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AbstractAbstractAbstractAbstract    

The modeling and simulation of composite materials requires the incorporation of anisotropic material models, as 

well as appropriate failure criteria or damage models.  

This was normally done by developing in-house codes or writing additional programs to accompany existing finite 

element (FE) software. However, in recent years the ability to model and simulate the complex composite 

behaviour in commercial FE software packages has matured. That said, even commercial FE software has a limited 

range of failure criteria, damage models and degradation laws to choose from.  

Using open source FE packages, such as Calculix, to analyse complex behaviour of composite materials requires 

considerably more user interventions. One of the only options is to define multiple materials to build the composite 

or use a composite shell element, but the software provides no method to initiate a progressive failure and damage 

analysis which is required to accurately simulate composite material behaviour.  

From a research perspective, new contributions in this field are made by either developing new progressive damage 

models (with various modes of failure and damage) for composite materials or by implementing existing models 

through a user subroutine in a commercial or open source environment. A user subroutine allows for the 

customisation of the FE software by easily adding new material models, behaviour laws, boundary conditions, etc. 

without having to fully understand the complex structure and flow of the underlying FE code.  

The purpose of this paper is to focus on the open source implementation of a composite material model by making 

use of the user subroutine to add material models (UMAT) not already available.  

The process for implementing a UMAT in the open source software package Calculix is first established as an 

example for other users. The first step is therefore to develop a UMAT for a simple material model which is already 

available in the FE package. The implementation process is then verified and validated by comparing the UMAT to 

the built-in material definition.  

Next, a composite material model is chosen from literature and implemented via a UMAT. The composite material 

model is verified through a simple single element test and validated with experimental test data.  

In short, this paper provides a method for implementing a composite material model, through the use of a UMAT, 

to model the behaviour of composite structures in an open source FE software package. 

Keywords: open source; user material subroutine (umat); composite; CalculiX; finite element analysis 
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1.1.1.1. IntroductionIntroductionIntroductionIntroduction    

Composite materials commonly have a low weight to high stiffness ratio which has led to an increased uptake in 

various industrial applications, such as aerospace, medical and sport for example. As such there is a need to better 

understand the complex material behaviour and how it influences the overall structural behaviour, including the 

damage and failure mechanisms. Experimental studies provide a better understanding, but being able to characterise 

these observations mathematically allows for improved design, optimisation and development of composite 

structures.  

Modelling of composite materials requires a mathematical description of the anisotropic or orthotropic material 

model to characterise the expected behaviour. Depending on the desired simulation, and the finite element (FE) 

software capabilities, this characterisation might include additional descriptions to simulate the material degradation 

and failure. In earlier years this was normally achieved by either developing in-house FE codes or writing additional 

programs, such as user material subroutines (UMAT), to accompany existing finite element (FE) software [1-2].  

There is an increasing trend in the use of open source software, especially in an academic, and R&D environment, 

as it is has no license fees and allows for custom modifications because of the easy access to source code [4]. 

However, these advantages are also one of the drawbacks as the software is often not as well developed or easy to 

use as their commercial counterparts [4]. Among all the open source FE solvers available, CalculiX and Code Aster are 

the most popular for general non-linear FEA as reported in a number of forums. Both solvers have similar capabilities. 

CalculiX is easier to use when starting out as it has a similar input file structure to Abaqus. The only drawback of Code 

Aster is that both the input file and documentation is in French.  

The composite material modelling capability in CalculiX is limited to using either a built-in linear elastic material 

model defining the anisotropic or orthotropic material parameters and defining a composite shell element to define 

the different plies with their associated properties or implementing a user material subroutine (UMAT) with the 

desired composite material behaviour [5].  

A UMAT allows the user to implement the desired material model (of any complexity) when it does not exist in the 

chosen FE program’s material library [6]. This allows the user to focus on the material model development without 

having to be concerned with the development, maintenance or debugging of the FE software [6]. Abaqus is a popular 

commercial FE package and as such a lot of literature is available on how to create an Abaqus UMAT [6-7]. The Abaqus 

UMAT subroutine is popularly used in research [8-9] and there is a lot of information available regarding its 

development [3,6,7]. 

