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Abstract— Online learning of a robot’s inverse dynamics
model for trajectory tracking necessitates an interaction be-
tween the robot and its environment to collect training data.
This is challenging for physical robots in the real world,
especially for humanoids and manipulators due to their large
and high dimensional state and action spaces, as a large amount
of data must be collected over time. This can put the robot
in danger when learning tabula rasa and can also be a time-
intensive process especially in a multi-robot setting, where
each robot is learning its model from scratch. We propose
accelerating learning of the inverse dynamics model for trajec-
tory tracking tasks in this multi-robot setting using knowledge
transfer, where robots share and re-use data collected by pre-
existing robots, in order to speed up learning for new robots.
We propose a scheme for collecting a sample of correspondences
from the robots for training transfer models, and demonstrate,
in simulations, the benefit of knowledge transfer in accelerating
online learning of the inverse dynamics model between several
robots, including between a low-cost Interbotix PhantomX
Pincher arm, and a more expensive and relatively heavier Kuka
youBot arm. We show that knowledge transfer can save up to
63% of training time of the youBot arm compared to learning
from scratch, and about 58% for the lighter Pincher arm.

I. INTRODUCTION
To control a robot manipulator to track a specified tra-

jectory, model-based control offers many advantages over
traditional PID-based control, including potentially higher
tracking accuracy, lower energy consumption and lower feed-
back gains – which results in more compliant and reactive
control [1]. The model is used to predict, for example,
the joint torques given the desired trajectory in terms of
joint positions, velocities and accelerations. However, the
performance of model-based control relies heavily on the
accuracy of the models used in capturing the dynamics of the
real system under control and its environment. The dynamics
model can be developed from first principles in mechanics,
based on the Rigid Body Dynamics (RBD) framework [2],
resulting in a parametric model, with parameters such as the
inertial parameters of link mass, center of mass and moments
of inertia, and friction parameters, that must be estimated
precisely.

In practice, however, it is difficult to obtain a sufficiently
accurate dynamics model for many modern robotic systems
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Fig. 1: Example of knowledge transfer from a low-cost
robot to a more expensive and heavier robot. The red arrow
indicates a point that is challenging for the robot to reach at
high speeds.

based on the parametric RBD model, due to unmodeled non-
linearities such as friction, backlash and actuator dynamics.
Thus, several assumptions are made to simplify the process,
such as rigidity of links or that friction has a simple analytical
form, leading to inaccuracies in the model. The inaccurate
model can lead to large tracking errors, which must be
compensated for using high-gain PID control. As high-gain
control would turn the robot into a danger for its environment
in reducing compliance, more accurate models are needed.

Learning robot models for control based on regression
techniques is typically employed as an alternative in such
cases where the physical parameters of the robot are un-
known or inaccurate. Unknown non-linearities can be taken
into account as the model is estimated directly from mea-
sured data [3]. Furthermore, as learning-based techniques are
capable of modeling complex systems, modern robots can be
designed to suit various demands and environments, rather
than to simplify modeling. As a result, learning approaches
have attracted much interest recently.

Despite the widespread adoption of state-of-the-art ma-
chine learning techniques to robotics, learning for real-time
physical systems is still a challenging problem, mainly due
to the large and high-dimensional state and action spaces
of humanoids and manipulators. Furthermore, their physical
embodiment allows only a limited time for collecting training
data. For example, real-time learning of the inverse dynamics
model for manipulator trajectory tracking tasks necessitates
an interaction between the robot and its environment to
collect training samples along the desired trajectory over
many trials. This can be time-consuming for manipulators
and humanoids.

This is worse when we have multiple, kinematically
and dynamically different robots, that are learning models



through the same laborious process. Thus, in this paper, we
aim to accelerate learning for a new robot by re-using data
generated by a pre-existing robot for the same task, as an
additional data set for the new robot, as illustrated in Fig.
1. By re-using data generated by other robots as a means
of knowledge transfer we show that learning for the new
robot will be biased towards relevant spaces such that fewer
trials of interacting with the environment are needed, thus
improving the learning speed.

