudinal offset, run length, lateral offset and image renders were suitable, while keeping
simulation times practical. On average, it took 23 minutes render a full image sequence per
run on a desktop computer with a 6-core2 3.2 GHz CPU and 16 GB of RAM (see Appendix A
for details).

2The 2016 version of Autodesk Inventor supports multi-threading for some operations including rendering
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6.3.2 Optical parameters

Sensitivity to camera design parameters was assessed to validate the chosen values and assess
if there was room for improvement. The reference camera parameters of 100◦ field of view
and a resolution of 1344× 391 were based largely on previous work (for example [188]),
in which they were found to offer a good balance between maximising the view and pixel
resolution in the yaw plane, whilst reducing the computational demand.

Results for resolution sensitivity are shown in Figure 6.8. Note that the aspect ratio of
the reference 1344× 391 was retained when altering the resolution. Also, the bucketing
parameter of 2 features per 50×50 bin was retained, meaning that increased resolution was
expected to give a direct increase in the number of matched features. The increase in features
with resolution is clear, but the percentage of inliers stays approximately constant, indicating
that the ‘quality’ of the matches does not necessarily improve with better resolution.

A reduction in errors is clear from low resolutions of around 500 pixels (width) towards
the reference value of 1344, but little improvement is in evidence thereafter. These findings
suggest that this resolution remains a good compromise, because further increases would
negatively impact frame rate, but with little benefit in terms of accuracy.

Sensitivity to the field of view is shown in Figure 6.9. Here we observe that the the value
of 100◦ is almost optimal, giving close to the lowest errors and maximum number of feature
matches. In a practical sense, a 100◦ field of view gives a reasonably wide view, but without
approaching the severe distortions of wider angle lenses (such as fish-eye lenses). More
severe lens distortion would require more computational for undistorting the images before
processing. So this finding is favourable, confirming the choice of the reference parameter.

6.3.3 Design parameters

One of the primary system design variables is the stereo baseline. It was hypothesised earlier
that a wider baseline might improve the accuracy of the visual odometry measurements
relative to the published accuracy in [188]. A range of baselines were considered against the
reference case, from 0.5 to 5.0 m in 0.5 m increments. A practical limit of 2.5 m would exist
for rear-facing cameras given the width of the trailer, but larger baselines were explored for
potential use on the side of the trailer.

The results are shown in Figure 6.10. A clear reduction in feature matching is evident
with increasing baseline, as expected due to the increasing difference in perspective of the
two cameras. However, little effect on errors is evident until a baseline of approximately
2.5 m. Until this point, RMS errors are in the region of 1–4 cm, and mean errors in the order
of 1 cm.
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The reduction in the number of feature matches and increase in errors are more pro-
nounced for the side-facing cameras. This is expected due to the smaller average feature
depth which is less suited to wider baselines. The point at which errors seem to grow (at a
baseline of 2.5 m) appears to correlate with the number of feature matches dropping below
250 (shown in the figure). This may be indicative of a useful practical limit when field-testing
the system.

At reasonable baselines (below 2.5 m), the results for rear and side cameras are compa-
rable. However, for higher baselines, the side cameras experience a significant increase in
RMS errors compared with the rear-facing cameras. The average feature depth for the side
cameras is lower, and an increased baseline gives better feature matching for more distant
features. So an increased baseline will have more effect on the side-facing cameras.

Additional variations in camera orientation were investigated for rear cameras at a 500 mm
stereo baseline, beginning with rear cameras (ψc2v = 180◦), and assessing incremental
rotations towards ψc2v = 135◦ relative to the trailer longitudinal axis. A 45◦ range of slip
angles was assessed as well. The results are shown as contour plots in Figure 6.11. Note that
mean errors are shown as absolute values for clarity.

Allowing for some random variations in results from one test to another due to noise, the
results suggest that small rotations towards the side result in only minor variations in accuracy
and feature matching performance. It appears that variations of up to 20◦ are acceptable for
low slip angles (see the mean error results in particular).

However, for rotations further from rear-facing, errors are more prone to increase with
increasing trailer slip, as the cameras are more perpendicular to the motion of the trailer and
hence more like side cameras. For example, the results for a camera offset of 165◦ (15◦ from
rear facing) are similar to the rear facing case at zero slip. However, at a slip of 15◦, where
there is little effect on the rear facing cameras, errors increase approximately two-fold for the
15◦ offset cameras.

Rear cameras therefore offer the best accuracy and consistency over the anticipated
operating range of off-tracking.

6.3.4 Performance under varying conditions

In addition to the reference case of 14◦ trailer slip (about 3.5 m off-tracking), a wide range
of other slip angles and hence magnitudes of off-tracking were investigated. Slip angles
of between 0◦ (0 m off-tracking) and 60◦ (24 m off-tracking) were considered. Although
off-tracking beyond approximately 4 m is not realistic, these higher slip scenarios were
included for possible additional insights.
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6.3 Results

The results are shown in Figure 6.12 for a rear-mounted camera configuration. Results
for three baselines—0.5 m, 1.5 m, 2.5 m—are shown for comparison.

For realistic slip angles below 16◦ (4 m off-tracking), the effectiveness of the feature
matching is seen to be approximately insensitive to slip angles in this range, but clearly
sensitive to baseline. RMS errors for the 0.5 and 1.5 m baselines are comparable, and range
from 0.01 m to 0.03 m. 2.5 m baseline errors are consistently higher: between 0.02 and
0.04 m. Mean error trends are similar, with a maximum bias of 0.01 m for the 0.5 m and
1.5 m baselines, rising to up to 0.035 m for the 2.5 m baseline case.

The mean number of feature matches for the 0.5 m and 1.5 m baselines are approximately
380 and 325, well above the threshold of 250. However, for the 2.5 m baseline, the number
of matches is on the limit of this threshold, sometimes dropping below it. This explains the
larger RMS errors for the 2.5 m baseline, compared to those for the 0.5 m and 1.5 m cases.

These results are promising given the sub-0.15 m target accuracy. However, these results
are only an indication of the limit of performance in an idealised environment, with perfectly
calibrated cameras, and consistent lighting and scenery conditions.

The scenery used was selected to be as representative as possible, especially in the texture
and scale of the road and grass ground surfaces. The density and distribution of 3-dimensional
objects such as trees and shrubs were selected by eye to give an appropriate scene. It was not
possible to determine a truly ‘representative’ scene given the wide variety of possibilities,
but this was deemed sufficient to provide an appropriate number of visual features.

Sensitivity of the measurements to the density of the surrounding 3-dimensional scenery
was assessed in order to give insights into real world performance under low feature environ-
ments. Three scenarios were considered. The reference case was deemed to have ‘100%’
of the available scenery. A 50% case was then considered, wherein 50% of the 3-D objects
were removed from the scene, at an approximately even distribution in the scene. Lastly, a
0% scene was considered in which all the 3-D scenery was removed, leaving only the ground
textures. These are shown in Figure 6.13 and Figure 6.14 for the rear and side cameras.

The results for the three scenery scenarios are shown in Figure 6.15. As expected, the
number of features drops with a reduction in scenery, for both rear and side cameras. The
effect on errors however is distinctly different between the rear and side cameras. The rear
cameras appear almost insensitive to the changes, which is a significant finding. This suggests
that in typical off-highway scenery such as large crop fields or pastures, the algorithm is still
able to detect and match sufficient features to maintain accuracy. This suggests that the most
important feature points are ground-based, and so having a good view of the ground and road
surface will be beneficial for performance.
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In the case of the side cameras however, there is a two-fold increase in RMS errors when
the 3-dimensional scenery is removed. Because the number of features in both rear and
side cases is above 250, performance here is largely dictated by the average depth to feature
(depth errors are smallest for closer features).

With side cameras the average feature depth changes more when the scenery is removed
than in the rear cameras case. For the side cameras the scenery is closer to begin with and
more dominant in the field of view, and so the effect of removing it is more severe, resulting
in the observed rise in errors.

The existing algorithm of [133] is able to run at 20 fps, given similar image and visual
odometry settings used here. A framerate of 10 fps was used for the current simulation
task, and helped to reduce simulation rendering time. However, sensitivity to frame rate
was explored briefly. By varying the frame rate in the simulations, and keeping all other
parameters constant, the net effect is to vary the distance travelled between frames. This is
hence also representative of varying speed.

Results are shown in Figure 6.16. Frame rates of between 1 and 20 fps were explored,
which is equivalent to speed variations between 50 m/s and 2.5 m/s. Above 10 fps, there is no
discernible effect on errors or feature matching. Below 10 fps, a gradual reduction in feature
matches becomes evident, but with little effect on errors. However, for frame rates below
approximately 2 fps, a significant drop in features and increase in errors is clear. Again, this
point seems to correlate with the 250 feature matches threshold.

At 2 fps the separation between frames is 2.5 m, the effective ‘stereo baseline’ in the
time domain. (Recall that feature matching is conducted in a circular manner, matching both
left and right images, as well as current and previous frames.) This value correlates with the
2.5 m baseline limit observed in Figure 6.10. We can hence conclude that baselines and frame
separations of no greater than 2.5 m should be used, to maintain sufficient feature matching
performance (above 250 features). In practice, if large speed variations are anticipated, a
variable framerate could be used to maintain suitable distances between frames. This may be
most useful at very low speeds or when stationary to ensure a minimum distance between
frames to minimise drift.

6.3.5 Bounded drift

An example time history of off-tracking error as a function of distance travelled is shown in
Figure 6.17a, at 7.5◦ slip and 2.5 m baseline. The reference value is shown as a dashed line.
No cumulative drift is apparent in these or any of the other results. Instances of temporary
error drift were observed in some results however, for example in Figure 6.17b (side cameras,
5◦ slip, 1.5 m baseline).
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6.4 Conclusions

Drift develops in region ‘A’, resulting in a constant error in region ‘B’. The source of this
can be seen in Figure 6.17c, in the visual odometry data in the camera Zc-direction, where
Zc in this case is in the direction of off-tracking measurement (as is the case with the side
cameras). While the data exhibit predominantly zero-mean noise, in region ‘A’ there is a
distinct sequence of biased outliers (circled) relative to the dashed reference value.

The sum of the magnitudes of these outliers equates to a cumulative error of about 0.08 m,
which is comparable to the observed off-tracking error in region ‘B’. The effect disappears
after approximately one trailer length has passed (14 m) as the corrupting data points are
discarded from the buffer.

Although ideally no drift would be present, the temporary or ‘bounded’ nature of the
drift here is a significant benefit over using visual odometry methods for global positioning
estimates. In this case the drift was well below the maximum acceptable error of 0.15 m, but
only in these idealised conditions.