Although Calculix can use the Abaqus UMAT structure there are no tutorials or documentation available on how to 

implement it. The purpose of this paper is to illustrate the process of developing and implementing an Abaqus UMAT 

in an open source FE software such as CalculiX. This is done by considering material models with increasing 

complexity, first a simple linear elastic isotropic material model, followed by a linear elastic orthotropic material 

model and an Abaqus UMAT composite material model obtained from literature. 

 

2.2.2.2. Abaqus User Material Subroutine (UMAT)Abaqus User Material Subroutine (UMAT)Abaqus User Material Subroutine (UMAT)Abaqus User Material Subroutine (UMAT)    

UMATs allow the user to develop a subroutine which contains the constitutive equations which describe the 

desired material model [6-7]. Once implemented into the FE program, the routine will be called and executed 

incrementally at each material calculation point of the elements solving and updating the required stresses, strains 

and dependent state variables [7]. 

 

2.1. UMAT Development 

An Abaqus UMAT subroutine is normally developed by following FORTRAN 77 and C conventions. Keeping this in 

mind, the steps required to develop a UMAT are [6]:  

1. Define the constitutive equation by defining the stress (STRESS) (Cauchy stress for large strain applications) and 

the stress rate (in co-rotational framework). 
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2. Define dependencies on time (TIME,DTIME,PNEWDT), temperature (TEMP,DTEMP) or field variables 

(PREDEF,DPRED), if necessary. 

3. Define internal state variables (STATEV) (explicitly or as a function of rate). 

4. Transform the constitutive rate equation into an incremental equation (DROT) using a suitable integration 

method such as Forward Euler (explicit integration), Backward Euler (implicit integration) or Midpoint Method.  

5. Calculate the consistent Jacobian matrix, also known as the stiffness matrix (DDSDDE). 

An example of the typical structure for an Abaqus UMAT is shown as Algorithm 1. Note that normally in an Abaqus 

UMAT the command INCLUDE ‘ABA_PARAM.INC’ is used to call a file which defines the system precision that 

should be used. For CalculiX, this is simply replaced with the command IMPLICIT REAL*8 (A-H,O-Z) [5]. The 

deformation gradient (DFGRD0,DFGRD1), total strains (STRAN) and strain increments (DSTRAN) are provided as 

input into the subroutine which then outputs the material Jacobian matrix (DDSDDE) and updated stresses (STRESS) 

for the constitutive material model. 

Algorithm 1: Standard Abaqus UMAT structure adapted for CalculiX (C indicates a comment with the 

comment syntax in blue) 

C ==================================================================== 
C STANDARD ABAQUS UMAT SUBROUTINE STRUCTURE 
C ==================================================================== 
      SUBROUTINE UMAT (STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL, 
     1 DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP, 
     2 PREDEF,DPRED,CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS, 
     3 COORDS,DROT,PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER, 
     4 KSPT,KSTEP,KINC) 
C 
C     INCLUDE ’ABA_PARAM.INC’ 
      IMPLICIT REAL*8(A-H,O-Z) 
C 
      CHARACTER*80 CMNAME 
C 
      DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 
     1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 
     2 PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 
     3 DFGRD0(3,3),DFGRD1(3,3) 
C 
      PARAMETER(ONE=1.D0, TWO=2.D0, THREE=3.D0) 
C ==================================================================== 
C User Coding AA: 
C user coding to define DDSDDE, STRESS, STATEV, SSE, SPD, SCD 
C and, if necessary, RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT 
C ==================================================================== 
      RETURN 
      END 

  

2.2. Example: Linear Elastic Isotropic 

The development of an Abaqus UMAT, discussed in the previous section, is illustrated using a very simple linear 

elastic isotropic material model.  The linear relationship between stress and strain is defined using Hooke’s Law 

[10,11]: ��� = ��������          (1) 

The coefficients in the fourth order elasticity stiffness tensor are denoted by ����� , the Cauchy stress is defined by  

���  and the strain by ���. In the case of isotropy the relationship is defined in terms of Lame’s parameters and the 

Kronecker delta such that the linear elastic constitutive equation becomes [10]:  

��� = 	

�� ��� + �	

�
����
���� ������ = 2���� + 	������� ,    (2) 

where: 