We propose a scheme for generating training data online
from the robots, which we use to learn models by which
the knowledge is transferred between them, and, in contrast
to previous work in transfer learning for trajectory track-
ing, we demonstrate the benefit of knowledge transfer for
accelerating online learning of the inverse dynamics model.
We analyze learning for several different robots and discuss
various aspects of knowledge transfer between the robots.

II. RELATED WORK

A. Model Learning for Control

In this paper, our focus is on model-based control for robot
manipulators, specifically inverse dynamics for trajectory
control tasks. The inverse dynamics model is usually learned
using state-of-the-art non-parametric regression techniques.
Real-time online learning of this model allows adaptation to
changes in the robot dynamics, load, or actuators, and can be
broadly broken down into two categories: global methods and
local methods. Global methods model a regression function
that is defined globally in input space; whereas local methods
seek to partition the input space into smaller regions and
define a function only valid locally for each region. Examples
of global methods include those that make use of the entire
available data set, such as those based on deep learning
methods [4], random features and Ridge Regression [5], and
methods that make use of a sparse set representing the input
space [6], [7], [8].

Local methods are inspired by the idea of locally weighted
learning (LWL) for control [9] and include techniques that
build locally linear models such as Locally Weighted Projec-
tion Regression (LWPR) [10], locally non-linear models such
as Local Gaussian Processes (LGP) [11] and Local Gaussian
Regression (LGR) [12], and Local online Support Vector
Regression (LoSVR) [13]. Drifting Gaussian Processes is
also a local model, specifically aimed at streaming data [14].

Learning using any of the techniques presented above
requires that the robot is first operated in order to collect
samples, and this can be time-consuming for manipulators
and humanoids. The next section reviews techniques that can
be used to accelerate learning under various circumstances.

B. Accelerating Model Learning

The learning algorithms presented above disregard any
prior knowledge about the robot system that may be avail-
able, such as the potentially inaccurate RBD model, or some
parts of it (e.g., gravity component), and so begin learning
from scratch. One recent technique for accelerating learning
is marrying the physics-based RBD model (if available)

with non-parametric learning models into a semi-parametric
model. The benefits include faster learning speeds, higher
accuracy, and better generalization [15]. The parametric RBD
model component acts as prior knowledge and is defined over
the entire state space, and the non-parametric component
models the non-linearities and adapts to changes online.

Examples include techniques that incorporate the para-
metric RBD model into the non-parametric part as a mean
function [15], kernel function [16], and those that use first
order approximations of the RBD equation to initialize the
local models of the LWPR model [17]. Other techniques
instead model the inverse dynamics error (or residual), using
random features and Recursive Regularized Least Squares
(RRLS) [18], or as a constant offset that is continuously
adapted via online gradient descent to minimize the error
[19].

Another set of approaches for accelerating learning of
inverse dynamics, which is of particular interest to our work,
is based on the concept of transfer learning [20], where
knowledge gained while solving a task in one domain is
leveraged to help improve learning a new task in another
domain. Transfer learning approaches for robotics can be
broadly broken down into two categories: inter-task transfer
and inter-robot transfer.

In inter-task transfer, a robot leverages knowledge of
previous tasks to speed up learning a new related task.
Our work falls under inter-robot transfer, where a data set
generated by one robot (a source robot) performing a task is
used to aid learning of the same task by a new robot (a target
robot). In general the source and target robots may have
different kinematic and dynamic properties, so the source
data must be mapped into the domain of the target robot
for it to be useful. Not much work dealing with this case
exists for trajectory tracking problems and the majority of
those available model this mapping using manifold alignment
techniques [24].

A manifold alignment based approach has been used to
show the possibility of transfer for inverse dynamics between
two simulated robot manipulators [25]. In [26], they argued
that an optimal map between dynamic systems is a dynamic
map, and they applied their proposed dynamic map on
planar arms and two different quadrotor platforms, where the
systems were modeled as single-input, single-output (SISO)
systems, which has not been shown to generalize to high-
dimensional manipulators.

In some cases it has been shown that learning can be accel-
erated by initializing the model with random data generated
through a motor babbling process [28], [29]. Here, the robot
tracks random joint trajectories using a PID controller while
the model is updated using the generated data.