Depending on the tolerances of the application, it would be desirable to try to detect or
otherwise minimise drift in practical applications of the system.

6.4 Conclusions

1. A novel concept for measuring the trailer off-tracking of articulated goods vehicles
was developed, using a stereo camera pair affixed to either the side or rear of the trailer
or semi-trailer. The concept utilises the visual odometry algorithm of [133], combined
with a buffer-based off-tracking algorithm.

2. The VISO-OT concept addresses the limitations of Cheng’s path-following controller
in that it is independent of vehicle slip conditions and requires no tractor-based mea-
surements or parameters. Only the location of the cameras on the trailer needs to be
known. It also improves on Miao’s ground-watching system in that it does not assume
a planar and unchanging road surface, making this concept better suited to off-highway
applications.

3. The performance of the system was assessed in a virtual off-highway environment.
Simulations provided an upper bound on the expected accuracy of the system, and
illustrated some of the sensitivities of the system to both internal and external variables.

4. The selected camera resolution of 1344×391 and 100◦ field of view were shown to be
good choices for this application.
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5. Increasing the stereo baseline in an attempt to improve accuracy yielded a drop in
feature matches. The effect on accuracy was small below baselines of 2.5 m (at
approximately 250 features), but errors increased notably for higher baselines. Side
cameras were more negatively affected than rear cameras. It is theorised that increasing
the baseline will have a positive effect on system robustness in vehicle tests.

6. A rear-facing camera configuration was shown to yield the best accuracy in terms of
RMS and mean errors, with decreasing performance as cameras are mounted more
towards a side-facing configuration.

7. Under a realistic range of trailer off-tracking, in the range 0–4 m, RMS errors of
between 0.01 and 0.03 m were observed for 0.5 m and 1.5 m baselines, and between
0.02 and 0.04 m for a 2.5 m baseline.

8. The system was shown to be approximately insensitive to reduced scenery density for
a rear camera configuration, even in the complete absence of 3-dimensional structure
(apart from texture in the ground cover). Side cameras exhibited a two-fold increase in
RMS errors from a high-density scenery to none.

9. The algorithm was shown to be approximately insensitive to speed and frame rate,
provided the distance travelled between frames was less than approximately 2.5 m
(again, equating to around 250 features).

10. A small amount of drift behaviour was observed in off-tracking measurements, but
this was shown to be bounded in time due to the relative nature of the off-tracking
measurement and the use of a data buffer.
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Fig. 6.1 Off-tracking calculation process from visual odometry data
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(a)

(b)

Fig. 6.2 CAD simulation environment: (a) Perspective view, (b) plan view of constant sideslip
manoeuvre
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Fig. 6.4 Sensitivity to the longitudinal offset, measured from the camera starting point to the
edge of the CAD environment (reference = 50 m)
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Fig. 6.5 Sensitivity to the length of the simulation run (reference = 100 m)
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Fig. 6.6 Sensitivity to the number of image renders before processing (reference = 10)

Lateral offset (m)
0 5 10 15

R
M

S
 e

rr
or

 (
m

)

0.01

0.02

0.03

0.04

0.05

rear
side

Lateral offset (m)
0 5 10 15

M
ea

n 
er

ro
r 

(m
)

-0.04

-0.02

0

0.02

Lateral offset (m)
0 5 10 15

M
ea

n 
m

at
ch

es
 (

#)

370

380

390

400

Lateral offset (m)
0 5 10 15

M
ea

n 
in

lie
rs

 (
%

)

70

75

80

85
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Fig. 6.8 Sensitivity to image resolution (as indicated by image width) (reference = 1344×391,
aspect ratio fixed at 1:3.44)
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Fig. 6.9 Sensitivity to the camera field of view (reference = 100◦)
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Fig. 6.10 Sensitivity to the stereo baseline for 14◦ slip (reference = 0.5 m)
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Fig. 6.11 Sensitivity to camera rotation relative to the trailer axis, as a function of trailer slip
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Fig. 6.15 Sensitivity to the density of the roadside scenery (reference = 100%)
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Fig. 6.16 Sensitivity to the frame rate (or inversely, vehicle speed) (reference = 10 fps)
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Fig. 6.17 (a) Rear camera off-tracking results, 7.5◦ slip, 2.5 m baseline; (b) side camera
off-tracking results, 5◦ slip, 1.5 m baseline; (c) visual odometry data for (b). (The camera
optical axis is along the Zc-axis, which is in the direction of off-tracking measurement for
side-facing cameras.)
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Chapter 7

Field tests of the trailer off-tracking
sensor on a tractor semi-trailer

The previous chapter demonstrated a proof-of-concept for trailer off-tracking measurement
using stereo cameras, and determined a limit on the expected measurement accuracy through
simulation. The simulations were idealised in a number of ways, including: perfectly
calibrated cameras with no distortion, consistent lighting conditions, and smooth travel of
the cameras/trailer. In this chapter, the VISO-OT concept is implemented on a full-scale
tractor semi-trailer combination and its real-world performance assessed through a series of
manoeuvres in a visually-representative driving environment. Performance is compared to
measurements obtained from a high-precision GPS navigation system.

7.1 Experimental setup

7.1.1 Vehicle and instrumentation

A full-scale tractor semi-trailer combination was used for testing (Figure 7.1), consisting of a
3-axle semi-trailer1 (the same as in Chapter 4) and a Volvo FH12 6×2 tractor (different to
Chapter 4). The tag axle of the tractor was permanently lifted during testing, as well as the
front axle of the semi-trailer, making the combination effectively a 4×2 tractor with a 2-axle
semi-trailer.

Two Point Grey Flea3 USB 3.0 cameras with wide-angle lenses were used for the stereo
visual odometry, mounted to a custom machined aluminium mounting frame. The mount
allowed for multiple camera baselines to be used, from 10 cm up to 100 cm in increments of

1Strictly speaking the trailer is a B-link trailer. However, for the purposes of this work the trailer is
conceptually identical to a semi-trailer
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10 cm, and was mounted to the top of the semi-trailer using strong magnets. The magnets
allowed for easy removal of the mount to locate it at the rear or side of the trailer, or to adjust
the baseline of the cameras. When mounted to the top of the semi-trailer, the cameras were
approximately 4.2 m above ground. The mounting locations of the cameras are shown in
Figure 7.1, and the stereo camera mount is shown in Figure 7.2.

The Point Grey cameras are the same as in Chapter 4 and Chapter 5, however new 2.9 mm
fixed focal length lenses were acquired for these tests2. The field of view and focal range of
these lenses were similar to those used previously. The cameras were mounted as as near to
horizontal as possible.

The instrumentation and communication systems are shown in Figure 7.3. The same
Linux computer from previous tests was mounted inside the trailer for image capture and
processing, and connected to the cameras via USB 3.0. A trailer-mounted RT3022 inertial
and GPS navigation unit was used to obtain measurements of global trailer position and
heading angle, from which a ‘ground truth’ measurement of off-tracking was calculated3.
The RT3022 contains precision accelerometers, gyroscopes, and GPS receivers, with dual
GPS antennae to improve heading measurement accuracy. A GPS base station (the ‘RT
GPS-Base-2’) was used to provide differential corrections, improving position measurements.

The RT3022 unit was rigidly mounted to the floor inside the trailer, aligned with the
longitudinal axis of the trailer but offset laterally from the centre line due to practical
constraints. The primary and secondary antennae were mounted on the roof of the trailer
with a longitudinal separation of 2.342 m, also limited by practical constraints. The base
station was located on an area of road adjacent to the test area (within 1 km of the test vehicle
at all times), and placed with a good view of the open sky.

The RT3022 was configured to output selected measurements via CANbus, including
heading and position, estimated heading and position measurement accuracies, and a number
of status messages to monitor the operating modes and base station communication. These
messages were transmitted through a PCAN-USB adapter (from PEAK-System Technik
GmbH) to the Linux computer.

A laptop computer in the cabin of the tractor was connected to the image processing unit
via ethernet. This was used to remotely access the Linux computer, to send commands to
start and stop test runs, and to change camera and run parameters as needed.

2One of the original lenses had developed mechanical play, causing it to lose its focus setting during driving.
Identical lenses could not be sourced at the time, and so comparable generic lenses were sourced for these tests.

3Off-tracking could also be calculated using a tractor-mounted RT3022 and articulation angle measurements
from the VSE sensor. However, measurements of trailer position and heading directly from the trailer-mounted
RT3022 yielded sufficient information for accurate off-tracking measurement using less instrumentation.
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7.1.2 Test scenarios

Tests were conducted at Bourn Airfield near Cambridge. Visually, the test site consisted of
an area of tarmac 40 m wide with various imperfections and potholes, surrounded by large
fields of grain. An aerial view of the site is shown in Figure 7.4, including sample images of
the surrounding scenery from the trailer-mounted cameras.

With the exception of the road surface which presented some helpful visual discontinuities,
the grain fields surrounding the airfield provided a challenging scenario for the visual
odometry algorithm. This represents the type of scenery to expect in a challenging off-
highway application, and so provides a good assessment of the system’s robustness.

Three types of manoeuvre were conducted, namely:

1. ‘figures-of-eight’,

2. left roundabout turns (three full turns per manoeuvre), and

3. right roundabout turns (three full turns per manoeuvre).

Rear camera (ψc2v = 180◦) and side camera (left-facing, ψc2v = 270◦) configurations
were assessed at baselines of 500, 700 and 900 mm. Manoeuvres were conducted at relatively
low speeds, in the range of 15 km/h (during cornering) to 40 km/h (during some straight
sections). Potholes and other disturbances were not avoided by the driver, so as to include
these disturbances in the assessment of the system’s performance. Two of each manoeuvre
were carried out for each configuration.

Before testing, the RT3022 was initialised according to the procedure prescribed by the
manufacturer. The RT3022’s reported measurement accuracies were monitored until they
had reached acceptable stable values. This took approximately 15–30 minutes of driving
above 5 m/s, including both straight and turning manoeuvres.

Before each test, the camera shutter speed and sensitivity was adjusted to suit the pre-
vailing lighting conditions. A maximum shutter time of 2 ms was used to avoid motion
blur, though often much lower than this in bright lighting conditions. When the image was
too dark, additional image sensitivity gain was used to produce acceptable images while
maintaining the maximum 2 ms shutter speed.

7.2 VISO-OT implementation

The VISO-OT algorithm was compiled from C++ on the Linux computer for real-time image
processing. The computer uses a 3.4 GHz Intel Core i7 processor (full specifications can
be found in Appendix A). The underlying VISO2-S and off-tracking algorithms were as
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described in the previous chapter, but some additional functionality was added to the software
system for the vehicle tests:

1. The off-tracking calculations were updated to account for laterally-offset cameras.

2. Real-time distortion correction and stereo rectification (Section 7.3.1) were added.

3. Off-tracking calculations and data logging for the RT3022 measurements were added.

4. Adjustable camera variables were introduced for shutter speed, gain, resolution, and
region of interest. (These could be updated before each test.)