									� = 	

�� ; � = �	

�
����
���� 
Summation on repeated indices is assumed and the Kronecker delta becomes 1 if � = � and 0 if � ≠ �. Applying 

symmetric conditions due to isotropy, Eq (2) reduces to six continuity equations written in matrix form [11]: 
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                    (3) 

The fourth order elasticity stiffness tensor (DDSDDE) and consequent stress update (STRESS) based on Hooke’s 

Law is programmed into the standard Abaqus UMAT template, shown in Algorithm 1, by replacing the user coding 

section. This implementation is shown in Algorithm 2 which follows the following steps:  

1. The elastic modulus (EMOD) and Poisson’s Ratio (ENU) are obtained from the input file through the PROPS 

command (Lines 10-12). The Lame’s Parameters (EMU,ELAM) are then calculated (Lines 13-17).  

2. The stiffness matrix (DDSDDE) is defined using two for loops from an index value of 1 until NDI, which is 

the number of direct stress components. The off-diagonal and diagonal stiffness coefficients for the 

principal stresses and strains are first defined in the first for-loop block (Lines 21-27). In the second for-

loop block the stiffness coefficients for the shear stresses and strains is defined with a for-loop from 

NDI+1 until NTENS, the total number of stress components,  total direct stress  and total shear stress 

(NDI+NSHR) (Lines 28-30). 

3. Lastly, the stresses (STRESS) is updated through Hooke’s Law, Eq (1), by multiplying the elasticity tensor 

(DDSDDE) with the incremental strain (DSTRAN) by means of a for loop block from 1 until NTENS (Lines 

31-38).  

 

Algorithm 2: User coding AA to define DDSDDE and STRESS for a linear elastic isotropic material (C 

indicates a comment with the comment syntax in blue) 

1  C ==================================================================== 
2  C User Coding AA: 
3  C user coding to define DDSDDE, STRESS, STATEV, SSE, SPD, SCD 
4  C and, if necessary, RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT 
5  C ==================================================================== 
6  C OBTAIN AND DEFINE MATERIAL PROPERTIES (TO BE DEFINED IN THE INPUT FILE) 
7  C EMOD = ELASTIC MODULUS 
8  C ENU = POISSON'S RATIO 
9  C ==================================================================== 
10 C PROPERTIES FROM INPUT FILE 
11       EMOD = PROPS(1) 
12       ENU = PROPS(2) 
13 C CALCULATE PROPERTIES REQUIRED 
14 C EMU - LAME'S FIRST PARAMETER 
15       EMU = EMOD / (ONE + ENU) 
16 C ELAM - LAME'S SECOND PARAMETER 
17       ELAM = (EMOD * ENU) / ((ONE + ENU) * (ONE - TWO * ENU)) 
18 C ====================================================================       
19 C DEFINE THE ELASTIC STIFFNESS MATRIX 
20 C ==================================================================== 
21 C Entries for the principal stresses 
22       DO K1 = 1, NDI 
23         DO K2 = 1, NDI 
24           DDSDDE(K2,K1) = ELAM 
25         END DO 
26         DDSDDE(K1,K1) = ELAM + EMU 
27       END DO 
28       DO K1 = NDI + 1, NTENS 
29         DDSDDE(K1,K1) = EMU / TWO 
30       END DO 
31 C ==================================================================== 
32 C CALCULATE THE STRESS USING HOOKES LAW 
33 C ==================================================================== 
34       DO K1 = 1, NTENS 
35         DO K2 = 1, NTENS 
36           STRESS(K2) = STRESS(K2) + DDSDDE(K2,K1) * DSTRAN(K1) 
37         END DO 
38       END DO 
39 C       
40       RETURN 
41       END 
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2.3. Implementation into CalculiX 

The easiest way to implement an Abaqus UMAT subroutine into CalculiX is to modify the CalculiX source files and 

then recompile the executable. For this study CalculiX version 2.13 [5] is used on an Ubuntu 16.04 platform. The 

source files for CalculiX are downloadable from the website along with easy to follow instructions on how to install 

from source code.  

There are three core files that require modification in the CalculiX source folder, shown in Fig 1, to successfully 

implement an Abaqus UMAT for use:  

1. Copy the developed UMAT into the CalculiX source folder, for this example the file is called umat_linelas.f.  

2. Edit the umat_abaqus.f subroutine to call the developed subroutine by adding an if-statement which calls 

the umat_linelas.f subroutine. 