In this work, we investigate the acceleration of learning
the inverse dynamics model for trajectory tracking using
inter-robot transfer. Based on our review this approach has
not received much attention. In [25] they demonstrated
the possibility of accelerating learning between two robots.
However, their aim was to show the soundness of transfer,
and so they assumed that analytical models of the robots



are available for data collection. This assumption is limiting,
since the purpose of learning is to obtain such models from
robot data.

In a realistic scenario, an approach for collecting training
data from robots without full knowledge of the robot models
is needed. The contributions of this paper are thus i) an
approach which leverages motor babbling techniques to
generate such training data from the robots without assuming
knowledge of robot models, and ii) a demonstration of the
benefit of transfer between several robots with different
kinematic and dynamic properties for trajectory tracking
tasks.

Other work in improving learning of dynamic models us-
ing knowledge transfer exists. In particular, approaches based
upon ideas from adaptive control have received considerable
attention recently, including work that transfers knowledge
from a simulation to the physical system [21] and between
systems with different sizes and dynamic properties [22],
[23]. Although these approaches do not rely on correspon-
dences between systems, they assume that the systems have
similar state and/or action spaces. In contrast, our approach
is applicable to the general case of systems with different
state and action spaces.

III. PROBLEM STATEMENT

The inverse dynamics model of a robot manipulator relates
the joint positions q, velocities q̇, and accelerations q̈ with
the corresponding forces and torques τττ required to follow a
specified joint-space trajectory; and can be described analyt-
ically using the well-known Rigid Body Dynamics formula

τττ = M(q)q̈ + C(q, q̇)q̇ + g(q), (1)

where M, C and g are the inertial, Coriolis, and gravita-
tional terms, respectively. The feed-forward torque τττff for
the current desired state qd, q̇d, q̈d is predicted using Eq.
1, while a feedback torque τττfb, computed using a feedback
controller (e.g. a simple PID controller), is used to stabilize
the system. Therefore the total torque applied to the robot is
τττa = τττff + τττfb.

Unfortunately, this formulation is limited when used to
control modern robotics systems, due to issues discussed in
Section I. Thus, learning the model from data generated by
the robot, using non-parametric machine learning techniques
has emerged as an alternative. Here, the problem is reduced
to a standard supervised learning setting

τττ = D(q̈, q̇,q) + ε, (2)

where we seek to learn the dynamic model D(·) from
input-output pairs {(q, q̇, q̈), τττ} generated by the robot, and
ε ∼ N (0, σ2I) is the output noise modeled as Gaussian noise
with zero mean and variance σ2.

Due to the large state and action spaces of most indus-
trial manipulators, learning this model is done online along
specified desired trajectories, resulting in a trajectory-specific
model, because the state space is too large to explore entirely.
For learning to be possible, an assumption is typically made

that a PID controller exists, that is tuned to roughly track the
desired trajectories.

Learning in this online setting is as follows. The torque
prediction τττff for the current desired state qd, q̇d, q̈d, pre-
dicted using the current learned model D, with the corre-
sponding stabilizing feedback torque τττfb, is applied to the
robot, which results in the actual state qa, q̇a, q̈a. The data
generated in each time step is immediately used to update the
parameters of the model D. In the early stages of learning,
when the learned model is still poor, the predictions are
inaccurate and the system relies heavily on the feedback
controller, which may not be optimally tuned. This causes the
actual states to differ from the desired states, and eventually,
after many trials, the model will improve and generalize to
the desired states of the trajectory.

When a new robot is available to learn, it must go through
the same laborious process to collect training data. Our
hypothesis is that, if its model is initialized offline, with
data generated by a pre-existing robot while tracking the
same trajectory (knowledge gained by the old robot), it may
learn to track the trajectory in fewer trials. This may reduce
training time of the new robot considerably, and is beneficial
particularly in cases where operating the new robot is more
expensive than operating the old robot. Next we outline our
proposed knowledge transfer approach to improve learning
of inverse dynamics for trajectory control.

