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Abstract 

In this paper, we outline the implementation of Hibler’s visco-plastic (VP) sea ice model into OpenFOAM, an open-
source finite-volume modelling toolkit. Hibler’s visco-plastic model is arguably the most widely used description of sea 
ice rheology, and finds application in most global climate models. The VP model has been shown to accurately capture 
the bulk behaviour of sea ice at large length scales. Under convergent conditions, the VP model allows the sea ice to 
deform plastically, while for small strains, near drift like conditions can be captured. Unfortunately however, due to 
the potential for large viscosities, the VP model tends to become numerically unstable. The general consensus in 
literature is that an implicit solution scheme is required, which tend to become expensive when used in global climate 
models. Suggestions to improve the convergence behaviour include techniques such as successive over-relaxation or 
via the addition of an elastic term, known as the elastic-visco-plastic (EVP) method. In this paper, we aim introduce the 
concept of dynamic relaxation, which in addition to matrix conditioning, can be used to both stabilise and accelerate 
the iterative convergence behaviour. The behaviour of the sea ice model will be demonstrated on a number of test 
cases. 
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1. Introduction 

Sea ice plays an important role in global climate. It influences the global ocean circulation, and affects global 
climate due to its inherent reflective nature. In most models used to study long term climate change, sea ice is often 
treated rather simplistically. With the advances in sea ice models, and numerical solution schemes, modern sea ice 
models have become far more comprehensive.   

Sea ice is a heterogeneous, anisotropic material, and generally forms a highly fractured surface with various ice 
flow shapes and sizes. The local distribution of ice-thickness, floe sizes and lead fractions varies across the various 
Polar Regions. In order to directly model such a system would require computational models at length scales in the 
order of a few meters, making them computationally infeasible for global climate models.  

It is by now generally accepted that sea ice at large length scales, in the order of 10 to 100kms, can be 
appropriately described as a continuum medium. Pack ice behaviour on large scales has been observed to have a low 
tensile strength, supports shear stresses and has a maximum compressive strength related to ice thickness and 
fractional coverage. Many models have been developed to describe the ice dynamics. Early studies focused on free 
drift descriptions with no ice interaction (see for example [1]). In free drift descriptions, ice is allowed to move freely 
as a function of external forces until the ice reaches a certain height or mass, or encounters land, and is forced to stop. 
Other ice rheologies included treating ice as a Newtonian viscous fluid [2], a linear viscous fluid, cavitating flow [3] or a 
plastic material model. A nonlinear visco-plastic (VP) model first proposed by Hibler [4] has largely been established as 
the standard sea ice dynamics model, and forms the basis for most of the recent sea ice studies.   

 

2. Sea ice flow model 

Pack ice typically consists of rigid plates, which may drift freely in areas of relatively open water or be closely 
packed together in regions of high ice concentration. Although individual ice floes range from tens of meters to 
several kilometres across, the ice pack can be considered as a highly fractured two-dimensional continuum.  

In two dimensional Cartesian co-ordinates, the force balance on the ice, per unit area, is given by  

 
ࢁ߲݉
ݐ߲ + ∇ ∙ (ࢁࢁ݉) = ௔࣎ + ௪࣎ + ∇ ⋅  (1) ,࣌

where ݉ is the ice mass, ࢁ is the ice velocity, ࣎௔  and ࣎௪  are the wind and ocean stresses on the ice respectively and 
∇ ⋅ indicates the divergence operator. The remaining term, ∇ ⋅  represents the internal stress state, which depends ,࣌
on the chosen flow rheology to describe the sub-scale interactions between the ice floes.   

By scale analysis, it has shown that the advection of the momentum term, ∇ ⋅  is sufficiently small to be ,(ࢁࢁ݉)
neglected (see for example [4]). While many studies do in fact ignore the inertial component, we retain the term 
within the present study for numerical reasons.  