5. CANbus communication and data-logging functionality were added for RT3022 mea-
surements (utilising the PCAN-Basic library for C++).

6. Additional user interface and data visualisation functionality was added for testing and
troubleshooting (utilising the OpenCV C++ library).

The underlying VISO2-S algorithm was used in much the same configuration as was
used in [133]. This includes two-scale feature matching, 50×50 bucketing windows and 50
RANSAC iterations. Ten features per bucket were adopted here (instead of two as before), as
this improved accuracy and was able to maintain 10 fps. An image resolution of 1328×388
was used, giving a wide aspect ratio which helped provide high resolution for motion in the
yaw plane while reducing processing demands by not using the entire field of view.

As the native camera resolution was 1328×1048, the narrower resolution was obtained
by defining a region of interest within the image. The region of interest was chosen to be
vertically offset from the centre of the native image field of view. This offset is denoted
v-shift, and is shown in Figure 7.5. An offset of 120 pixels downwards was used for the rear
cameras, ensuring a visible horizon, while minimising extraneous sky detail in the image to
maximise the number of useful features. A vertical shift of 70 pixels was used for the side
cameras to compensate for a small change in the pitch of the cameras. This was a result of
imperfections in the trailer structure where the stereo cameras mount was attached.

The updated VISO-OT algorithm was able to run at approximately 10 fps. This included
image capture, distortion correction, stereo rectification and processing. Faster processing of
up to 20 fps was possible by reducing the number of features per bucketing window by half,
resulting in a small loss of accuracy. For these tests the full number of features was adopted,
and hence processing was limited to 10 fps.

Equation 6.2 described how displacements of the fifth wheel per image frame (∆xF,i,
∆yF,i) could be obtained from visual odometry data measured at the location of the cameras
(∆xi, ∆yi). This was obtained using the change in yaw angle, ∆ψi, and knowledge of the
camera location in the form of parameter a.
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Equation 6.2 is true if there is no lateral offset between the cameras and the longitudinal
axis of the trailer. For the vehicle tests there was a lateral offset which had to be accounted
for. Equation 6.2 can be updated for the current application as follows:[

∆x
∆y

]
F,i

=

[
∆x
∆y

]
i

+

[
cos(∆ψi)−1 sin(∆ψi)

−sin(∆ψi) cos(∆ψi)−1

][
c
a

]
(7.1)

where parameters a, b and c are defined in Figure 7.6, and measurements of a, b and c used
for testing are shown in Figure 7.7.

Referring back to Figures 7.4 and 7.5, consider briefly the effect which moving objects
might have on the visual odometry measurements, given that these would contribute biasing
feature points in the temporal feature-matching step. A scale is shown in Figure 7.4 for
reference. Individual passenger vehicles (approximately 2 m wide, 1.5 m tall, 5 m long)
would occupy up to possibly 10% of the rear images and 20% of the side. Through the
bucketing and RANSAC processes, odometry measurements should be adequately isolated
from these biasing feature points; multiple passenger vehicles may have more of an impact.
A tractor semi-trailer (approximately 2.5 m wide, 4 m tall, 16.5 m long) would occupy up
to possibly 25% of the rear view which should not be problematic, but up to possibly 50%
of the side which could have a significant biasing effect. However, instances of a passing
tractor semi-trailer, or where multiple passenger vehicles are in view at once, are likely to
only occur on primary roads and motorways, and often only during straight road sections. In
these conditions the trailer steering system is unlikely to be in operation, and so the VISO-OT
concept is expected to be robust to moving vehicles in most operating conditions.

7.3 Stereo camera setup

7.3.1 Stereo calibration

In previous chapters, a camera calibration process was required to determine the ‘intrinsic’
camera parameters—the camera matrix and distortion coefficients—in order to ‘undistort’
images (Section 2.3). For the stereo camera rig, an additional ‘stereo calibration’ was required
to determine the ‘extrinsic’ camera parameters—the relative orientation between left and
right cameras—in order to ‘rectify’ the stereo images (Section 2.4).

The VISO2-S algorithm requires knowledge of the focal length f and optical centre
(u0,u0) for each camera, as well as the stereo baseline. Additionally, the algorithm assumes
that input images are undistorted and rectified.
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A C++ script was developed for intrinsic and extrinsic camera calibration, making use of
the FlyCapture and OpenCV C++ libraries for camera interfacing and calibration functions
respectively. Left and right intrinsic camera calibrations were performed at the full resolution
of 1328×1048, using the same checkerboard pattern as before (Chapters 4 and 5), with a
7×10 grid and a square size of 25.5 mm. Approximately 30 images were used per calibration,
and reprojection errors of less than 0.5 pixels were achieved for both cameras.

After this, stereo calibration was performed at full 1328×1048 resolution, using a larger
7×10 checkerboard with a square size of 93.33 mm. The larger checkerboard was necessary
given the relatively large stereo baselines used, so that the full checkerboard was visible in
both left and right images for a suitable range of viewpoints, while also ensuring that the
board occupied a significant portion of the pixel space in each image. An example stereo
calibration image pair of the large checkerboard pattern is shown in Figure 7.8.

Approximately 30 images were used per stereo calibration (for baselines of 500, 700
and 900 mm), yielding reprojection errors close to 0.5 pixels in all cases. Due to practical
limitations, calibration was carried out before the stereo camera mount was attached to the
trailer. Intrinsic and extrinsic calibration results are given in Appendix C.

Distortion correction and stereo rectification were performed in real time, incorpo-
rated into the processing loop of the visual odometry algorithm in C++ using OpenCV’s
‘undistort()’ and ‘stereoRectify()’ functions.

7.3.2 Stereo camera triggering

Ideally, stereo cameras should be triggered in perfect synchronisation. This can be achieved
using an external trigger, or may be approximated by triggering the cameras via software,
provided the delay between the two triggers is small relative to the baseline divided by the
speed of travel.

The Flea3 cameras have an on-board buffer, which allows them to be triggered indepen-
dently of retrieving images. This allows for triggers to be sent in quick succession to left and
right cameras without waiting for images to be transferred, limited only by code execution
time. The images may then be retrieved after both cameras have been triggered.

The cameras were triggered sequentially in the loop of the C++ program, and stereo
trigger delays of between 0.1 and 0.3 ms were observed. At 10 fps, with a vehicle speed of
5 m/s, the maximum 0.3 ms stereo delay translates into a distance of 1.5 mm. This is either
0.3% difference in effective baseline for side-facing cameras (for a 500 mm baseline), or
0.3% difference in distance travelled per frame for rear cameras. This delay was deemed
suitable relative to the best-case accuracy observed in the CAD tests, coupled with additional
expected errors due to camera calibration and optical noise expected during field testing.
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7.4 RT3022 ‘ground truth’ measurements

In previous work [28, 32], ground truth off-tracking measurements were obtained using two
downwards-facing cameras which tracked a painted line on the road along which the vehicle
was driven. One camera was placed beneath the fifth wheel and the other below the rear
follow point on the trailer. The relative position of the line in the images between front and
rear cameras was used to calculate off-tracking.

Subsequently, Rimmer [47] used an RT3022 and articulation angle measurements to
calculate the off-tracking of multiple trailers. This was implemented alongside the above
camera-based approach, and found to provide comparable results without the requirement for
a marked path. Articulation measurements were also required as multiple trailers were used.

In this work, RT3022 measurements alone were used to provide ground truth off-tracking
measurements. This was achieved using trailer position and heading measurements from the
RT3022. The method used to calculate off-tracking from heading and position measurements
is now described.

The global position of the fifth wheel (xi,F , yi,F ) and the follow point (xi,R, yi,R) can be
calculated as follows:[
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where Ψ is the RT3022 heading angle, relative to the North direction and positive clockwise,
and aRT , bRT , and cRT are the locations of the RT3022 relative to the trailer body (Figure 7.6).
Figure 7.7 shows the measured values of aRT , bRT , and cRT used in testing.

Using a data buffer in a similar manner to Section 6.1.2, the global (x, y) co-ordinates of
the fifth wheel trajectory, relative to the i-th fifth wheel location, may be found as follows:[
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(7.4)

where k is the buffer counter and the superscript (i) refers to the i-th reference frame as
before. Off-tracking may then be calculated by finding the point in the buffer at which
y(i)F,i−k =−(a+b), and using Equation 6.7.
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When used with only a single antenna, the RT3022 is able to provide heading measure-
ments to an accuracy of 0.1◦ RMS and can result in significant heading drift when stationary.
Heading precision and drift can be significantly improved by utilising the secondary antenna,
mounted a fixed distance behind the primary antenna. When used in dual antenna mode, with
a 4 m antenna separation, a quoted RT3022 heading precision of 0.05◦ RMS can be obtained.

The RT3022 yields GPS position measurements with a quoted accuracy of 1.5 m CEP
(circular error probable) when no external corrections are used. Position accuracy can be
improved by incorporating differential GPS corrections through the use of a GPS base station.
The RT GPS-Base-2 was used which supplies L1/L2 corrections4, reducing position errors to
approximately 0.02 m RMS. The base station communicates with the vehicle-based RT3022
via radio.

These RT3022 off-tracking calculations incorporate summations and hence it is possible
for errors to accumulate over the length of the trailer. However, this was deemed satisfactory
given the high precision of the RT3022 measurements and assuming errors to be zero-mean
Gaussian. Assuming the quoted 0.05◦ RMS heading error and 0.02 m RMS position error,
and using the fifth-wheel-to-follow-point distance of 11.5 m (see Figure 7.1), the maximum
expected RMS off-tracking error can be approximated as 0.02+11.5× sin(0.05◦) = 0.03 m,
which is sufficiently small relative to the target accuracy (maximum and RMS errors of
0.15 m and 0.10 m respectively).

The quoted position and heading accuracies of the RT3022 are upper bounds, and the
actual precision can be expected to vary depending on a number of factors. These factors
include the accuracy with which the RT3022 and antenna locations were measured and input
to the RT3022, the visibility of satellites by both vehicle-based antennae and the base station,
line-of-site of the radio aerials, and whether or not the system was successfully initialised.
The RT3022 provides internally calculated estimates of its real-time measurement accuracies
using a Kalman Filter and user-provided uncertainties in the RT3022 and antennae mounting
locations. These estimates were logged via CANbus during testing to give a better indication
of ground truth measurement accuracies during testing.

