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Abstract 

The phonetic segmentation of recorded speech is a crucial 

factor in the quality of concatenative systems for speech 

synthesis. We describe a a likelihood-based error detection 

process that can be used to flag possible errors in such a 

segmentation, with a view towards manual correction. It is 

shown that this process can be used to assist in the creation of 

high-accuracy segmentations. In particular, for an isiZulu 

corpus used in the creation of a unit-selection synthesizer, 

almost half of the errors that existed in a manual segmentation 

were detected by this process, while flagging fewer than a 

quarter of all segments. Different phoneme classes are handled 

with differing amounts of success, with vowels being the most 

troublesome. 

1. Introduction and background 

Speech synthesis is a technology of great potential 

significance in the developing world, since it provides a 

means to convert electronically stored information to a 

spoken format [1]. Hence, people with limited literacy, 

or disabilities that make it impractical to read, can gain 

access to documents that would otherwise not be 

available to them. Also, those without internet access 

can avail themselves of information in databases using a 

normal telephone service, if speech synthesis is utilized 

along with appropriate telephone services. Synthesis can 

therefore play a significant role in narrowing or bridging 

the digital divide. 

Two broad categories of speech synthesis can be 

distinguished. Early synthesizers generally employed 

model-based approaches, where the speech-production 

process is described with a parametric model, and the 

parameters of the model are varied in time to produce 

synthesized speech. Perhaps the most successful model 

of this nature is based on the work of Klatt [2], in which 

the parameters are related to formant frequencies and 

amplitudes (and corresponding excitation sources). 

Work on these approaches continues to attract attention, 

and models employing parameters related to the 

positions of the articulators have been used with some 

success in recent years.  

A significant amount of attention in both the 

academic and commercial arenas has, however, shifted 

to concatenation-based approaches [3]. Here, one no 

longer attempts to derive an explicit model of speech 

production – instead, speech segments are excised from 

a corpus of recorded speech, and spliced together to 

produce synthesized utterances. Concatenation is 

generally believed to produce utterances that are both 

more natural and more understandable than model-based 

synthesis, at the cost of increased effort in recording, 

preparing, storing, and searching the corpus of recorded 

speech. 

Of these factors, the most expensive in practical 

cases is the preparation of recordings. In particular, the 

quality of synthesis depends sensitively on the accurate 

location of segment boundaries within the recorded 

speech, since these boundaries are used as markers for 

the excision of the segments that are concatenated. The 

production of these time alignments of phonetic 

sequences against spoken utterances is both time 

consuming and error prone. A trained transcriber has to 

listen to each segment, and manually (a) label the 

segment at a pre-determined level of phonetic 

refinement as well as (b) place boundary markers 

between the segment and its neighbours, according to 

specified conventions. Both of these tasks often involve 

debatable judgment calls, and gross errors as well as 

subtle misjudgements (from the perspective of synthesis 

quality) are common, especially when the transcribers 

are not highly experienced at this task. 

 Automation of the alignment process has 

therefore been used to a greater or lesser extent by many 

developers [4]. If a speaker-independent recogniser for 

the target language exists, it can produce a forced 

alignment against the orthography of the recorded 

speech (which is generally available, since the 

recordings are typically made from an orthographic 

script). Alternatively, a speaker-dependent recogniser 

can be trained on the recordings that form the synthesis 

corpus, if it is of sufficient extent. Both these approaches 

can produce initial alignments that greatly accelerate the 

manual transcription process, but neither is generally 

sufficiently accurate to eliminate the need for manual 

alignment altogether.  

 In this paper, we describe an approach that can 

further reduce the alignment time, by identifying likely 

errors in manual or automatic alignments. As described 

in Section 2, this approach uses whole-segment spectral 

information to evaluate segments more accurately. In 

Section 3 we demonstrate that a simple implementation 

of this approach can detect a significant fraction of 

alignment errors in an isiZulu corpus, which was used to 

build a basic isiZulu synthesizer. Section 4 concludes 



with an overview of our method and results, and 

contains suggestions for extensions and refinement of 

this work. 