IV. KNOWLEDGE TRANSFER FOR INVERSE DYNAMICS

We employ inter-robot transfer to improve learning to
track a specified trajectory for target robot learner Ωt by
re-using data generated from the experience of source robot
learner Ωs. To achieve this, we learn a mapping function
f : χχχs 7→ χχχt, for mapping samples from the domain χχχs

of the source robot to the domain χχχt of the target robot.
We assume training data Xs ⊂ χχχs and Xt ⊂ χχχt with
correspondences, from which to learn f . This data set is
assumed to be generated by the source and target robots
respectively (see Section IV-A). In our case of transfer for
inverse dynamics, each data sample xxxij = {qqqa, q̇qqa, q̈qqa, τττa},
where j is either s or t for source data and target data
respectively, i = 1 : n, and n is the number of samples
in Xs and Xt.

We also assume access to Ωs’s model from which to gen-
erate source trajectory data ξξξs ∈ <m×(4ds), where ds is Ωs’s
DoF and m is the number of samples in the experience data.
Similar to Xs, ξξξs also contains joint positions, velocities,
accelerations and torques associated with the trajectory. Then
we use the mapping f to transfer the source trajectory ξξξs into
the domain of Ωt to obtain the estimated target trajectory
data ξ̂ξξt ∈ <m×(4dt), where dt is Ωt’s DoF. Finally, ξ̂ξξt
is used to initialize Ωt’s model offline, and the model is
subsequently updated online as Ωt learns to track the desired
trajectory.

Figure 2 illustrates our transfer learning-based control
framework described above. We discuss the process of gen-
erating correspondences from the robots in Section IV-A and
models for learning f from this sample in Section IV-B.
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Fig. 2: Proposed transfer learning-based control framework.

A. Collecting Correspondences

To train the transfer model f , we must collect correspon-
dence data, Xs and Xt, from the robots. This means the
robots must be controlled to generate similar movements, in
order to identify correspondences. In [25] the authors used
analytical controllers of the robots to track similar trajectories
with the same speed, and used cubic spline interpolation
in the joint and torque spaces to obtain correspondences.
We follow the same procedure; however, we do not assume
knowledge of analytical controllers, due to difficulties in
accurately determining such controllers in practice as men-
tioned in Section I. Thus, we employ PID controllers to track
similar trajectories with both robots.

We define correspondences in the task space of the robots,
because that space is robot-agnostic, and also allows us to
easily specify trajectories. To obtain the correspondence data
in joint and torque spaces, we assume kinematic models of
the robots are available and use them to map the trajectories
into the joint space, and use a PID controller to track them.
We generate random straight-line trajectories of random
length in the vicinity (in task space) of the trajectories to
be learned and track the same trajectories with both robots
with the same speed. Thus, two data points between the
robots along the straight-line trajectories are paired together
as correspondences if they share the same time step.

In the general case, where the robots have non-overlapping
task spaces, due to differences in kinematics, corresponding
trajectories of the target robot are obtained by locating source
robot trajectories in the reference frame of the target robot.
This is easily achieved by aligning their task spaces, using the
transformation between their specified desired trajectories1.
This kinematic retargeting approach is widely employed in
computer graphics and robotics, where a trajectory of one
kinematic embodiment is projected onto the space of another
kinematically different embodiment [27].

We assume both robots have PID controllers that are
roughly tuned, with parameters that are not necessarily opti-
mal. This assumption is reasonable since learning tabula rasa

1We assume the desired trajectories of both robots are already specified,
as is generally the case in trajectory tracking problems.
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Fig. 3: Our framework for collecting correspondence data.

also makes the same assumption. Our experiments demon-
strate that correspondence data generated in this manner is
sufficient to learn transfer models and accelerate learning,
where the PID parameters we used were not optimally tuned.

Fig. 3 shows our framework for collecting correspon-
dences, where the same straight-line random trajectories have
already been mapped into the joint spaces of the robots using
corresponding inverse kinematics (IK) models.