The wind, ߬௔, and ocean stresses, ߬௪, are typically modeled with a quadratic boundary layer model which can be 
defined as [5,6] 

௔࣎  = ௔ࢁ)|௔ࢁ|௔ܥ௔ߩ cosߠ௔ + ࢑ × ௔ࢁ sinߠ௔), (2) 

௪࣎  = ௪ࢁ|௪ܥ௪ߩ ௪ࢁ)൫|ࢁ− (ࢁ− cosߠ௪ + ௪ࢁ) ࢑(ࢁ− × sinߠ௪൯. (3) 

 

The drag laws require that the air velocity, ࢁ௔, above the atmospheric boundary layer and the ocean currents, ࢁ௪, 
below the surface Ekman layer be known. The other variables include air and water densities, ߩ௔  and ߩ௪, turning 
angles across the boundary layers, ߠ௔ and ߠ௪ and the drag coefficients for the air and water interfaces given by ܥ௔ and 
 .is the unit normal vector to the sea ice surface, and × indicates the cross-product ࢑ ,௪. Lastlyܥ
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While many studies distinguish between thin and thick ice, as well as often including snow cover, for the current 
study, we limit our ice mass to  

 ݉ =  ௜ℎ, (4)ߩ

where ߩ௜ is the ice density and ℎ is the effective sea ice height. 

 

3. Sea ice Rheology 

The non-linear, visco-plastic model (VP) model, first proposed by Hibler [4], has since become the standard, large 
scale, sea ice model. The VP rheology provides a relationship between internal ice stress ࣌ and strain rates ࣕ̇ through 
an internal ice strengthܲ, and bulk and shear viscosities, ߞ and ߟ respectively. The visco-plastic formulation is posed 
such that the principle components of stress lie on an elliptic yield curve, with a ratio ݁ = 2 between the major and 
minor axes. 

The VP description allows the ice pack to diverge with little or no stress, yet resist compression and shearing 
motion under convergent conditions. The internal ice stress state is defined as  

࣌  = ̇߳ߟ2 + ࡵ ൤(ߞ − −(̇߳)tr(ߟ
ܲ
2
൨, (5) 

where ࡵ is the identity matrix and  

 ࣕ̇ =
1
2

+ࢁ∇)  (6) .(்ࢁ∇

The bulk (ߞ) and shear (ߟ) viscosities are given by  

ߞ  =
ܲ

2Δ, (7) 

ߟ  =
ܲ

2Δ݁ଶ, (8) 

where Δ is defined by 

 Δ = ൣ(߳̇ଶଵଵ + ߳̇ଶଶଶ)(1 + ݁ିଶ) + 4݁ିଶ߳ଶ̇ଵଶ + 2߳ଵ̇ଵ߳ଵ̇ଶ(1− ݁ିଶ)൧
ଵ ଶ⁄

. (9) 

To close of the system of equations requires some definition for the ice strength, ܲ. Hibler [4] proposed a simple 
relationship based on compactness and thickness  

 ܲ = ܲ∗ℎି݁ܣ஼(ଵି஺) , (10) 

where ܲ∗ and ܥ are empirical constants and  represents the surface area fraction (fraction of control volume 
covered by ice).  

As strain rates approach zero, the viscosities ߟ and ߞ tend to infinity. Hibler proposed regularizing this behavior by 
posing an upper bound on the allowable viscosities such that 

maxߞ  = 2.5 × 10଼ܲ,				and				ߟmax =
maxߞ

݁ଶ . (11) 
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3.1. Ice Transport 

The evolution of effective ice thickness, ℎ, and fractional ice coverage, ܣ, is defined as:  

 
߲ℎ
ݐ߲ = ∇ ⋅ (ℎࢁ) = ܵ௛ (12) 

 
ܣ߲
ݐ߲ = ∇ ⋅ (ࢁܣ) = ஺ܵ (13) 

Where ஺ܵ and ܵ௛  are the thermodynamic source terms defining growth/melt of sea ice. The thermodynamic source 
terms can either be based on interpolated values such as those presented in [7] or from a thermodynamic, phase 
change model. For the purposes of this paper we assume both thermodynamic source terms to be 0 ( ஺ܵ = 0 and 
ܵ௛ = 0). 