7.5 Bias correction

Bias in off-tracking measurements from the stereo cameras or the RT3022 could arise from
trailer crabbing, misalignment of the cameras/RT3022 relative to the trailer, or misalignment

4GPS signals are affected by the density and make-up of the atmosphere, and so accuracy can be affected
by varying conditions. Corrections for this can be made by utilising two different carrier frequencies, L1 and
L2. By comparing the signal delays of both, these errors may be accounted for, giving better precision GPS
measurements.
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of the trailer body relative to the trailer chassis. This was accounted for by performing
straight line driving manoeuvres before each set of manoeuvres, and after any changes to the
stereo camera baseline or mounting location.

Denoting the measured bias in stereo camera off-tracking measurements as etr, bias, bias
correction was incorporated into the ψc2v parameter in Equation 6.1. The original ψc2v

parameter was defined according to the chosen camera mounting orientation (rear or side),
and is redefined here as ψc2v, rear/side. The bias-corrected value of ψc2v was then calculated as
follows:

ψc2v = ψc2v, rear/side + arctan
(

etr, bias

a+b

)
(7.5)

Correcting RT3022 bias was performed in a similar manner, by correcting heading measure-
ments Ψi in Equations 7.2, 7.3 and 7.4.

Two straight line driving manoeuvres were conducted per camera configuration (left/side,
baseline changes), and the average bias used for correction.

7.6 Results

7.6.1 Bias correction

Biases in the RT3022 off-tracking measurements during the straight-line driving manoeuvres
were measured to be in the region of 0.007–0.030 m. These values could have been a result
of a small misalignment of the RT3022 mounting in the trailer, crabbing behaviour of the
trailer due to axle misalignment, misalignment of the two GPS antennae, camber in the road
surface, or some combination of the above. The magnitude of the biases were small enough
to rule out any major crabbing or misalignment problems, and were accounted for in the
processing of all results.

Biases in the stereo camera off-tracking measurements during the straight-line manoeu-
vres were in the region of 0.1–0.3 m for the rear camera tests and 0.48–0.96 m for the side
cameras, indicating a likely misalignment in the camera mount relative to the direction of
travel. For both side/rear mounting configurations and for all stereo baselines, the camera
mount was aligned with the edge of the trailer as closely as possible. However, the side
camera mounting was particularly challenging due to structural constraints.

It was estimated that the accuracy of this alignment with the trailer edge was approx-
imately 1◦. However, over 11.5 m from fifth wheel to follow-point, an observed 0.3 m
bias would suggest a total of 1.5◦ misalignment, and 0.96 m suggests 4.8◦ of misalignment.
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Therefore another component of misalignment must exist, and it was concluded that this was
probably a result of structural misalignment of the top of the trailer relative to the chassis.

The lack of a large bias in the chassis-mounted RT3022 suggested that trailer crabbing
(due to wheel alignment errors) was not an underlying cause of biases. However, the described
method for accounting for the biases is independent of the source of bias, and would still
provide a like-for-like comparison between the camera and RT3022 measurements.

7.6.2 Ground truth errors

RMS errors reported from the RT3022 during testing averaged in the region of 0.03◦ heading
and 0.04 m position. Using the simple relationship given before, this gives approximately
0.05 m RMS off-tracking error. This is slightly above the original estimate of 0.03 m
(Section 7.4), but is still acceptable relative to the target precision of the visual odometry
measurement.

7.6.3 Camera mounting and initial feature matching quality

Example stereo image pairs overlaid with successful feature matches are shown in Figure 7.9.
The 900 mm baseline cases are shown at the beginning of the figure-of-eight manoeuvre,
selected at approximately the same location. The distribution of features evident in these
examples is generally representative of all tests.

In some cases, a notable change in the distribution of features was evident before and
after mounting the cameras to the trailer. In some cases, feature matching would fail entirely
after the camera mount was attached to the trailer. It was supposed that this was due to local
deformations in the trailer roof. Because of the strength of the magnets at the centre and left
and right ends of the camera mount, mounting the frame caused it to contort to the profile of
the trailer roof, including where these deformations were present.

For practical reasons the cameras were calibrated at ground level, with the mount
unattached. Any bending or twisting of the camera mount described above would result in a
change to the relative orientation of the left and right cameras, hence affecting the validity
of the stereo calibration parameters. The VISO2-S algorithm assumes the stereo images
to be fully rectified in order to reduce the stereo matching process to a simple horizontal
scanning task (see Section 2.4), and if the cameras are twisted sufficiently out of calibration,
this matching is expected to fail.

Where the effect of this was pronounced, it was remedied using small spacers between
the camera mount and the trailer roof, until visually acceptable feature matching quality was
achieved (Figure 7.9 shows an example of ‘acceptable’ feature matching quality).

192



7.6 Results

7.6.4 Off-tracking measurements

Off-tracking measurements as a function of time are given in Figures 7.10, 7.11, 7.12, for
the 500, 700 and 900 mm stereo baselines respectively. In each figure, results are shown for
all three manoeuvres and for both rear and side camera configurations. Results for one of
the two tests per manoeuvre are shown. Included beneath each plot is the time history of the
number of successful feature matches per image pair (after outlier rejection), as well as the
calculated error signal between the VISO-OT and ground truth measurements.

At the beginning of each plot there is a period of between 50 and 100 frames without data
(≈5–10 s). This is the period during which one trailer length of data is being accumulated in
the buffer (for both VISO-OT and RT3022 results), and so off-tracking is not yet defined.
These data were manually removed so as to not affect overall error metrics for each test run.

Overall, off-tracking measurement accuracy is reasonable, with errors generally less than
0.5 m. However, errors of up to approximately 1 m are evident in certain cases, including
Figure 7.11d and Figure 7.12e. Large oscillations in off-tracking measurement are clear
in some cases (Figure 7.11d), and there is evidence of significant bias in others (all right
roundabout manoeuvres, Figures 7.10e, 7.10f, 7.11e, 7.11f, 7.12e, 7.12f). The number of
features matched per image pair is in the region of 400–800 features in most manoeuvres,
but as low as 50 features in one instance (Figure 7.10c). These observations will now be
discussed in more detail.

The number of feature matches is well above the 250 threshold identified in the previous
chapter, below which errors were expected to rise steadily. The number of matches drops
to about 200 features in some cases, without an observed effect on errors. In Figure 7.10c
however, the number of feature matches drops to well below this to approximately 50 features,
although there is no evidence of this having affected the measurement errors.

There is a clear periodic element to the number of feature matches in the left and right
roundabout results. There appear to be either three or six cycles per manoeuvre, which is
consistent with the number of turns driven per manoeuvre. At the time of testing the sun
was setting in the west, and the variations in feature matching can probably be attributed to
variations in lighting conditions as the cameras faced towards and away from direct sunlight.
These oscillations in feature matches do not seem to have affected any measurement errors
directly, as the total number of features matches has remained acceptable. These effects
could be reduced in future work through the use of more advanced automatic shutter speed
and exposure adjustment, compared to the manual adjustment adopted for these tests.

Large oscillations in off-tracking measurement and hence error during the left roundabout
manoeuvre are evident in Figure 7.11d, which appear to be correlated with variations in
feature matches. However, maximum errors do not correlate with minimum features as
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might be expected; in fact the opposite is observed. The oscillations exhibit approximately
six cycles, which is consistent with the three 360◦ turns performed during the roundabout
manoeuvre. However, it can be calculated that approximately 2.2 trailer lengths were travelled
by the rear of the trailer during each turn, and so these variations could also be attributed to
the filling and emptying of the data buffer (see Section 6.3.5 and Figure 6.17b). It is likely to
be a result of a combination of these effects.

Figure 7.10d exhibits similar oscillations, but smaller in magnitude and with approxi-
mately twelve cycles. Although this cannot be attributable to sunlight variations alone, it
is also consistent with the number of turns, with four variations per turn. The observed
scenery during the manoeuvre can be categorised into four distinct parts per turn, and for
this manoeuvre transitioned from grain fields/road in the north, to the westwards length of
the runway, to the grain fields in the south, and finally to the eastwards length of the runway.
An appropriate automatic method for adjusting camera parameters should help to reduce
sensitivity to lighting and scene variations.

There is a recurring error trend in the rear-facing camera results, in that positive off-
tracking (+etr) generally yields small errors, while off-tracking in the negative direction
(−etr) yields a consistent bias. This is clear when comparing results for left and right
roundabout turns: all right roundabout turn results exhibit a clear measurement bias, underes-
timating off-tracking by 0.5–1 m, whereas left roundabout turn results show no evidence of
this. In results for the figure-of-eight manoeuvres, the largest errors are consistently in the
region of negative off-tracking.

A seemingly similar trend is also evident in the side camera results, but is less consistent,
and trends are more difficult to observe as the side-camera results are generally more erratic.
Biases in the right roundabout manoeuvres are in the negative off-tracking direction for
the 500 mm and 700 mm stereo baselines (Figures 7.10f and 7.11f), but in the positive off-
tracking direction for the 900 mm baseline case (Figures 7.12f). These biases do not originate
from zeroing bias, as it only appears at non-zero off-tracking magnitudes. Corrections from
the straight-line driving manoeuvres have already accounted for zeroing bias.

For each test, RMS and maximum errors over the course of the manoeuvre were calculated.
Feature matching statistics including the mean number of features matched, and the number
of these which survived the outlier rejection process, were also recorded. These results are
shown in Figure 7.13 for all three manoeuvres (averaged for the two test runs), for both side
and rear camera configurations.

Although the results are erratic as a result of the afore-mentioned oscillations and bias, in
general the rear cameras appear to provide better accuracy than the side cameras. The left
roundabout tests (Figure 7.13b) were the least affected by bias (the cause of this is discussed
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in the next section), and so provides a reasonable picture of the achieved accuracies. In these
tests RMS and maximum errors of 0.11–0.12 m and 0.31–0.44 m were obtained for the rear
cameras, and 0.30-0.59 m (RMS) and 0.36–1.16 m for the side cameras.

There seems to be an overall increase in errors with increasing baseline for all tests.
However, there appears to be a small but convincing increase in feature matches with
increasing baseline for both rear and side cameras. The scenery in these tests was closest to
the ‘0%’ scenery case studied in Chapter 6, in which average feature depth is at a maximum.
In this case this should favour larger baselines as is observed. However, the effect is small,
and the number of features is already well above the required minimum (≈ 250), and so there
does not seem to be a benefit to baselines beyond 0.5 m.

The target RMS and maximum errors of 0.10 m and 0.15 m were not met, but the rear
camera configuration came close. An improved stereo camera mount, automatic camera
adjustment to lighting conditions are expected to reduce these errors to acceptable levels.