3. Edit the Makefile.inc to include the developed umat by adding a statement umat_linelas.f / anywhere in 

the file, although the file is alphabetically organised for ease of reference. 

4. Recompile CalculiX using the make command and perform the required actions as per the initial 

installation documentation to ensure all permissions are given to use the executable.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Implementation of an Abaqus UMAT into CalculiX. 

Once implemented into CalculiX, the developed Abaqus UMAT subroutine can be called in CalculiX through the 

*MATERIAL card with the necessary amendments as shown in Algorithm 3. ABAQUS should always precede the 

name given to the UMAT subroutine (see Line 6) to ensure the umat_abaqus.f file is called which transforms the 

Abaqus UMAT output (Lagrangian formulation) into the CalculiX format (logarithmic formulation) [5]. In addition, 

when internal state variables (STATEV) are defined in the UMAT, which is the case for more complex material 

models, an additional statement *DEPVAR should be included followed by the number of STATEV defined in the 

UMAT (Lines 9-11).    

Algorithm 3: Material definition section in a CalculiX input file for the linear elastic isotropic material 

example (** indicates a comment with the comment syntax in gray) 

1  ** ==================================================================== 
2  ** Material definition 
3  ** Linear Elastic Isotropic 
4  ** Elastic Modulus, Poisson’s Ratio 
5  ** ==================================================================== 
6  *MATERIAL, NAME=ABAQUSLINELAS 
7  *USER MATERIAL, CONSTANTS=2 
8  210.0E3, 0.33 
9  ** Only add if state variables (STATEV) are defined in UMAT 
10  ** *DEPVAR 
11 ** 20 
12 *SOLID SECTION, ELSET=Eall, MATERIAL=ABAQUSLINELAS 
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2.4. Verification: Patch Test 

The last step in implementing any user defined material definition is to verify the continuity equation 

implementation. This is traditionally done by means of a patch test. For this paper a distorted five element patch test 

with a length of 40mm and height of 30mm is considered using an eight node quadratic plane stress element (CPS8), 

shown in Fig 2. A constant stress of 50 MPa is applied using the consistent nodal force approach to simulate each of 

the three considered cases, (1) uniaxial loading in the x direction, (2) uniaxial loading in the y direction and (3) shear 

loading in the x direction. For a quadratic element the consistent nodal force equates to one sixth of the applied stress 

at the edges and two thirds at the centre nodes.  

 

 

 

 

 

 

 

 

 

Fig. 2. Five element distorted patch test geometry used for verification of the Abaqus UMAT implementations. 

For the linear elastic material an elastic modulus of 100GPa and a Poisson’s ratio of 0.4 are used. The results from 

the patch tests are shown in Fig 3 where the implemented UMAT is compared to the built-in linear elastic material 

model.  For the linear elastic isotropic material model a strain of 0.05% is expected based on Hooke’s law with an 

elastic modulus of 100 GPa and a stress of 50 MPa. This is the expected result for the unidirectional cases as shown in 

Fig 3(a) and (b). In all three cases the built-in model and the developed Abaqus UMAT are equal which indicates that 

the isotropic continuity equation and Abaqus UMAT is implemented correctly. 

(a) Unidirectional stress in the 1-direction  (b) Unidirectional stress in the 2-direction  (c) Shear stress  

Fig. 3. Five element distorted patch test results comparing the built-in linear elastic isotropic material model with the developed 

Abaqus UMAT subroutine. 

 

The patch test is said to be passed when a stress equal to the applied stress is obtained and all other stresses are 

close to zero for all three cases. This is the case and the patch test is therefore passed for the linear elastic isotropic 

UMAT implementation.  
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2.5. Benchmark Problem: Three Point Bending 

A benchmark test case will also be considered in this paper as a second verification step. The benchmark problem 

chosen is actually one considered for composite materials and will be applied to the linear elastic material case as well 

to keep consistency through the paper. The benchmark problem is the NAFEMS R0031 laminated strip under three-

point bending [12], illustrated in Fig 4, with a length of 50mm, a width of 10mm and a thickness of 1mm. A constant 

load of 10N/mm is applied along the centre line of the strip and simple supports are defined at points A and B. An S8R 

shell element is used with a mesh of 10 elements along the length, 2 elements along the width and 1 element through 

the thickness as reported in the benchmark problem [12]. A mesh refinement study is therefore not conducted. The 

material properties for the composite material are provided in Table 1. Results considered for comparison are the 

strip deflection in the z-direction at point C (.�), maximum beam stress at point C (�

) and the interlaminar 

transverse shear stress at point D (�
�). The average value across all the nodes in the y-direction for points C and D are 

reported in this study. For all simulations an S8R (eight node quadratic reduced integration formulation) shell element 

is used with the composite parameter to define the different composite layers.  