   From a physical perspective values for ℎ	and ܣ have natural bounds. Effective sea ice heightℎ ≥ 0, where ℎ = 0 and 
ܣ = 0 would indicate a region of no ice. Sea ice coverage fraction is also naturally bounded by 0 ≤ ܣ ≤ 1. 
Equations (12) and (13) naturally guarantee that both ℎ ≥ 0 and ܣ ≥ 0, however, it is possible for ܣ to be larger than 
1. As suggested in [4], we limit ܣ by capping ܣ = 1 as an upper limit, i.e. whenever a value of ܣ > 1 is computed 
within a cell that same cell value is reset to 1. While no issues have been raised by imposing an upper limit on ܣ in this 
fashion, numerical instabilities may arise.  

 

4. Numerical Implementation 

4.1. Numerical Solution 

The model was implemented into OpenFOAM and is therefore based on the finite-volume method for co-located 
grids, suited to non-orthogonal, arbitrary meshes. A staggered solution approach is used, where the cross-coupling 
terms are lagged. The chosen approach is similar to the strength explicit scheme of Hutchings et al. [8] and the implicit 
visco-plastic solvers discussed in [9, 10].  

The model consists of the following solution sequence: 

a) Calculate the melt/growth rates (set to 0 for the purposes of this paper).  

b) Solve:  డ௛
డ௧

+ ∇ ⋅ (ℎࢁ) = ܵ௛  

c) Solve:  డ஺
డ௧

+ ∇ ⋅ (ࢁܣ) = ஺ܵ 

d) Compute ߟ ,ߞ and ܲ based on the current guesses of ࢁ, ℎ and ܣ using equations (7)-(11). 

e) Solve:  డ௠ࢁ
డ௧

+ ∇ ⋅ (ࢁࢁ݉) = ௔࣎ + ௪࣎ + ∇ ⋅  ࣌

f) Iterate through steps d) and e) until convergence. 

g) Proceed to the next time step. 

While the solver is classifiable as a staggered or a partitioned solution approach, each of the equations are solved 
implicitly, allowing for much larger time steps than typically used in literature for sea ice models [4,8,11]. In other 
words, for each of the solution steps b.) through e.) a linear system of the form  

ݔࡹ  = ܾ, (14) 

is constructed and solved using a matrix free, Newton-Krylov solution method.  

Matrix ࡹ refers to a sparsely populated, diagonally dominant matrix. In the discussions to follow, we make 
distinctions between treating terms as implicit or explicit. By implicit we mean to imply that the given term will be 
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included within matrix ࡹ where explicit terms are in turn included as a source within vector ܾ. This system is then 
iterated on until the convergence criterion is satisfied. 

The sea ice velocities are comparatively low, and therefore we only iteratively couple the sea ice strength and 
momentum equations (namely solution steps d. and e.), where the primary variables ℎ, ܣ		and ࢁ are loosely coupled 
in time.  

4.2. Matrix conditioning and dynamic relaxation 

The momentum equation (1) with a visco-plastic flow rheology presents a surprisingly difficult equation to solve. 
This is evidenced by the sheer number of proposed solution methodologies, ranging from dual time stepping methods 
[4], line over-relaxation with a tri-diagonal system solution matrices [11, 12] and variations thereof [8 ,9 ,10, 13, 14].  

Hunke et al. [11] introduced an elastic-visco-plastic (EVP) model, where an additional elastic term is included within 
the momentum equation. The EVP method was introduced to allow for an explicit like discretization of the 
momentum equation by including an additional elastic term and sub-cycling within each time step. The EVP method 
has shown enormous potential, and has therefore been widely adopted by the sea ice community. There have, 
however, been studies that have shown that the explicit EVP and implicit VP solutions can differ significantly [9,10], 
where the EVP method can take longer to converge to the VP solution, or sometimes leads to solutions with lower 
than intended viscosities. 