B. Learning the Transfer Model

In this section we describe learning the transfer model f
from a sample of correspondences generated from the robots
as described in Section IV-A. We are provided with source
domain data Xs = {xxxis}ni=1 and target domain data Xt =
{xxxit}ni=1, where xxxs ∈ <4ds and xxxt ∈ <4dt , and in general
ds 6= dt due to the robots potentially having differing DoFs.
The aim is to learn the mapping f that we can use to transfer
source domain data into the target domain, in such a way
that is useful to the target robot. As previously mentioned
in Section II-B, this problem can be solved using manifold
alignment techniques. Manifold alignment techniques allow
for knowledge transfer between two seemingly disparate
data sets, by aligning their underlying manifolds [24]. This
can be accomplished using two general methods: two-step
alignment methods and one-step alignment methods.

In the first step of a two-step alignment method, latent
representations of the source and target data are found inde-
pendently in a lower dimensional space using dimensionality
reduction. In the second step, a transformation between the
two is computed by aligning them in the latent space. A one-
step alignment method on the other hand combines the two
steps into one single step, where the data sets are projected
into a shared latent space. The output of this process is two
mappings that map the data sets into the shared latent space.
For knowledge transfer to be possible in both methods the
mappings between the original space and the latent space
must be bijective, as the inverses are needed to map back to
the original spaces.

Examples of the two-step approach in robotics include
combining Principal Component Analysis (PCA) and Pro-
crustes Analysis (PA) [25], [30], [31]. Examples of the one-
step approach include Unsupervised Manifold Alignment
(UMA) [24], shared Autoencoders [32] and shared Gaussian
Process Latent Variable Models [33]. All these approaches



have the property that the mappings between the spaces are
guaranteed to be bijective.

Any of the approaches discussed above could be used
in our framework to learn the transfer models. In our
experiments the simple combination of PCA and PA proved
sufficient, and enables learning from very few data points,
and we compared it against the combination of PCA and the
non-linear extension of PA, Local Procrustes Analysis (LPA)
[30]. By applying PCA, we assume a linear relationship
between the original data spaces and the corresponding latent
representations. This is reasonable in our case because the
training data is collected in the vicinity of the tasks to
be transferred, and therefore the latent representations are
expected to lie in relatively simple manifolds. Furthermore,
the linear mappings of PCA are guaranteed to be bijective.

Procrustes Analysis Learning the mapping f with PCA
and PA is as follows. First the data is preprocessed by
subtracting the mean and whitening it, and then projected
into a latent space of lower dimensionality d to obtain
latent manifold representations sss ∈ Ms and ttt ∈ Mt, using
sss = Bs(xxxs − ωωωs) and ttt = Bt(xxxt − ωωωt). The values
ωωωs = E{Xs} and ωωωt = E{Xt} are the means of the data,
where E{·} denotes the expectation operator. Matrices Bs

and Bt are obtained such that the variances in Xs and Xt

are maximized, respectively, and only the first d columns
that maximize the variances are used to obtain the latent
representations Ms and Mt.

The alignment function is then modeled as a linear map-
ping fd : Ms 7→ Mt in the latent space, with fd(sss) = Asss
where Ad×d is a transformation matrix. The expression for A
was derived in [25], and is given as A = Σ−1

ss Σts, where Σss

is the covariance matrix of the source matrix Ms and Σts

is the covariance between the source and target matrices Ms

and Mt. The reader is referred to [25] for a full derivation.
A new point sss? = Bs(xxx

?
s−ωωωs) in the source manifold can

then be mapped to the target manifold using x̂xx?t = Bt
#Asss?+

ωωωt, where x̂xx?t is the transferred point and B# is the Moore-
Penrose inverse of B.

Local Procrustes Analysis LPA extends PA to handle
non-linear mappings, by approximating a global non-linear
manifold alignment with locally linear functions [30]. To
achieve this, LPA first clusters the two data sets into K local
clusters. Then a linear mapping for each cluster is computed
using PA. A new data point from the source domain can then
be mapped to the target domain by a weighted sum of the
linear mappings.

In LPA, clustering is typically performed in the input
space of one of the domains (the source in our experiments)
using Gaussian Mixture Modeling (GMM), and the clusters
are transferred to the target domain using correspondence
information. Clustering in input space ensures we obtain
efficient clusters, because the input and output spaces of the
data sets are expected to be correlated. In our case the state
of the robot {qqqa, q̇qqa} is correlated with the applied torque
τττa through dynamics of the robot.