The consistency of the errors within each camera configuration for all three manoeuvres
suggests an underlying systematic effect. It was hypothesised that these errors originated
from imperfections in the trailer structure, causing small pitch and/or roll deviations between
the left and right cameras. Further, small yaw angle deviations could have resulted where
the cameras were attached to the mount during baseline changes. These would have led to
small yet sufficient deviations from the stereo calibration (particularly Rrl , Section 2.4), so
as to bias the visual odometry measurements in one direction or another, but not so large as
to prevent feature matching entirely (observed during initial camera mounting).

The magnitude and direction of pitch, roll and yaw variations would be expected to differ
between stereo baselines (as cameras are moved to different positions on the mount) and
side/rear camera configurations (as the mount is moved between rear and side mounting
locations). However, these are expected to be consistent for all three manoeuvres for a given
camera configuration if this hypothesis is correct. Additionally, the trailer structure itself
could deform a result of moments in the chassis generated during turning. This may have
acted to correct for these camera rotations in left turns, but amplify them in right turns.

7.6.5 Camera rotation correction

To validate the camera rotation hypothesis, a small investigation was carried out in which
artificial pitch, roll and yaw angle transformations were applied to right camera images
in post-processing. This would ‘correct’ for the theorised rotation incurred by twisting or
bending of the camera mount. If the rotation angles are chosen correctly, the systematic
errors in observed off-tracking measurements should diminish.

195



Field tests of the trailer off-tracking sensor on a tractor semi-trailer

If the right camera is assumed to have rotated about its optical axis, and if roll, yaw and
pitch rotation angles are denoted φ , ψ and θ as before, a ‘planar projective transformation’
can be applied to the right camera images to simulate 3-D camera rotation as follows [157]:

w̃ = KRK−1w̃0 (7.6)

where

R =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1


 cosψ 0 sinψ

0 1 0
−sinψ 0 cosψ


1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 (7.7)

and where K is the camera matrix, w̃0 is the image before camera rotation, and w̃ is the
image after camera rotation. This transformation does not assume a planar scene.

The three manoeuvres of the rear-facing 500 mm baseline case were used for a small
parametric study. Transformations with different combinations of φ , ψ and θ were applied
to the right camera images in each manoeuvre, image sequences were reprocessed, and the
effects of the transformation on off-tracking results were observed.

A combination of φ = 0.15◦, ψ =−0.10◦ and θ = 0◦ yielded a plausible and consistent
set results for all three manoeuvres (suggesting that the right camera was rotated by φ =

−0.15◦ and ψ = 0.10◦ during testing). Results are shown in Figure 7.14 where the new results
(right column) are shown alongside the original results (left column) for each manoeuvre.
The angle corrections have corrected the bias for −etr values, while not significantly altering
errors for +etr.

These results are not without fault, such as the increased error at approximately 87 s in
Figure 7.14f which seems to be the result of an induced lag effect. This could be the result
of additional effects which have not been modelled such as translation offsets. However,
these results, together with the observed visual odometry sensitivity during camera mounting,
confirm that very small (< 0.2◦) changes in the camera orientation can significantly affect
off-tracking measurements, and this is likely to have been the case during these experiments.

Figure 7.15 shows a summary of the effects of these corrections on RMS and maximum
errors. In general the effect of the correction is positive (with the exception of the maximum
error in the right roundabout manoeuvre), and RMS errors are more repeatable between
manoeuvres. Corrected RMS errors are in the range 0.11–0.13 m, close to the target of 0.1 m.
This suggests that the target accuracy is likely to be attainable, should these experiments be
repeated with an updated camera mounting solution.
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7.7 Conclusions

7.7 Conclusions

1. The visual odometry-based off-tracking estimation concept was implemented on a trac-
tor semi-trailer combination for field testing. Low-speed manoeuvres were performed
at Bourn airfield on dry tarmac.

2. Side and rear facing camera configurations were investigated at stereo baselines of
500, 700 and 900 mm. The surrounding roadside scenery consisted predominantly of
grain fields with few obvious visual features such as trees or buildings, providing a
challenging visual scenario for assessment.

3. An RT3022 inertial and GPS navigation system was used to obtain ground truth
measurements. Dual GPS antennae were used to improve heading accuracy, and a GPS
base station was used to improve location accuracy.

4. In left roundabout manoeuvres, errors of 0.11–0.12 m (RMS) and 0.31–0.44 m (maxi-
mum) were obtained for the rear cameras, and 0.30-0.59 m (RMS) and 0.36–1.16 m
for the side cameras (for all baselines). The rear cameras were confirmed to be the
more accurate configuration.

5. Results from other tests were shown to be negatively affected by small (< 0.2◦)
misalignments in camera mounting, which gave rise to errors of up to 1.2 m. A
correction model was proposed to validate this hypothesis, through which RMS errors
were reduced and comparable to the left roundabout tests. A very stiff stereo camera
mount with sub-0.5 m baseline is recommended for future experiments.

6. Large stereo baselines were found to have a small improving effect on feature match-
ing, but an overall negative effect on errors due to an increased chance of camera
misalignment and difficulty in calibration.

7. Sensitivity to variations in scenery and lighting was observed, which could be addressed
with automatic real-time camera adjustment in future work.
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Field tests of the trailer off-tracking sensor on a tractor semi-trailer

7.8 Figures

Fig. 7.1 Test vehicle combination, showing camera mounting locations (dimensions in mm)

Fig. 7.2 Stereo camera mount
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Fig. 7.3 Vehicle instrumentation layout

Fig. 7.4 Test site at Bourn airfield, showing sample images of the scenery.
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Field tests of the trailer off-tracking sensor on a tractor semi-trailer

Fig. 7.5 Image resolution and region of interest
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Fig. 7.6 Definition of variables used to denote mounting locations of RT3022 and cameras
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RT3000
5270

7496

7146
7346

1226

536
736

530

11480

Hitch

(See note 1)

(See note 2)

(See note 3)

(See note 4)

Notes:
1. Left camera, side mounting, 5/700 mm baseline
2. Left camera, side mounting, 900 mm baseline
3. Left camera, rear mounting, 5/700 mm baselines
4. Left camera, rear mounting, 900 mm baseline

Follow 
point

Truck-tractorTrailer

Fig. 7.7 Trailer top view, showing mounting locations of the RT3022 and cameras (dimensions
in mm, left camera shown only).
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Fig. 7.8 Example stereo calibration image pair, 500 mm baseline
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(a
)R

ea
rc

am
er

as
,9

00
m

m
ba

se
lin

e

(b
)S

id
e

ca
m

er
as

,9
00

m
m

ba
se

lin
e

Fi
g.

7.
9

St
er

eo
im

ag
e

pa
ir

s
w

ith
ov

er
la

id
fe

at
ur

e
m

at
ch

es
,s

ho
w

n
at

th
e

st
ar

to
ft

he
fig

ur
e-

of
-e

ig
ht

m
an

oe
uv

re

202
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(a) Rear cameras, figure-of-eight
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(b) Side cameras, figure-of-eight
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(c) Rear cameras, left roundabout
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(d) Side cameras, left roundabout
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(e) Rear cameras, right roundabout
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(f) Side cameras, right roundabout

Fig. 7.10 Off-tracking time histories with features and errors, 500mm stereo baseline
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(a) Rear cameras, figure-of-eight
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(b) Side cameras, figure-of-eight
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(c) Rear cameras, left roundabout
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(d) Side cameras, left roundabout
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(e) Rear cameras, right roundabout
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(f) Side cameras, right roundabout

Fig. 7.11 Off-tracking time histories with features and errors, 700mm stereo baseline
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(a) Rear cameras, figure-of-eight
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(b) Side cameras, figure-of-eight
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(c) Rear cameras, left roundabout
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(d) Side cameras, left roundabout
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(e) Rear cameras, right roundabout
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Fig. 7.12 Off-tracking time histories with features and errors, 900mm stereo baseline
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Fig. 7.13 Off-tracking vehicle test results summary
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(b) Figure-of-eight, corrected
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(f) Right roundabout, corrected

Fig. 7.14 Off-tracking vehicle test results, rear cameras, 500 mm baseline, showing the effect
of a simulated rotation of the right camera (φ = 0.15◦, ψ =−0.10◦, θ = 0◦)
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Fig. 7.15 The simulated effect of camera rotation (φ = 0.15◦, ψ =−0.10◦, θ = 0◦) on errors,
rear cameras, 500 mm baseline
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Chapter 8

Conclusions and future work

In this chapter, the main conclusions from each chapter are summarised, followed by a review
of the research objectives. Lastly, a detailed discussion of recommendations for future work
is provided.

8.1 Summary of main conclusions

8.1.1 Introduction and literature review (Ch. 1)

The use of High Capacity Vehicles (HCVs) can yield significant emission reductions in the
freight transport sector, with relatively few barriers to introduction compared with alternatives
such as improved engine technologies and alternative fuels. However, enabling greater
uptake of multiply-articulated HCVs, on more of the road network, requires addressing the
manoeuvrability and stability limitations associated with these vehicles.

Active control systems including autonomous reversing, anti-jackknife control, combined
braking and steering control, and path-following trailer steering, are important enabling
technologies for HCVs which help to address these limitations. Current articulation angle
sensing and trailer off-tracking estimation methods present particular barriers to the adoption
of these technologies, and hence of HCVs.

A need was identified to develop a non-contact, tractor-based articulation angle sensor
compatible with multiple trailer combinations. Vision-based technology utilising SLAM
(Simultaneous Localisation and Mapping) or template-based methods were shown to be
particularly relevant for this task. In addition, the need for a trailer-based off-tracking sensor
which is independent of wheel slip conditions was identified, and visual odometry methods
were shown to be appropriate for this task.
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8.1.2 Development of an articulation angle sensor (Ch. 3)

A camera-based sensing concept for articulation angle measurement was described, using a
rear-facing camera mounted behind the truck/tractor. Two image processing methods were
investigated for calculating articulation angle from resultant image sequences. The concept
was evaluated by simulation using a CAD model of a tractor semi-trailer and a 3-DOF
articulated vehicle model.

The first method (‘template-matching’) was developed based on limited previous work
by Harris [73]. The method was refined and an Unscented Kalman Filter was incorporated,
resulting in the combined ‘TM+UKF’ algorithm. The method yielded RMS and maximum
errors of 0.30◦ and 0.73◦ respectively in simulations for articulation angles up to 50◦.
However, it is limited in its assumption of a planar trailer face and requires some knowledge
of the trailer geometry.

The second method was based upon the Parallel Tracking and Mapping (PTAM) algorithm
of Klein and Murray [123], which was modified for the current application of articulation
angle measurement. The method yielded RMS and maximum errors of 0.60◦ and 1.14◦ in
the same simulations.