We have therefore opted for an implicit solution of the VP momentum equation, in line with the strength-explicit 
algorithm defined in [8]. We employ an iterative solution method, where a portion of the momentum equation is 
treated implicitly, and hence included in the linear system matrix ࡹ, with the remaining portion treated as source 
terms.  

In Hutchings [13], it was shown that the linear system  

 ∇ ⋅ ࣌ = ∇ ⋅ ᇣᇧᇧᇤᇧᇧᇥ(ࢁ∇ߟ)
୧୫୮୪୧ୡ୧୲

	+ ∇ ⋅ ൤(ߞ − (ࢁ∇)trࡵ(ߟ + ∇ ⋅ −(்ࢁ∇ߟ)
∇ܲ
2
൨ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ୣ୶୮୪୧ୡ୧୲

, (15) 

can be stabilized through the addition of ∇ ⋅  such that the discretization of the stress constitutive term (ࢁ∇ߞ)
becomes  

 ∇ ⋅ ࣌ = ∇ ⋅ ൫(ߟ + ൯ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥࢁ∇(ߞ
୧୫୮୪୧ୡ୧୲

	+ ∇ ⋅ ൤(ߞ − (ࢁ∇)trࡵ(ߟ + ∇ ⋅ −(்ࢁ∇ߟ) ∇ ⋅ −(ࢁ∇ߞ)
∇ܲ
2
൨ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

ୣ୶୮୪୧ୡ୧୲

. (16) 

For the remainder of the paper we will refer to this as matrix conditioning. The reasoning stems from, if only  
∇ ⋅  then the explicit portion of the diffusion is larger than the ,ࡹ is entered into the linear system matrix	(ࢁ∇ߟ)
implicit component, and in turn the solution is driven by the set of explicit source terms.   

In Zhang and Hibler [12] an over-relaxation predictor-corrector type scheme was proposed. The primary concern 
with relaxation schemes is that they require an upfront choice on the relaxation parameter, which typically involves 
problem specific tuning. We therefore propose the use of Aitken's dynamic relaxation [15, 16], which has found wide 
spread use within the partitioned fluid-structure interactions community. To briefly outline Aitken’s method, consider 
that two iterates within a given time step have been completed. It is then possible to construct a solution residual   

௞࢘  = ௞ࢁ   (17)	,	௞ିଵࢁ−

where ݇ indicates the current coupling iteration count. 

Given a relaxation factor ߱, the velocity update can be stabilized by 

௞ࢁ  = ௞ࢁ ௞࢘߱+ . (18) 

Aitken's dynamic relaxation defines an update rule to dynamically modify the relaxation parameter using the residual 
results from two previous iterations such that  
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 ߱௞ାଵ = −߱௞
(௞ିଵ࢘) ⋅ ௞࢘) − (௞ିଵ࢘

௞࢘) − (௞ିଵ࢘ ⋅ ௞࢘) −  ௞ିଵ). (19)࢘

Aitken's method can be shown to fall within the family of least change secant methods [17]. 

To illustrate the effect of matrix conditioning, as well as the potential benefits of Aitken's method, consider the 
convergence plot shown here in Figure 1, for the first iteration of the benchmark problem outlined in Section 5.1. The 
convergence plots clearly show that the matrix conditioning introduced in [8] and [13] does assist with the iterative 
coupling. Aitken's dynamic relaxation can further be shown to accelerate the overall convergence behaviour. 
Hutchings [13] employed a fixed number of iterations, typically in the order of 10 iterations per time step. For the 
remainder of the paper we iterate until the convergence criteria of ࢘୰ୣ୪ୟ୲୧୴ୣ ≤ 1 × 10ିସ is satisfied, which depending 
on the complexity of the problem, and the time step size, generally falls in the range of 2-40 iterations within any 
given time step.  