 

 

 

 

 

 

 

Fig. 4. Geometric and composite material descriptions for the NAFEMS R0031 laminated strip under three point bending 

benchmark problem [redrawn from 12] 

 

Table 1. Material properties for the composite material used in the NAFEMS R0031 benchmark problem [12]. 

Property /00, 102, 302 /22, 104, 304 /44, 124, 324 

Elastic Modulus 100 GPa 5 GPa 5 GPa 

Poisson’s Ratio 0.4 0.3 0.3 

Shear Modulus 3 GPa 2 GPa 2 GPa 

 

For the linear elastic simulation the 1mm thickness of the laminate is assumed to be homogenous with an isotropic 

material with an elastic modulus of 100GPa and a Poisson’s ratio of 0.4.  

For the linear elastic material model considered we can determine the analytical deflection based on the strip 

geometry and applied conditions. From static mechanics the analytical deflection (.�) and maximum beam stress (�

) 

are calculated from [13]: 

.� = 567
89	: ; �

 = <=

: ; > = 


� ?@�                      (4) 

The results from this simulation are shown in Table 2 where the values are averaged across all the nodes of 

interest.  The linear elastic isotropic built-in and UMAT models are in good agreement with a 0.742% deviation from 

the analytical solution for the deflection and a 0.712% deviation from the analytical for the stress.  
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Table 2. Results from the three point bending strip for a linear elastic material. 

Model A4 at C B00 at C 

Analytical 0.675 mm 450.0 MPa 

Built-in 0.670 mm (0.742%) 453.205 MPa (0.712%) 

UMAT 0.670 mm (0.742%) 453.205 MPa (0.712%) 

 

3.3.3.3. Composite Material ModelsComposite Material ModelsComposite Material ModelsComposite Material Models    

The focus of this study is to illustrate the process of implementing a composite material model. For this reason a 

composite material model was chosen from literature based on the availability and ease of access to an already 

developed Abaqus UMAT.  

As a first step, the process outlined in the previous section is followed to develop an orthotropic material model, 

also used in the NAFEMS benchmark problem. 

 

3.1. Linear Elastic Orthotropic 

The linear elastic isotropic model from the previous section is expanded to an orthotropic model.  Based on 

Hooke’s Law as described in Eq (1) the constitutive relationship for an orthotropic material in matrix form is [11]: 
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     (5) 

The determinant of the stiffness matrix (G) is [11]: 

G = 
��EC�CE��C7�7C��E7�7E���CE�7C�E7
	E	C	7       (6) 

It should also be noted that in an orthotropic material that H�� ≠ H��  therefore the relationships for the Poisson’s 

ratios not defined are [11]: 

H�
 = 	C
	E H
�; H�
 = 	7

	E
H
�; H�� =

	7

	C
H��      (7) 

Following the methodology described in Sections 2.1 and 2.2 an Abaqus UMAT is developed for the orthotropic 

material model and is also shared in the Appendix.  

The patch test, described in Section 2.4 is simulated to verify the implementation using the composite material 

properties provided in Table 1. In addition fibers are orientated in the 0°direction (along the x direction) by means of 

the *ORIENTATION card in the CalculiX input file. The results from the patch test are shown in Fig 5 where the 

response for the built-in model and the Abaqus UMAT model correlate well. In addition, the expected strain for the 

uniaxial case in the 1 direction is 0.05% and for the uniaxial case in the 2 direction is 1%. In both cases the built-in and 

Abaqus UMAT models obtained the expected results. The Abaqus UMAT passes the patch test indicating the 

implementation of the orthotropic material model continuity equations is verified. The results from the benchmark 

problem are provided in Table 4 and discussed in Section 3.3. 
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(a) Unidirectional stress in the 1-direction  (b) Unidirectional stress in the 2-direction  (c) Shear stress  

Fig. 5. Five element distorted patch test results comparing the built-in linear elastic orthotropic material model with the 

developed Abaqus UMAT subroutine. 