Although the PTAM-based method was less accurate than the template-matching method
in these simulations, it was shown to be significantly more versatile in that it made no
assumption of trailer shape or geometry, and was functional at high articulation angles when
the front of the trailer is no longer visible. Additional simulations at up to 90◦ were performed
with the PTAM algorithm alone, yielding RMS and maximum errors of 0.79◦ and 1.56◦

respectively.
Both methods were shown to give good performance compared to the published state-

of-the-art [30, 52, 73] (comparing simulation results only). Compared to the target errors of
0.6◦ (maximum) and 0.4◦ (RMS), the TM+UKF errors were close, but PTAM errors were
slightly higher.

8.1.3 Field tests of the articulation angle sensor on a tractor semi-trailer
(Ch. 4)

The two methods were evaluated in full-scale vehicle tests on a tractor semi-trailer combi-
nation. A digital camera was mounted to the tractor cab, capturing greyscale images at a
640×480 resolution. A commercial articulation angle sensor by V.S.E. B.V. [66] was fitted
to the semi-trailer for ground truth measurements.

Low-speed manoeuvring tests were conducted at Bourn Airfield near Cambridge. A
set of manoeuvres were carried out with articulation angles up to 37◦ for a planar trailer
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front (where the front surface of the trailer facing the camera was mostly flat/planar, with no
significant protrusions or non-planar surfaces). Both template-matching and PTAM methods
were evaluated for this dataset. RMS and maximum errors of 1.06◦ and 3.45◦ were obtained
for the template-matching method respectively, and 0.73◦ and 1.82◦ for the PTAM method.
The template-matching method was shown to have a sensitivity to trailer pitch which was
corrected in the results. It also exhibited large errors at moderate articulation angles, shown
to be an inherent result of the normalised cross correlation matching process.

Additional tests with a non-planar addition to the trailer front were carried out for further
evaluation of the PTAM method, for articulation angles up to 55◦. The algorithm achieved
RMS and maximum errors of 1.19◦ and 2.73◦ respectively.

The performance of both algorithms in these tests was shown to be superior to that of
comparable vehicles tests of other methods in the published literature [70, 72, 73] (comparing
vehicle test results only). Target errors were again exceeded, however further refinements to
the PTAM algorithm could achieve the desired measurement accuracy.

8.1.4 Field tests of the articulation angle sensor on a truck and full-
trailer (Ch. 5)

The articulation angle concept was further developed and evaluated for a rigid truck and
full-trailer combination. This combination is very common in Scandinavian countries, and
comprises two articulation angles to be measured at the drawbar and trailer respectively.
Modifications to the articulation angle sensing concept were made to measure these two
articulation angles using the single truck-mounted camera.

The PTAM-based method was carried forwards for this task owing to its superior ver-
satility and accuracy in vehicle tests compared to the template-matching method. Regions
of interest in the images were used to isolate the drawbar and trailer measurements, and
additional initialisation steps were introduced to improve accuracy.

Full-scale vehicle tests were carried out in Hällered, Sweden, on a truck and full-trailer
combination in collaboration with Volvo Group Trucks Technology. The camera was mounted
relatively low to the rear of the truck chassis, giving a field of view which included both
drawbar and trailer. ‘Ground truth’ measurements were obtained from a rotary potentiometer
at the drawbar and from a VSE articulation sensor on the trailer.

Low to moderate speed manoeuvres were carried out, with articulation angles up to 68◦.
RMS errors of 0.8–1.8◦ for the drawbar and 1.1–2.4◦ for the trailer were observed, with
maximum errors in the ranges 2.5–4.6◦ and 3.4–5.1◦ respectively. These exceed the target
errors by some margin, and are mostly the result of increasing errors with articulation angle
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and a possible pitch sensitivity. Performance could be improved in future work by addressing
these issues.

8.1.5 Development of a trailer off-tracking sensor (Ch. 6)

A trailer-based concept for estimating trailer off-tracking was demonstrated in Chapter 6,
utilising a stereo camera pair and the visual odometry algorithm of Geiger et al. [133] and
denoted ‘VISO-OT’. The concept requires no measurements or parameters from the truck or
tractor and is independent of wheel slip conditions. The concept was evaluated in simulations
utilising a CAD-based virtual environment representative of off-highway scenarios such as
rural farm roads.

Initial simulations were conducted to evaluate the suitability of the simulation environ-
ment and methodology, which were shown to be acceptable. Simulations were carried out to
evaluate the performance of side- and rear-mounted camera configurations and of selected
stereo baseline values. Additional simulations were conducted for a variety of operating
conditions including various levels of trailer off-tracking and variations in visual scenery.

The concept demonstrated RMS errors of 0.01–0.04 m under realistic operating conditions
and stereo baselines. Rear-mounted cameras were shown to provide better accuracy and
more consistent performance than side-mounted cameras. Good robustness to scenery detail
was demonstrated, and the system performed well in very low texture scenery.

Although it is theoretically possible to improve accuracy with a larger baseline, the
effects of this were not observed in the simulation results. In fact a general increase in errors
was observed with increasing stereo baseline due to a reduction in feature matching fidelity
between left and right cameras.

Temporary drift was evident in some measurements, owing to the nature of the off-
tracking calculation, which stores data in a buffer equivalent to the length of the trailer.
However, unlike typical visual odometry applications, the drift here was shown to be bounded
due to the relative nature of the off-tracking calculations.

8.1.6 Field tests of the trailer off-tracking sensor on a tractor semi-
trailer (Ch. 7)

The performance of the off-tracking estimation concept was investigated in full-scale tests
on a tractor semi-trailer combination. Two cameras were mounted to an adjustable stereo
camera bracket, which was mounted to the roof of the semi-trailer. The mount was magnetic
enabling it to be moved between side-facing and rear-facing configurations as necessary.
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An RT3022 inertial and GPS navigation unit was fitted to the semi-trailer for ‘ground truth’
measurements. Dual GPS antennae were used to obtain accurate heading measurements and
a ground-based GPS base station was used to improve GPS position measurement accuracy.

Low- to moderate-speed manoeuvres were carried out at Bourn Airfield on dry tarmac.
The scenery detail was relatively sparse, providing a challenging environment for the visual
odometry algorithm. In left roundabout manoeuvres, errors of 0.11–0.12 m (RMS) and
0.31–0.44 m (maximum) were obtained for the rear cameras, which is close to the target
accuracy. Side cameras exhibited errors of 0.30-0.59 m (RMS) and 0.36–1.16 m (maximum).
These larger errors were the result of more erratic measurements, and sensitivity to lighting
conditions.

Other tests exhibited errors as high as 1 m for both rear and side cameras. It was demon-
strated through the use of a correction model that these errors were likely the result of camera
misalignment due to mounting inaccuracies. Sensitivity to camera alignment was shown
to be severe, with large errors resulting from < 0.2◦ changes in camera orientation. Large
baselines were found to have little benefit, but increased the possibility for misalignment. A
stiff stereo camera mount with sub-0.5 m baseline is recommended for future experiments.

8.2 Review of objectives

The first objective set out to develop a tractor-based articulation angle sensor. This was
achieved, using a camera-based sensor and two alternative image processing algorithms as
described in Chapter 3. The use of vision-based technology enabled remote, non-contact
sensing of the trailer from the truck or tractor, without the need for any non-standard
connections or modifications to the trailer.

Objectives 1(a) and 1(b) required that the sensor should require minimal information from
and modifications to the trailer. Both template-matching (TM+UKF) and PTAM-based meth-
ods require no modifications to the trailer, either physical or visual. Both algorithms were
shown to perform adequately under conditions of minimal trailer texture or markings (Chap-
ter 4). The PTAM-based method exhibited no loss of performance with a near-featureless
trailer (Chapter 5). The PTAM algorithm requires no knowledge of trailer parameters or
behaviour, while the template-matching method assumes basic geometric knowledge of the
trailer, including hitch location and front overhang.

Objective 1(c) required the system to be compatible with multiple truck and trailer
combinations. The concept was demonstrated for a tractor semi-trailer combination in
Chapters 3 and 4, the most common type of articulated HGV. In Chapter 5 the system was
demonstrated for a ‘Nordic combination’ (comparable to a truck and full-trailer combination).
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By extension, the system is also compatible with truck and drawbar trailer combinations.
Compatibility with multi-trailer B-combinations is not yet feasible using a single camera
mounted on the tractor, due to the obscured view of the second trailer presented by the leading
B-link trailer. The concept may be developed further to accommodate such combinations.

Objective 1(d) pertained to the accuracy of the articulation angle sensor, to provide
measurements at 10 Hz with RMS and maximum errors not exceeding 0.4◦ and 0.6◦ respec-
tively. The template-matching algorithm achieved a measurement rate of 6–10 Hz, slightly
off the target, while the PTAM-based algorithm achieved 20 Hz which is well within the
requirement. In terms of measurement accuracy, PTAM was shown to perform best in vehicle
tests compared to template-matching, consistently providing the lowest errors. In tractor
semi-trailer tests, PTAM yielded errors of 0.4–1.6◦ (RMS) and 1.2–3.8◦ (maximum). In tests
with a Nordic combination, errors were 0.8–1.8◦ (RMS) and 2.5–4.6◦ (maximum) for the
drawbar, and 1.1–2.4◦ (RMS) and 3.4–5.1◦ (maximum) for the semi-trailer. These achieved
measurement accuracies are close to the targets, even meeting them in certain tests, but future
work is needed to properly understand the source of these errors and hence improve accuracy.

Objective 2 was to evaluate the articulation angle sensor concept in full-scale vehicle
tests. Full-scale tests were conducted on a tractor semi-trailer in Chapter 4 and on a full-scale
truck and full-trailer combination in Chapter 5, with performance as presented above.

Objective 3 set out to develop a trailer-based, trailer off-tracking estimation concept. This
was achieved, using a stereo camera sensor and the visual odometry algorithm of Geiger et
al. [133]. Concept development is outlined in Chapter 6.

Objective 3(a) required the off-tracking estimation concept to require minimal information
and measurements from the truck or tractor. The proposed concept meets this objective,
addressing important limitations of Cheng’s estimation technique [32] and Miao’s SC-GWNS
[3]. The current system only requires trailer knowledge regarding trailer length and the
camera mounting location on the trailer.

Objective 3(b) required the system to make no assumption regarding the state of wheel
slip, thereby enabling it’s use in off-highway and low friction environments. This objective
has been achieved through the use of non-contact vision-based sensing, and by avoiding the
need for a full vehicle motion model.