2. Approach: difference of segment spectral 

means 

In order to validate alignments, we start from the 

assumption that the great majority of segments have 

been aligned properly. Hence, for any measurement used 

to describe an acoustic segment, the average value of the 

measurement for a particular phone, calculated over all 

aligned utterances, should closely approximate the true 

value of that measurement if no alignment errors had 

been made. Consequently, any phonetic segment whose 

measurement value deviates substantially from that of 

the mean is possibly in error (either because one or both 

boundaries have been placed inappropriately, or because 

the segment is mislabelled, or possibly because the 

speaker produced a highly atypical phonetic variant). 

This observation is equivalent to a simple algorithm 

for the detection of alignment errors, but practical 

implementation of the algorithms requires a number of 

choices, including: 

• What measurements are used to describe 

phonetic segments? Ideally, the measurements 

should capture the nature of each segment, and 

both static and dynamic information is therefore 

relevant. However, the mean value of each 

measurement must be determined from a limited 

set of segments; we have therefore employed the 

mean spectrum (computed within 64 equal-sized 

spectral ranges on the Bark scale, spanning the 

range 0-8 kHz). 

• How should differences between segments be 

measured? A number of metrics may be 

considered, but the paucity of data is again an 

important consideration. We have experimented 

with two metrics; both model the data using full 

covariance Gaussian distributions, but one 

method employs a pooled covariance matrix 

across all segments, and the other computes a 

covariance matrix for each phone individually. 

• How should the threshold for candidate errors be 

set? False positive errors (i.e. flagging a 

candidate which was actually correct) are less 

troublesome than false negatives (errors which 

are accepted as correct segments). Thus, the 

chosen thresholds should err on the side of 

caution. However, as we shall see below, the 

variance of deviations within the different phone 

classes is substantial, so achieving a uniform 

level of conservatism across phones is a 

significant challenge. Our current approach 

therefore relies on a manual process for choosing 

the threshold for each class. 

• How much context dependence must be modelled 

in the choice of classes? Co-articulation will 

certainly cause the realization of phones to vary 

depending on their surrounding phonetic context. 

Thus, if one has enough data to calculate accurate 

context-dependent models, such models are 

preferable. As we will see below, however, this 

was not the case for our isiZulu corpus. 

3. Evaluation 

We have evaluated our approach by testing its 

performance on a corpus used to build an isiZulu speech 

synthesizer (see [5] for details). Our isiZulu phone set 

consists of 47 phones. To obtain sufficient (though not 

complete) coverage of the diphones formed from this 

set, we selected 153 sentences from a public-domain text 

corpus that we had collected – the selection process 

attempts to cover the required diphones with the 

minimal number of sentences [6]. A male first-language 

isiZulu speaker from the Kwazulu-Natal region recorded 

these sentences. Our initial alignments were produced in  

a two-step process. Firstly, alignments that were 

obtained by mapping all isiZulu phones to the nearest 

English phones (using subjective, linguistically 

motivated criteria), and then using dynamic time 

warping to align the isiZulu utterances against an 

English voice which is distributed with the open-source 

Festival toolkit. This results in fairly crude alignments, 

since the isiZulu phones often are fairly different from 

the most similar English cognates. 

These alignments were corrected by two isiZulu 

speakers with limited linguistic training (one was an 

undergraduate student in linguistics, the other had no 

formal linguistic training) and no prior experience with 

transcription. The transcribers aligned separate portions 

of the corpus, and did not crosscheck one another 

(though they were encouraged to discuss transcription 

conventions). Hence, these transcriptions were 

substantial improvements on those obtained 

automatically, but fell significantly short from those that 

would be obtained in a professional voice-development 

environment. We consider these alignments typical of 

what can be expected for first-time development of 

synthesizers in the developing world. 

Below, we report on the effectiveness of our 

automatic process in correcting these manual 

alignments. The “correct” alignments, against which the 

improvements were measured, were those that we 

eventually used for synthesis. These were obtained by 

crosschecking of the manual alignments by the authors, 

and also by correction of additional errors that were 

detected during use of the corpus for synthesis. (The 

non-systematic nature of this process and the subjective 

evaluation inherent in alignment imply the likely 

presence of undetected alignment errors in our corpus, 

but random sampling indicates that these are sufficiently 



rare not to impact our overall results.) A phone segment 

was scored as “incorrect” if it had the wrong label, or if 

either boundary differed from the correct location by 

more than 500 msec. The corpus consists of a total of  

8 388 segments, and of these 152 were determined to be 

erroneous. Because several of our phonetic categories 

contained fewer than 20 segments, it was not feasible to 

use context-dependent models – in fact, we were also 

forced to use a pooled covariance matrix because of the 

limited number of segments in these categories. (It 

would be possible to use separate diagonal covariance 

matrices for most, but not all, classes. However, that 

would introduce additional complexity, since separate 

normalization schemes would be required depending on 

whether the pooled pr individual matrices are used. We 

have not pursued this approach.) 