3.2. Linde Material Model 

The Linde composite material model Abaqus UMAT is available for download on the Abaqus Examples Manual [14]. 

The Linde material model was developed for modelling of fiber metal laminates which includes fiber-reinforced epoxy 

layers with the model able to predict the fiber/matrix failure and interlaminar delamination [8,14]. For the purposes of 

this paper though, the different failure mechanisms aren’t evaluated.  

The initial fiber/epoxy matrix is assumed to be transversely isotropic such that the relations in Eq (5) reduces to 

��� = ���, �
� = �
�, �JJ = �KK, �88 =
LCC�LC7

�
,	with M� = M�, H
� = H
�, H�� = H��, F
� = F
� and F�� =

	C

��
��C7�
 

[11]. Applying the progressive damage relationships reduces the fourth order elasticity stiffness tensor (C) to [8,14]: 
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 (8) 

In the Abaqus UMAT subroutine, the stresses are evaluated according to Hooke’s Law as presented in Eq (1). In 

addition viscous regularisation is used to improve convergence [14]. This material model requires 14 input variables 

which are stored in PROPS with the material properties provided in Tables 2 and 3. In addition, the two damage 

variables (QR and QS) are stored as internal state variables in STATEV. This allows them to be easily outputted into 

the results file by simply including the SDV parameter to the output line for the *EL PRINT or *EL FILE cards in 

the CalculiX input file. Also remember to include the *DEPVAR card (see Section 2.3) indicating the use of 10 internal 

state variables as defined in the UMAT subroutine. If you forget this card CalculiX will output a core dump error when 

trying to run the simulation.  

Table 3. Additional material properties for the Linde material used in the patch test verification and NAFEMS R0031 

benchmark problem. 

Property Without Damage With Damage [8] 

Failure Stress in 11 direction �

R,T � 0 GPa,  �


R,U � 0 GPa 

���
R,T � 0 MPa, ���

R,U � 0 MPa 

 
�
R,V � 0 MPa 

�


R,T � 2.5	GPa, �



R,U � 2 GPa 

���
R,T � 50 MPa, ���

R,U � 150 MPa 

 
�
R,V � 50 MPa 

Fracture Energy -R � 0 J, -S � 0 J -R � 12.5 J, -S � 1 J 

Viscous Regularisation W � 0.0 W � 0.001 
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The Abaqus UMAT for the Linde material model is implemented into CalculiX as discussed in Section 2 and the 

patch test simulation is used to verify its implementation with the results presented in Fig 6. As this material model 

allows for the progressive fiber and matrix damage the simulation was conducted with and without damage. In the 

case of no damage, the damage related input parameters were set to zero as shown in Table 3.  

As the Linde UMAT was not developed in this study but was rather obtained from the Abaqus Examples Manual 

[14] it is assumed to have been fully verified and validated. The patch test in this case was used to verify the 

implementation into CalculiX and to test our understanding of the damage behaviour.  

(a) Unidirectional stress in the 1-direction  (b) Unidirectional stress in the 2-direction  (c) Shear stress  

Fig. 6. Five element distorted patch test results comparing the Linde material model with and without damage. 

 

The results for the uniaxial case in the 1 and 2 direction without damage are to be expected with a strain of 0.05% 

and 1%, respectively, based on Hooke’s Law and the transverse isotropic material assumption as discussed earlier. 

Once damage is allowed the fibers are not expected to break in the 1 direction as this is also the defined orientation of 

the fibers, but will rather increase the material stiffness. In the 2 direction it is noted that the material does 

experience matrix damage as is indicative by the non-linear response from approximately a 0.9% strain. This is 

expected as the uniform load is applied perpendicular to the fiber orientation which will likely result in the matrix 

being damaged due to fibers being pulled out.  

The implemented Linde UMAT passes the patch test, which indicates that it has been implemented correctly. The 

results from the benchmark problem are provided in Table 4 and discussed in Section 3.3. 