Objective 3(c) pertained to the accuracy of the off-tracking sensor, to provide off-tracking
measurements at 10 Hz with RMS and maximum errors of less than 0.10 m and 0.15 m. The
proposed system is able to provide measurements at 10 Hz, though the target accuracy has
not yet been achieved. RMS and maximum errors of 0.11–0.12 m and 0.31–0.44 m were
obtained in limited tests on a tractor semi-trailer combination which is near to the target.
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However, considerably larger errors were observed in other tests. This was shown to be the
result of a pronounced sensitivity to camera alignment.

Objective 4 was to evaluate performance of the system in full-scale vehicle tests. This
was achieved, and tests on a full-scale tractor semi-trailer combination were presented in
Chapter 7, with performance as presented above.

8.3 Recommendations for further work

8.3.1 Robustness to lighting and weather conditions

One of the main deficiencies of vision-based sensing is its sensitivity to lighting and weather
conditions, such as operating under low light conditions at night, during adverse weather
such as rain or fog, or under direct sunlight.

Low light conditions mean that less light is able to reach the image sensor. This can be
compensated by automatically reducing the camera shutter speed and/or increasing the ‘ISO’
level (sensitivity of the camera sensor). However, the extent to which shutter speed can be
reduced is limited by the desired processing speed and possible motion blur.

For example, if measurements at 10 Hz are required, allowing 100 ms per frame, and the
image processing pipeline requires 80 ms of this, then shutter time would need to remain
below 20 ms. Additionally, motion blur may become evident at slower shutter speeds,
presenting another upper limit on shutter time. This will depend on the anticipated speed of
translation of the image features, and on other camera exposure settings.

Increasing the ISO level of a camera sensor allows more light to be captured for a constant
shutter speed, but at the expense of increased noise in the image. A given camera sensor also
possesses a maximum ISO limit. High ISO low-light cameras are commercially available,
but at increased cost.

Image processing algorithms exist which are able to compensate for low lighting condi-
tions to some degree. The extent of this is limited however, and the additional processing
time may limit the achievable frame rate.

The addition of artificial light is a potential solution, and has been used in many appli-
cations. For the articulation angle sensor, where the target trailer is within a few meters of
the camera, adding a few LEDs near the camera source may be sufficient. However, for
the off-tracking cameras where the observed environment ranges from 10 m to infinity, this
solution is not viable. It is also important to keep in mind country-specific legislation which
may prevent the addition of light sources other than for purposes designated in the relevant
regulations.
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It is suggested that tests be carried out to determine the minimum levels of light under
which the sensors would be expected to function, i.e. a rural road at night with no road
lighting or other traffic. The only source of light would be ambient light generated and
reflected by the vehicle itself, such as from the truck headlamps and from the truck and trailer
tail lights.

For the articulation camera, these ambient lighting conditions would differ for a tractor
semi-trailer combination, where the tail lights of the tractor would be beneath the trailer and
hence obscured, and a rigid truck and trailer combination, where the truck tail lights would
provide some illumination to the drawbar and trailer.

For the off-tracking cameras, ambient illumination from the vehicle would be significantly
less. The greatest source of illumination would likely be light from the truck headlamps and
truck/trailer tail lights, reflected from the nearby roadside scenery. For this reason it may
be beneficial for the cameras to be side-facing, and mounted towards the front of the trailer
where the reflected light would be greatest from the headlamps, or rear-facing and mounted
at the rear of the trailer where light from the tail lights would be greatest. Additionally,
introducing a downwards tilt to the cameras may prove beneficial to utilise the nearest most
illuminated scenery or road surface for feature detection. Alternatively, the cameras could
be mounted lower down to the rear of the trailer chassis, viewing low to medium distance
ground features illuminated artificially.

Once the minimum levels of anticipated lighting have been identified, appropriate tech-
nologies should be investigated to meet these requirements. For the articulation camera this
can likely be compensated using a few LEDs next to the camera. For the off-tracking cameras
it is likely that cameras with greater low-light sensitivity may be required.

An alternative option to consider is active infrared camera sensing. An infrared camera
(or a conventional camera with an infrared filter) together with an infrared emitter next to
the camera could be used for low light conditions. The emitter and filter could be disabled
during good lighting, or the exposure of the camera could be automatically compensated to
function during daylight.

Lighting conditions such as rain or fog may obscure the scenery to some extent, impacting
feature detection, however the effects of this are expected to be minimal except in extreme
cases. In any case, if vision is severely limited due to extreme weather, safety would dictate
that vehicles significantly reduce speed or stop until conditions improve.

The accumulation of water on the camera lens may have more of an impact, blurring
and distorting the images. However, numerous existing solutions to this problem could be
utilised. Volvo Truck’s reverse camera [193] features a protective electronic visor and a
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heated camera to prevent fogging. Self-cleaning camera technology is also commercially
available, from Orlaco for example [194].

The prospect of dirt and mud collection on the camera lens could be similarly addressed.
However, the potential for mud splash on the articulation or off-tracking cameras is small
compared with the ground-watching cameras proposed by Miao [3]. A self-cleaning camera
such as [194] would address this issue as well should dirt accumulate over time.

Finally, the image processing techniques adopted (PTAM and visual odometry) are not
necessarily restricted to vision-based inputs. As was described in Section 1.7.1, active
technologies such as lidar have also been used to provide sensor inputs to such algorithms.
Although lidar was dismissed for this work primarily due to its expense, its cost will reduce
further as the technology is developed further, and so it may become relevant to explore its
use for these tasks.

8.3.2 Closed-loop testing of the articulation angle sensor

The intended applications of the articulation angle sensor are for autonomous reversing,
combined braking and steering, and anti-jackknife control. Closed-loop tests (tests in which
the output of the measurement is used as the controller input) with one or more of these
technologies should therefore be explored.

In high-speed applications such as combined braking and steering, closed-loop control
would ensure that articulation angles remained within a much narrower range than has been
evaluated in this work. The accuracy of the sensor was shown to be best at smaller angles, and
so closed-loop performance may be better than open-loop performance suggests. However,
for autonomous reversing technology such as [47], large articulation angles are expected.
Anti-jackknife control does not require high accuracy, as it is only concerned with the onset
of a threshold articulation angle.

8.3.3 Articulation sensing for B-trailer combinations

The articulation angle sensor has been shown to be functional for a number of HGV combi-
nations including tractor semi-trailer, truck and full-trailer, Nordic, and truck and drawbar
combinations. However, it is limited in its application to B-trailer combinations with more
than one trailer due to the first trailer obscuring the second and subsequent trailers. The
B-double combination is very popular in a number of countries, and so it is important that
feasibility with this and similar combinations is explored.

The versatility of the PTAM algorithm makes it attractive for this task, and it could
theoretically be suitable with relatively minor modifications. However, the primary challenge
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is a practical one, in finding a suitable mounting location such that all trailers are in the view
of the articulation measurement camera.

Mounting options for this task may include a raised camera, viewing the full length of
trailers from an elevated viewpoint on the tractor. In most applications however, this may
not prove practical given that trailers are typically as tall as or taller than truck and tractor
cabs. Furthermore, most countries regulate total vehicle height and often trailers are built to
this limit, presenting further limitations. The UK is an exception however, with no legislated
limit on HGV height [18].

Another option is side-mirror-mounted cameras, able to infer articulation angle from an
oblique side view of the trailers. One camera per mirror would be necessary to account for
the full range of trailer motion. This is similar to the configuration proposed by Lu et al.
[68], however their patent assumes the knowledge of trailer wheelbase and camera location,
whereas PTAM could perform this task without this knowledge. Vertically-separated regions
of interest would be required to distinguish individual trailers, however these regions would
move with trailer motion and so additional work would be needed to enable this functionality.

8.3.4 Other applications for the articulation angle sensor

A rearward-facing camera mounted to a truck or tractor can serve multiple uses, some of
which are already commercially available. ‘Exterior vision cameras’ and ‘reversing cameras’
are available on a number of passenger vehicles and on some trucks [193]. These are often
analogue cameras and only provide field of view support to the driver during reversing,
parking, or trailer hitching.

In a similar manner, the live video feed of the articulation angle sensor could be relayed
to the driver whilst also performing articulation measurements as necessary. Relative articu-
lation and translation measurements of an uncoupled trailer could also be used to provide
quantitative visual support to the driver to aid trailer coupling. Modern passenger vehicles
have a similar feature in which a reversing camera indicates future vehicle trajectory based
on current steer angles.

The camera could also form part of a wider camera array providing a ‘bird’s-eye view’
functionality. This helps alleviate blind-spots, and can serve as an additional reversing
and manoeuvring aid to the driver. Commercial systems to this effect are available from
Continental [195], Autowatch [196] and Safety Shield Systems [197]. Related research
includes the work by Ehlgen [70] and Chang [198].

Reversing controllers such as that of Rimmer et al. [29] may require knowledge of
vehicle parameters other than articulation angle depending on the controller employed. In
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these cases it may be beneficial to obtain additional trailer information from the articulation
camera, such as hitch location and trailer length.

The PTAM-based articulation camera could be used for these purposes with some mod-
ification, depending on the camera-mounting configuration adopted. Hitch location could
be measured with the current proposed mounting location of the camera, but length esti-
mation may require elevated or side-mirror mounting options. The current mono camera
implementation of the concept is unable to infer distance and translation without external
information; this could be remedied by assuming a standardised trailer to scale translation
measurements. Alternatively a stereo-camera implementation such as S-PTAM [125] could
be adopted which does not suffer from the same limitation.

Lastly, more generalised absolute rotation measurements could be obtained from a PTAM-
like algorithm, i.e. measurements which are not restricted to rotations in a given plane. This
may prove useful in future work on general motion and pose estimation of trailers as well as
in possible related applications.

8.3.5 Closed-loop testing of the off-tracking sensor

Miao developed an off-tracking measurement concept using two ground-watching cameras
beneath the trailer [3]. This ‘ground-watching navigation system’ was assessed in closed-loop
tests on dry tarmac. Measurements from the ground-watching system were used as the input
to Cheng’s [32] path-following trailer steering controller, and implemented on a steered
trailer. Miao’s modification to Cheng’s path-following controller [3, 32] could be used in
future work, as this incorporates the use of an independent off-tracking measurement for
trailer steering control.

The new visual odometry-based off-tracking estimation concept should be similarly
assessed, investigating the overall closed-loop performance of path-following trailer steering
when using these external off-tracking measurements. However, where Miao conducted tests
on dry tarmac, the proposed investigation would benefit from tests on a road surface repre-
sentative of challenging off-highway conditions with a combination of low friction, camber
and grade. This would promote simultaneous off-tracking and wheel slip. Additionally, the
surrounding road-side scenery should be representative of typical off-highway environments
to assess the robustness of the visual odometry-based measurements.