4.3. Treatment of regions without ice 

Typically, in regions where there is no ice, hence 0 mass, the momentum equation becomes ill-posed (infinite 
possible velocities). To solve this, Hibler [4] proposed using a two level sea ice thickness description, where a 
distinction is made between thin ice ℎ and thick ice ܪ such that the sea ice mass becomes 

 ݉ = ܪܿ]௜ߩ + (1 − ܿ)ℎ]. (20) 

ℎ in this case represents a lower limit on sea ice height, and carries no strength. Hutchings [13] for example enforces a 
lower limit of ℎ = 0.5m, which is considered as thin ice and carries no strength.  

Instead of imposing a lower limit on sea ice height, we treat a portion of the water shear stress ࣎௪   implicitly 
such that 

௪࣎  = ௪ࢁ|௪ܥ௪ߩ− |ࢁ− cosߠ௪ࢁᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
ୱୣ୫୧ି୧୫୮୪୧ୡ୧୲

+ ௪ࢁ|௪ܥ௪ߩ − ௪ࢁ)|ࢁ cosߠ + ௪ࢁ) ࢑(ࢁ− × sinߠ௪)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୣ୶୮୪୧ୡ୧୲

. (21) 

In this way, we ensure in the special case of ݉ = 0, the mean velocity will be the velocity which satisfies ࣎௔ + ௪࣎ = 0 
or ߩ௔ܥ௔|ࢁ௔|ࢁ௔ =  .ࢁ|ࢁ|௪ܥ௪ߩ

By implicit we once again mean to imply that the term in question is included within the matrix corresponding to 
the linear system in equation (14).  

 

 
Fig. 1: Illustrative comparison of the convergence rates when using matrix conditioning as well as Aitken’s dynamic relaxation. 
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5. Test Problems 

In the sections to follow, we illustrate the behaviour of the sea ice model on two benchmark problems. For both 
test cases, implicit Euler time integration is used, where a van Leer’s total variation diminishing (TVD) [18] scheme is 
used for the advection terms in equations (12) and (13), and standard upwinding for all the other advection terms. 
TVD schemes allows one to better capture sharp interfaces (without any spurious oscillations) which may exist 
between regions of sea ice and open water, which is especially important for the test problem in Section 5.2. The 
height and surface fraction equations are solved using a preconditioned conjugate gradient solver, where a 
generalised algebraic multi-grid solver, with incomplete LU factorisation, is used for the momentum equation.  

5.1. 1D convergent/divergent test problem 

We reproduce here a simple 1D convergent-divergent test problem introduced in [13]. The test problem consists of 
a 3000km long ocean region covered completely by ice with ℎ଴ = 1m and ܣ଴ = 1 with the ice initially at rest, 
଴ࢁ = 0msିଵ. The 3000km region is split into 100km equally sized control volumes, with an imposed wind velocity of 
3m/s from left to right in the x-direction. The problem is illustratively shown in Figure 2. To constrain the flow in the x-
direction, Coriolis force and the water and air turning angles are set to 0. The sea ice simulation parameters are 
summarized in Table 1, and we make use of time step sizes of Δݐ = 1	day.  

The sea ice strength parameter and air velocity is chosen such that open water forms on the left hand boundary 
and the ice converges onto the right boundary. To illustrate this we show the sea ice velocity and sea ice height after 1 
year of integration in Figure 3. In the diverging region on the left hand side, when sea ice mass goes to zero, ݉→ 0, 
the momentum equation based on the semi-implicit treatment of the water shear stress essentially reduces to 

ࢁ|ࢁ|௪ܥ௪ߩ  =  ௔. (22)ࢁ|௔ࢁ|௔ܥ௔ߩ

Therefore while there is no sea ice in this region, we still compute a velocity which corresponds to satisfying 
equation (22). 

Lastly in Figure 4, we compare the sea ice thickness after 10 years of integration. For comparative purposes we 
include the sea ice height for three increased ܲ∗ values of 5 × 10ସ, 7.5 × 10ସ and 1 × 10^5 which is sufficiently high 

to  prevent the creation of open water. 