We slightly modify LPA in this paper in order to combine
it with PCA, such that it can map between data sets of

different dimensionality. Instead of applying PCA globally
in the first step, as with PA, and then clustering in the latent
space, we cluster the data in the state space of the original
source data (i.e. {qqqa, q̇qqa} ∈ <2ds ) and apply PCA locally in
each cluster, resulting in a PCA mixture model, capable of
non-linear dimensionality reduction. We also modify the EM
initialization scheme in [30], where we apply PCA and PA
in each cluster. This introduces an extra parameter d which
is the dimensionality of the latent space, which is kept the
same for all clusters. The rest of the training procedure is the
same and the reader is referred to [30] for more information
about training LPA.

V. EXPERIMENTS

A. Experimental Setup

We conducted experiments in simulation to transfer knowl-
edge between the following robots: i) a 5-DoF arm of the
Kuka youBot, ii) a 4-DoF Interbotix PhantomX Pincher
arm (see Fig. 1), iii) a 3-DoF arm, and iv) a 2-link planar
arm. All robots were simulated in V-REP2. The robots
have different kinematic and dynamic properties3, including
different number of DoFs. The Pincher, 3-DoF and the 2-link
arms are smaller, lighter and have low torque ratings on their
joints – limited to 2.5 Nm for Pincher and 40 Nm for the
others, whereas the youBot arm is bigger, heavier and has a
relatively higher torque rating on its joints – limited to 100
Nm.

As benchmark tasks, the robots learn to track the position
of two ‘star-like’ figures placed at different locations and
orientations in the task spaces of the robots, as shown in
Fig. 1. This ‘star-like’ trajectory has components of high
acceleration, which makes tracking difficult, and is widely
used as a benchmark in robot trajectory tracking control
problems [34]. Each ‘star’ trajectory is composed of 7
straight lines starting from the center and pointing outwards.

The robots are required to follow each straight line starting
from the center, going outwards and returning before follow-
ing the next straight line. Each straight line is tracked for 1.2
seconds4 in total (0.6 seconds from the center to the end and
another 0.6 seconds back). Therefore one trial of tracking
each full trajectory takes 8.4 seconds. The two trajectories
are denoted ‘Star 1’ and ‘Star 2’ as shown in Fig. 1.

We performed several knowledge transfer experiments.
Firstly, we transfer trajectories between the Pincher and
the youBot arms, where we learn the transfer mappings
using Procrustes Analysis and Local Procrustes Analysis,
and compared this against learning from scratch and learning
with a randomly initialized model. Secondly, to analyze
the peformance of our knowledge transfer method between
robots with very different morphologies, we transfer between
the youBot, 3-DoF and 2-link arms.

We employ LWPR [10] for learning the inverse dynamics
model. We tuned hyper-parameters init D and init alpha

2http://www.coppeliarobotics.com/
3We used default properties in V-REP 3.3.2 for youBot and Pincher, and

the 3-DoF and 2-link planar robots were custom made.
4This is simulated time in V-REP.



PID gains Pincher youBot 3-DoF 2-link

P 5 100 5 5
I 0.01 0.01 0.01 0.01
D 0.1 2.0 0.1 0.1

LWPR params. Pincher youBot 3-DoF 2-link

init D 30 30 30 30
init alpha 1.1 0.01 0.001 0.001

TABLE I: Learning parameters for all robots.
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Fig. 4: Accelerating ‘Star 1’ learning.

using a grid strategy, following the guideline from the LWPR
software package5, and the parameter values used are shown
in Table I. The PID gains used for each robot joint are also
shown in Table I. The learning procedure is as outlined in
Section III. Predictions and model updates are done at 100Hz
for all robots.

B. Transfer for Inverse Dynamics Tracking

The aim of this experiment is to evaluate our knowledge
transfer approach and to investigate the benefit of knowl-
edge transfer in accelerating online learning of the inverse
dynamics model for trajectory tracking. The training data
was generated as outlined in Section IV-A. We used random
straight-line trajectories of random length and of duration 0.6
seconds each for motor babbling, resulting in the trajectories
being tracked at different speeds. The robots are controlled
with PID controllers to track these trajectories roughly in
the vicinity of ‘Star 1’ and ‘Star 2’ trajectories, for about
7 seconds per trajectory. This means each motor babbling
session lasts for about 14 seconds in total per robot, resulting
in samples of correspondences with 1464 data points per
robot.