The overall success of our error detection process is 

summarized by the facts that (a) the error-detection 

process flagged 24.5% of all segments as possibly 

erroneous, and (b) this set contained 43.4% of all errors 

present in the corpus. Fig. 1 shows the fraction of errors 

detected and segments flagged as the detection 

threshold is varied, for four sounds: “pau”, “i”, “g” 

and “r”. (“pau” represents pauses that occur within or 

adjacent to an utterance.) It can be seen that the process 

was reasonably successful for these cases: in all cases, 

at least 60% of the errors could be detected by 

examining no more than 30 % of the segments. This is 

typical of the behaviour of phonemes that contained 

segmentation errors – the overall statistics are, however, 

impacted negatively by several phonemes for which no 

errors exist, for which candidates are nevertheless 

flagged. 
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Figure 1: Detection-error trade-off curves for four 

different phonemes 

 

For this process, manual thresholds were employed 

as discussed in Section 2.  Fig. 2 shows why this was 

necessary: whereas any of a range of threshold values 

would be appropriate for the phonemes in Fig. 2(b), the 

phonemes in Fig. 2(a) require fairly specific (and 

different) threshold choices to successfully distinguish 

between correct and erroneous segments. Thus, manual 

selection of thresholds is currently required. 
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   (b) 

Figure 2: Fraction of all segments and erroneous 

segments flagged by the automatic process. In (a), the 

detection threshold must be chosen carefully, whereas 

any large value will be acceptable in (b) 

 

In order to evaluate the performance of the detection 

process for different speech sounds, we divided the 

isiZulu phone set into seven broad categories, as shown 

in Table 1 (which also lists the number of samples of 

each sound contained in the corpus, as well as the 

number of errors made in such segments). The fraction 

of sounds in each category which were flagged by the 



process, as well as the fraction of erroneous segments 

flagged, are listed in Table 2. 

 

 

Table 1: Categories of isiZulu phones used for error 

analysis 

 

Class Fraction of samples 

flagged 

Fraction of errors 

flagged 

Clicks 0.25 1 

Vowels 0.41 0.52 

Nasals 0.20 0.30 

Fricatives 0.09 0.60 

Plosives  0.20 0.56 

Silence / 

pause 

0.14 0.30 

Liquids/ 

glides 

0.08 0.57 

Table 2: Error detection statistics for different 

phone categories 

 

These results indicate that the fricatives and liquids / 

glides are handled well by the automatic process, 

whereas the vowels and nasals are problematic. This 

contrast is probably a consequence of the features that 

were employed. For the more extended sounds such as 

vowels, the average spectrum is less reliable as an 

indicator of segmentation errors, both because of the 

relatively small effect of boundary errors on the average 

spectrum of a temporally extended phoneme and 

because of the significant intra-class variability that 

exists between different occurrences of such sounds. 

4. Conclusions 

We have shown that a simple segment-based 

approach can be used to detect a significant fraction of 

the errors that occur in both automatic and manual 

alignments of recordings used to construct a speech 

synthesizer. In practice, this approach is probably most 

useful when applied after one round of manual 

alignment has been performed, since the fraction of 

erroneous segments that remain undetected after 

automatic alignment is not satisfactory for system 

development. However, when larger corpora of 

recordings are used, this conclusion may no longer hold. 

This work can be extended in a number of ways. It 

would be interesting to design more refined features – 

including spectral dynamics – to describe the individual 

segments, and also to develop more sophisticated error 

metrics – hopefully eliminating the need for manual 

threshold selection. The application of this approach to 

larger corpora of recordings, for which other automatic 

alignment strategies would be sensible, is also of interest.  
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Class Example Number of  

samples 

Number of  

errors 

Clicks qala 71 1 

Vowels siza 3105 52 

Nasals hamba 900 19 

Fricatives/ 

affricates 

funda 914 20 

Plosives  bopha 829 16 

Silence / 

pause 

<<pause>> 1917 27 

Liquids/ 

glides 

landa 650 7 