 

 

Table 1. 1D test problem simulation parameters 
Name Symbol Value 

Ice density ߩ௜  918	kg	mିଷ  

Air density ߩ௔  1.30	kg	mିଷ  

 
Fig. 2 Illustrative 1D convergent-divergent test problem reproduced here from [13], with air velocity in the -direction forcing the ice 

to converge on the right coast. 
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Air drag coefficient ܥ௔  0.0012  

Seawater density ߩ௪  1000	kg	mିଷ  

Seawater drag coefficient ܥ௪  0.005  

Initial ice thickness ℎ଴  1	m  

Initial ice compactness ܣ଴  1.0  

Air Velocity ࢁ௔  8	m	sିଵ  

 

 

 

 

 

 

Water velocity  

  sିଵ	m	௪  0ࢁ

Ice strength parameter ܲ∗  5 × 10ଷkg	mିଵ	ିݏଶ  

Ice strength-compactness parameter  20  ܥ  

Eccentricity of ellipse ݁  2  

Viscosity cutoff  ߞ୫ୟ୶  2.5 × 10଼	P	s  

 

 

 

 

   
 

(a)      (b) 
Fig. 3. 1D-convergence test results after 1 year showing (a) sea ice velocity and (b) sea ice height.  

 
(a)      (b) 

Fig. 4: Ice thickness for 1D test problem after 10 years, for (a) all 4 ice strengths and (b) with P*=5e3 omitted. 
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5.2. Wind driven ice 

In this section we demonstrate the visco-plastic model on a simple test problem first introduced in [3]. The test 
problem has been used to great effect to illustrate the difference between various sea ice flow rheologies. The 
problem layout is illustratively shown in Figure 5, where a 25km by 50km block of ice is subjected to wind forcing and 
ocean drag. The block of ice is initially at rest, with an initial area coverage fraction of ܣ଴ = 0.9 and ice thickness of 
ℎ଴ = 2m. The thermodynamic source terms are once again set to zero. A uniform wind surface stress of  ࣎௔ =
௪࣎ and ocean drag resistance of (௔ܥ−,0) =  are applied, where the simulation parameters are summarized ࢁ௪ܥ௪ߩ−
in Table 2. A uniform grid size of 625m is used along with a time step size of  Δ = 72s.  

A comparison of the sea ice deformation is shown in Figure 6 for both slip and no-slip  boundary conditions which 
compares well to the results presented in [3,19] when using two variations of the finite-element method. The no-slip 
boundary condition is defined as a boundary condition where the velocity along the boundary is 0, while the slip 
condition is defined by a 0 velocity in the normal direction to the boundary (ࢁ ⋅ ࢔ = 0) with no tangential stress (i.e. 
non-zero tangential velocity). 

Table 2. Visco-plastic flow rheology test problem simulation parameters 

Name Symbol Value 

Ice density ߩ௜  918	kg	mିଷ  

Air density  ߩ௔  1.20	kg	mିଷ  

Air drag coefficient ܥ௔  5 × 10ିସ	m	sିଵ  

Seawater density ߩ௪  1026	kg	mିଷ  

Seawater drag coefficient  ܥ௪ 	  5 × 10ିସ	m	sିଵ  

Initial ice thickness ℎ଴  2	m  

Initial ice compactness ܣ଴	  0.9  

Ice strength parameter ܲ∗  5 × 10ଷ	kg	mିଵ	ିݏଶ  

Ice strength-compactness parameter 15  ܥ  

Eccentricity of ellipse ݁  2	  

Viscosity cut-off ߞ୫ୟ୶  2.5 × 10଼	P	s  

 
Fig. 5 Visco-plastic flow test problem, with a km block of ice with  and . 
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6. Conclusion 

In this paper, we introduced Hibler’s visco-plastic model. We illustrated how the convergence rates and solution 
stability can be improved by combining dynamic relaxation with matrix conditioning. Finally, we demonstrated the VP 
rheology on two test cases. 
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