 

3.3. Benchmark Problem: Three Point Bending 

The benchmark problem geometry and set up was discussed in Section 2.5 and shown in Fig 4. The NAFEMS 

benchmark problem expected results are provided in Table 4 along with the results obtained from the Abaqus 

simulation [12].  

In the Abaqus simulation an orthotropic material model was used and as a first step the CalculiX built-in orthotropic 

material model and the developed Abaqus UMAT are implemented for comparison followed by the Linde material 

model (with and without damage). The results from these benchmark simulations are summarised in Table 4 with the 

contour plots provided in Fig 7.  

The built-in and orthotropic UMAT material model implementations compare well with the NAFEMS and Abaqus 

models with a 0.755% deviation in the obtained displacement, a 0.827% deviation in the bending stress. The obtained 

interlaminar stress deviates with 51.22% from the NAFEMS results; however this is a deviation on a small baseline (i.e. 

only a 2.12MPa difference).  

The Linde damage model was implemented with and without damage and both yielded the exact same results with 

the obtained displacement lower than expected (1.415%) and the bending stress slightly higher (0.929%). The 

interlaminar stress is also closer to that of the NAFEMS result with an error of 32.05%, again only differing by 

1.314MPa. It is clear that at this lower applied load of 10N/mm damage is not yet initiated in the Linde model. From 

the patch test it was noted that damage was only initiated from a load of approximately 45 MPa.  
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Fig. 7. Finite Element Analysis results for the maximum displacement at point C (row 1), maximum bending stress at point C (row 

2) and the interlaminar stress at point D (row 3) for the orthotropic UMAT (column 1), Linde without damage UMAT (column 2) and 

Linde with damage UMAT (column 3). Note that displacements are exaggerated. 

Table 4. Results from the three point bending strip for a linear elastic material. 

Model A4 at C B00 at C B04 at D    

NAFEMS 1.06 mm 684 MPa 4.1 MPa 

Abaqus – Orthotropic  1.06 mm (0%) 681 MPa (0.439%) 4.08 MPa (0.488%) 

CalculiX – Orthotropic (Built-in) 1.052 mm (0.755%) 689.659 MPa (0.827%) 6.2 MPa (51.22%) 

CalculiX – Orthotropic (UMAT) 1.052 mm (0.755%) 689.659 MPa (0.827%) 6.2 MPa (51.22%) 

CalculiX – Linde (No Damage) 1.045 mm (1.415%) 690.356 MPa (0.929%)  5.414 MPa (32.05%) 

CalculiX – Linde (With Damage) 1.045 mm (1.415%) 690.356 MPa (0.929%) 5.414 MPa (32.05%) 
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4.4.4.4. ConclusionConclusionConclusionConclusion    

This paper discussed the development and implementation of an Abaqus UMAT subroutine. The structure of an 

Abaqus UMAT and the process to interpret a set of continuity equations into the UMAT format was illustrated by 

means of a simple linear elastic isotropic material model. The implementation of an Abaqus UMAT into CalculiX by 

means of recompiling was then discussed along with how to call a UMAT in a CalculiX input file. A patch test was used 

to verify the UMAT development and implementation, followed by a second verification by means of a NAFEMS 

standard composite material benchmark problem.  

After the UMAT development and implementation procedure was established, the linear elastic isotropic material 

model was expanded to an orthotropic material model and the UMAT is provided as an Appendix. Finally, a composite 

material model with an already developed Abaqus UMAT was obtained from literature [14]. The Linde composite 

material model included fiber and matrix damage. Both the orthotropic and Linde UMAT material models passed the 

patch test. The orthotropic material model results compared well with the NAFEMS benchmark simulation with the 

exception of the interlaminar stress which deviated by 51.22% (2.12MPa). On the other hand the Linde material model 

without damage also compared well with an interlaminar stress error of 32.05% (1.314MPa). It was noted though that 

at the lower applied load of 10N/mm that the Linde model with and without damage provided the same results in 

both cases. This indicated that damage was not yet initiated which was expected as the patch test indicated that 

damage was only initiated at approximately 45 MPa.  