Miao’s ground-watching system demonstrated good accuracy on dry tarmac, which the
visual-odometry method in its current form has not been able to surpass. However, Miao
assumed a flat and unchanging road surface which may affect the system’s performance on
off-highway road surfaces. For this reason it may be beneficial to reassess Miao’s system
on the suggested representative road surface, so that a direct performance comparison with
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the visual odometry-based system may be made. Comparisons with Cheng’s original state
estimation technique for off-tracking measurement could also be made.

8.3.6 Off-tracking sensing for multiple trailers

Both simulation and vehicle testing results (Chapters 6 and 7) showed that rear-mounted
cameras yielded better accuracy and robustness compared to side-mounted cameras. However,
it was also highlighted that side cameras present a practical advantage over rear cameras in
multi-trailer combinations. It would therefore be valuable to investigate more closely the
source of errors of the side camera configuration, so as to achieve adequate accuracy for
control application.

Alternatively, a compromise between rear-and side-mounted cameras in which the cam-
eras are mounted at some angle between these extremes may prove to be practical. As is
clear from Chapter 6, the more rear-facing the cameras the better, but sufficient angular offset
should be incorporated such that subsequent trailers do not appear (significantly) in the field
of view of the cameras.

A related option lies in the use of a skewed stereo camera configuration, in which the
cameras could be side-mounted, but both rotated individually towards the trailer rear by
the same degree (see for example [199]). This would require modifications to the visual
odometry algorithm.

It is interesting to bring articulation angle sensing into the discussion at this point, and to
revisit the concept of tractor- and trailer-based control technologies. Trailer steering control
is a trailer-based technology, and so for this application it may be reasonable to assume
that trailer-based articulation angle sensing may be available (such as the VSE sensor). It
is a reasonable assumption that all steered trailers could adopt articulation angle sensing as
standard (such as in [66]).

If all trailers in a vehicle combination are steered trailers, and all possess articulation
angle sensing, then the total off-tracking of the combination can be calculated with only
one pair of off-tracking cameras on one of the vehicle units, which could be the tractor or
the rearmost trailer. This is similar to Miao’s Single Camera Ground Watching Navigation
System (SC-GWNS). The total measurement error of such a system would increase with
each additional trailer (and hence articulation angle sensor) used, but provided high-precision
sensors are used this solution may prove adequate.
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8.3.7 Other applications for the off-tracking sensor

The stereo camera pair for off-tracking measurement is a potentially useful tool for a number
of other measurement tasks. For reversing applications the stereo cameras could be used for
obstacle detection and path-planning. This would of course require additional communication
between the trailer and the truck or tractor, but may be an attractive area of development in
the future particularly with the availability of wireless communications. Visual odometry
measurements from the cameras could also be used to detect trailer-crabbing (and hence
axle misalignment for example), or for state measurements for electronic stability control
applications.

The uses for a stereo camera pair on the truck or tractor unit are similarly numerous and
worth investigation. They could be used for obstacle detection, for path-planning, inertial
measurement, to support and refine GPS measurements or to replace GPS in GPS-deprived
environments such as mines or logging forests. Mature algorithms for these applications
exist in the literature for application to passenger vehicles, but extension and application to
HGVs has not been investigated in depth before.

If a truck or tractor was fitted with both tractor-based off-tracking and tractor-based
articulation angle sensing, it would be possible to determine trailer off-tracking. The length
of the trailer/s would need to be known however. This is an alternative configuration which
may prove attractive to truck manufacturers for certain applications.

8.3.8 Measurement errors

The PTAM-based articulation angle sensor was shown to exhibit increased errors with
articulation angle, which was attributed to some combination of pitch angle sensitivity,
feature distribution, and inherent traits of the PTAM algorithm. Further investigation into
these errors could help identify ways to improve measurement accuracy and achieve the
target precision of 0.4◦ (RMS error) and 0.6◦ (maximum error).

Similarly, the off-tracking sensor was shown to be sensitive to errors in camera alignment
and lighting variations. Future experiments should utilise a very stiff stereo camera mount,
with a sub-0.5 m stereo baseline, in order to minimise misalignment. Automatic camera
adjustment algorithms should be incorporated to reduce sensitivity to lighting variations.
With these changes, it is expected that the target measurement precision of 0.10 m (RMS
error) and 0.15 m (maximum error) is achievable.
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Appendix A

Computer specifications

Table A.1 ‘Desktop computer’ specifications (Windows)

Processor Intel® Core™ i7-3930K CPU @ 3.20 GHz (6 cores, 12 threads)
Memory 8 GB DDR3 @ 800 MHz
Primary storage Optical hard drive
Graphics NVIDEA GeForce GTX 650, 1GB DDR5
Operating system Windows® 7 Professional, 64-bit (Service Pack 1)
Software MATLAB® 2013b

Table A.2 ‘Laptop computer’ specifications (Linux)

Processor Intel® Core™ i3-3110M CPU @ 2.4 GHz (2 cores, 4 threads)
Memory 4 GB DDR3 @ 1600 MHz
Primary storage Optical hard drive
Graphics Intel® HD Graphics 4000
Operating system Ubuntu 14.04 LTS, 64-bit
Software Python 2.7.6, OpenCV 2.4.8

Table A.3 ‘Linux computer’ specifications

Processor Intel® Core™ i7-4770 CPU @ 3.4 GHz (4 cores, 8 threads)
Memory 16 GB DDR3 @ 1600 MHz
Primary storage Solid-state hard drive
Graphics Intel® HD Graphics 4600
Operating system Ubuntu 14.04 LTS, 64-bit
Software Python 2.7.10, OpenCV 2.4.12
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Appendix B

Unscented Kalman Filter

This is an overview of the theory of the Unscented Kalman Filter, following that presented in
[180] and [181]. For a random variable x of dimension L with mean x̄ and covariance Px, the
2L+1 sigma points are calculated as follows (i ∈ 1, ...,L):

X0 = x̄

Xi = x̄+
(√

(L+λ )Px

)
i

Xi+n = x̄−
(√

(L+λ )Px

)
i

(B.1)

The weights associated with each of these sigma points are:

W (m)
0 = λ/(L+λ )

W (c)
0 = λ/(L+λ )+(1−α

2 +β )

W (m)
i =W (c)

i = 1/2(L+λ )

W (m)
i+n =W (c)

i+n = 1/2(L+λ )

(B.2)

where (c) and (m) denote applicability to the variable mean and covariance respectively (see
later). λ = α2(L+κ)−L is a scaling parameter. α = 0.001, κ = 0, and β = 2 as per the
recommended values in [181] for second order accuracy.

If x is a general state variable with assumed Gaussian statistics, estimated mean x̂ and
covariance P, and if process and measurement noise are v and u respectively, then for time
steps k ∈ {1, ...,∞} the sigma points are:

X a
k−1 =

[
x̂a

k−1 x̂a
k−1 ±

√
(L+λ )Pa

k−1

]
(B.3)

239



Unscented Kalman Filter

Here the state variable and its covariance have been augmented with the noise variables so
that xa = [x⊤v⊤n⊤]⊤ and Pa = diag(P,Pv,Pn). The resulting sigma points are therefore in
the form X a = [(X x)⊤(X v)⊤(X n)⊤]⊤.

What remains is the familiar Kalman Filter time update and measurement update sequence.
The time update is performed by first passing the sigma points through the process model, F:

X x
k|k−1 = F[X x

k−1,X v
k−1] (B.4)

The posterior mean and covariance of the state are then calculated:

x̂−k =
2L

∑
i=0

W (m)
i X x

i,k|k−1 (B.5)

P−
k =

2L

∑
i=0

W (c)
i [X x

i,k|k−1 − x̂−k ][X
x
i,k|k−1 − x̂−k ]

⊤ (B.6)

Finally, if H is the observation model, the posterior mean of the observation may be found as
follows:

Yx
k|k−1 = H[X x

k|k−1,X
n
k|k−1] (B.7)

ŷ−k =
2L

∑
i=0

W (m)
i Yi,k|k−1 (B.8)

The measurement update is performed by first calculating the innovation covariance, Pyy,
and cross correlation matrix, Pxy:

Pyy,k =
2L

∑
i=0

W (c)
i [Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ŷ−k ] (B.9)

Pxy,k =
2L

∑
i=0

W (c)
i [Xi,k|k−1 − x̂−k ][Yi,k|k−1 − ŷ−k ] (B.10)

Finally, the estimated state and its covariance may be calculated as follows:

x̂k = x̂−k +K(yk − ŷ−k ) (B.11)

Pk = P−
k −KPyy,kK⊤ (B.12)

where

K = Pxy,kP−1
yy,k (B.13)
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Appendix C

Camera calibration results

Chapter 4, single camera
Template matching (using the Camera Calibration Toolbox for MATLAB):

( fx, fy) = (393.8, 395.7) pixels

(u0, v0) = (328.4, 247.3) pixels

(k1, k2, p1, p2, k3) = (−0.3013, 0.0751, 0.0028, 0.00044, 0)

PTAM (using the PTAM camera calibration module):

( fx, fy) = (355.9, 355.5) pixels

(u0, v0) = (333.8, 248.5) pixels

s = 0.9813

Chapter 5, single camera
PTAM (using the PTAM camera calibration module):

( fx, fy) = (357.7, 358.8) pixels

(u0, v0) = (329.5, 249.3) pixels

s = 0.9821
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Camera calibration results

Chapter 7, stereo cameras
Visual odometry (using the OpenCV calibration functions for C++):

Kl =

886.8 0 631.4
0 887.0 539.0
0 0 1

 pixels

(k1, k2, k3, k4, k5, k6)l = (−0.1899, 0.5640, −0.0009, −0.0012, 0.2202, 0.2790)

(p1, p2)l = (0.3351, 0.5668)

Kr =

885.0 0 662.1
0 886.0 545.4
0 0 1

 pixels

(k1, k2, k3, k4, k5, k6)r = (0.5792, 0.0215, −0.0022, 0.0000, 0.0047, 1.0460)

(p1, p2)r = (0.1651, 0.0062)

Rrl,500mm =

0.9997 −0.0021 −0.02544
0.0018 0.9999 −0.01150
0.0255 0.0115 1.0000


Trl,500mm =

[
−49.9680, −0.0535, −0.0645

]ᵀ
cm

Rrl,700mm =

 0.9996 0.0036 −0.0283
−0.0040 0.9999 −0.0117
0.0283 0.0118 0.9995


Trl,700mm =

[
−70.0820, 0.1262, −0.2792

]ᵀ
cm

Rrl,900mm =

 0.9997 0.0009 −0.0260
−0.0013 0.9999 −0.0154
0.0260 0.0154 0.9995


Trl,900mm =

[
−89.8847, 0.0798, −0.5974

]ᵀ
cm
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