The PID parameters defined in the previous section were
tuned roughly such that learning to track both Star trajecto-
ries is possible, and were not necessarily optimal. In the first
experiment we transfer knowledge between the youBot and
the Pincher robots. The dimension of the youBot data is 20
({qqqa, q̇qqa, q̈qqa, τττa} for 5 DoFs), and that of the Pincher arm is
16 (same variables for 4 DoFs). We learned transfer models
from the 1464 samples of correspondences from both robots,
using PA and LPA, both combined with PCA for matching
the dimensions of the data sets (see Section IV-B). We
found the latent dimension d = 16 to be sufficient for both
PA and LPA. Lower values of d lead to decreased transfer
performance and values less than 10 barely transferred any
useful knowledge. Figure 4 and 5 show results for initializing

5http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr
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Fig. 5: Accelerating ‘Star 2’ learning.

the target model offline with knowledge transfer and random
initialization, for ‘Star 1’ and ‘Star 2’ respectively, compared
to learning from scratch (denoted ‘uninitialized’).

Learning from scratch Both robots successfully learn
to track the trajectories from scratch over time, measured
in terms of number of trials, indicated by the decreasing
tracking errors. The smaller and lighter Pincher learns signif-
icantly faster and better, as it achieves lower tracking errors
and converges in fewer trials (also starts with lower tracking
errors). The youBot achieves slightly larger tracking errors,
and converges slowly, especially for ‘Star 2’ where it requires
more than 20 trials. The youBot arm requires larger PID
gains due to its heavier components requiring larger torques
to move, resulting in large feedback torques, especially in
the first few trials where the learned model is still poor.

Random initialization We also separately initialize learn-
ing with random data generated in the motor babbling session
as a benchmark, denoted ‘random’, as it has previously
been shown to accelerate learning [28], [29]. This only
accelerates learning in certain cases, particularly for tasks
that are simple to learn. It fails to accelerate convergence of
the more difficult ‘Star 2’ trajectory for youBot, and ‘Star 1’
for Pincher.

Knowledge transfer We transferred to both robots, where
the robots exchange roles of being source and target. We
took the data generated by the source robot when learning to
track from scratch and transferred it to the target robot. This
provided us with additional data (12600 points for 15 trials
and 16800 for 20 trials) that we use to initialize the target
robot model. We denote initializing with transfer ‘transfer-
PA’ and ‘transfer-LPA’ for PA and LPA respectively.

Knowledge transfer accelerates learning considerably in
most cases. In particular, when the youBot is the target
learning ‘Star 2’ (see Fig. 5a), where learning tabula rasa
and random initialization failed to converge within 20 trials,
transfer converged within 5 trials. Both transfer models
perform well, with PA slightly better than LPA in the early
trials of ‘Star 1’. This indicates that linear mappings are
sufficient to transfer useful knowledge in this case.

Figure 6a shows example end-effector trajectories for
random initialization and transfer in the first learning trial
of the youBot learning ‘Star 2’. We observe that for the
most part transfer leads to stable and safe learning already
in the first trial. This is due to transfer biasing exploration
into relevant spaces near the desired trajectory, thus resulting



−0.4

−0.2

−0.2
−0.1

0
0.1

0.2

0.4

X-axis (m)
Y-axis (m)

Z
-a

xi
s

(m
)

Desired
random
transfer

(a) First trial for ‘Star 2’.

0 200 400 600 800

0

1

2

samples

jo
in

t
po

si
tio

n
(r

ad
)

(b) First 4 joints of youBot.

Fig. 6: Example transfer results for youBot.

in more efficient exploration.
In Fig. 6b, we show an example of mapping the joints

of the Pincher into the youBot domain using PA, where
the solid lines are youBot joints and the dashed lines are
transferred Pincher joints. We can see that although the
linearly transferred Pincher joints are not exactly aligned
with the target joints, they are distributed similarly, making
it possible for learning to be accelerated.