Future work will evaluate the progressive damage capability of composite material models in an open source 

environment.  
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Appendix A. Linear Elastic Orthotropic Abaqus UMAT (umat_ortho.f) 

C ==================================================================== 
C ORTHOTROPIC LINEAR ELASTIC UMAT EXAMPLE 
C ==================================================================== 
      SUBROUTINE UMAT_ORTHO(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL, 
     1 DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP, 
     2 PREDEF,DPRED,CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS, 
     3 COORDS,DROT,PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER, 
     4 KSPT,KSTEP,KINC) 
C 
C     INCLUDE ’ABA_PARAM.INC’ 
      IMPLICIT REAL*8(A-H,O-Z) 
C 
      CHARACTER*80 CMNAME 
C 
      DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 
     1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 
     2 PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 
     3 DFGRD0(3,3),DFGRD1(3,3) 
C 
      PARAMETER(ONE=1.D0, TWO=2.D0, THREE=3.D0) 
C ==================================================================== 
C OBTAIN AND DEFINE MATERIAL PROPERTIES 
C (TO BE DEFINED IN THE INPUT FILE) 
C EMOD11 = ELASTIC MODULUS 11 
C EMOD22 = ELASTIC MODULUS 22 
C EMOD33 = ELASTIC MODULUS 33 
C 
C ENU12 = POISSON'S RATIO 12 
C ENU13 = POISSON'S RATIO 13 
C ENU23 = POISSON'S RATIO 23 
C 
C EG12 = SHEAR MODULUS 12 
C EG13 = SHEAR MODULUS 13 
C EG23 = SHEAR MODULUS 23 
C ==================================================================== 
C PROPERTIES FROM INPUT FILE 
      EMOD11 = PROPS(1) 
      EMOD22 = PROPS(2) 
      EMOD33 = PROPS(3) 
      ENU12 = PROPS(4) 
      ENU13 = PROPS(5) 
      ENU23 = PROPS(6) 
      EG12 = PROPS(7) 
      EG13 = PROPS(8) 
      EG23 = PROPS(9) 
C 
C DETERMINE ADDITIONAL PROPERTIES 
      ENU21 = ENU12 * (EMOD22/EMOD11) 
      ENU31 = ENU13 * (EMOD33/EMOD11) 
      ENU32 = ENU23 * (EMOD33/EMOD22) 
C ====================================================================       
C DEFINE THE ELASTIC STIFFNESS MATRIX 
C ==================================================================== 
C CALCULATE THE DETERMINATE OF THE STIFFNESS MATRIX 
      DELTA = (ONE - (ENU12*ENU21) - (ENU23*ENU32) - (ENU13*ENU31) - 
     1        (TWO*ENU21*ENU32*ENU13))/(EMOD11*EMOD22*EMOD33) 
C        
C Entries for the principal stresses 
      DDSDDE(1,1) = (ONE - (ENU23*ENU32))/(EMOD22*EMOD33*DELTA) 
      DDSDDE(2,2) = (ONE - (ENU13*ENU31))/(EMOD11*EMOD33*DELTA) 
      DDSDDE(3,3) = (ONE - (ENU12*ENU21))/(EMOD11*EMOD22*DELTA) 
C 
      DDSDDE(1,2) = (ENU21 + (ENU23*ENU31))/(EMOD22*EMOD33*DELTA) 
      DDSDDE(1,3) = (ENU31 + (ENU21*ENU32))/(EMOD22*EMOD33*DELTA) 
      DDSDDE(2,1) = (ENU21 + (ENU23*ENU31))/(EMOD22*EMOD33*DELTA) 
      DDSDDE(2,3) = (ENU32 + (ENU12*ENU31))/(EMOD11*EMOD33*DELTA) 
      DDSDDE(3,1) = (ENU31 + (ENU21*ENU32))/(EMOD22*EMOD33*DELTA) 
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      DDSDDE(3,2) = (ENU32 + (ENU12*ENU31))/(EMOD11*EMOD33*DELTA) 
C       
C Entries for the shear stresses 
      DDSDDE(4,4) = EG12 
      DDSDDE(5,5) = EG13 
      DDSDDE(6,6) = EG23 
C ==================================================================== 
C CALCULATE THE STRESS USING HOOKES LAW 
C ==================================================================== 
      DO K1 = 1, NTENS 
        DO K2 = 1, NTENS 
          STRESS(K2) = STRESS(K2) + DDSDDE(K2,K1) * DSTRAN(K1) 
        END DO 
      END DO 
C     
      RETURN 
      END 

 