Figure 7 shows results for the second experiment, where
we transfer knowledge between the youBot and the 3-DoF
robot. The setup is the same as the previous experiment.
For brevity we only show results for the difficult ‘Star 2’
trajectory, however the results also generalize to ‘Star 1’.
The dimensionality of the 3-DoF arm data is 12, and the
latent dimension d = 7 was used. The 3-DoF robot is also
able to learn to track the trajectories faster than the youBot
as it has lighter components, and also because it has lower
dimensional state and action spaces. Random initialization is
also able to accelerate convergence in this case, because of
the lower dimensionality of the spaces, which makes learning
easier.

In Fig. 7a we observe that knowledge transfer from
the much lower dimensional, and also kinematically very
different, 3-DoF arm to the higher dimensional youBot arm
is less efficient compared to transfer from the 4-DoF Pincher
arm, as the lower dimensional arm has fewer DoFs compared
to the redundant higher dimensional arm. However, transfer
is still able to accelerate convergence of the higher DoF
youBot arm compared to random initialization and learning
from scratch. Transfer to the lower dimensional 3-DoF arm
from the youBot arm also accelerates learning, although the
benefit is not as much as it is already simpler for the lower
dimensional arm to learn.

Figure 8 shows results for the last experiment, where we
transfer between the youBot and the 2-link arm. In this
experiment, the trajectories are in a 2D plane, as the task
space of the 2-link robot is 2D, and thus is incapable of
transferring any useful knowledge to the youBot arm for
trajectories in 3D task spaces. We also sped up the tasks
to 0.5 seconds per straight line trajectory, making it harder
for the 2-link robot to learn. The dimensionality of the 2-link
data is 8 and the latent dimension d = 5 was used.

Transferring to the youBot from a simple 2-link is not
effective (see Fig. 8a), as the initial jump in learning is small,
however learning for the youBot in 2D is already too easy
for transfer to be required. On the other hand, transfer from
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Fig. 7: youBot and 3-DoF transfer.
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Fig. 8: Transfer with a 2-link robot.

the youBot to the 2-link (see Fig. 8b) accelerates learning,
although learning for the simple 2-link robot is already easy.

In the general case of robots learning to track multiple
trajectories, transfer saves more time because the robots need
only to generate motor babbling data once in the beginning.
Table II shows results demonstrating the benefit of transfer
between the Pincher and youBot, where (Value1,Value2)
indicate number of trials to converge for ‘Star 1’ and ‘Star 2’
respectively, and the values in brackets indicate the total time
for learning to track both trajectories. Note that for random
and transfer the total time includes 14 seconds for motor
babbling.

For instance, in the case of transferring to the youBot,
learning from scratch for ‘Star 1’ converges within 9 trials
(75.6 seconds, 8.4 seconds per trial) and with knowledge
transfer it converges within 4 trials (33.6 seconds). Com-
bining with the results of ‘Star 2’, 20 trials (168 seconds)
for learning from scratch and 5 trials (42 seconds) with
transfer, and considering the 14 seconds for motor babbling,
knowledge transfer saves up to 63.2% of training time in
total, whereas random initialization only saves up to 4.6%.
For the Pincher, the benefit of transfer is slightly less, at
58.7%, while that of random initialization is 15.8%. This
is due to the fact that learning for the Pincher is simpler.
Note, however, that the benefit of knowledge transfer would
increase when more trajectories must be learned in the same
task space, since transfer models need only to be learned
once.

VI. CONCLUSIONS

This paper proposed a knowledge transfer scheme for
accelerating online learning of the inverse dynamics model
for trajectory tracking, where PID controllers were used to
generate training data from the robots for learning knowledge
transfer models. We demonstrated the benefit of transfer



Setting Pincher [time (s)] youBot [time (s)]

Scratch (12,9) [176.4] (9,20) [243.6]

Random
Accel.

(12,4) [148.4] (6,20) [232.4]
15.8% 4.6%

Transfer
Accel.

(3,4) [72.8] (4,5) [89.6]
58.7%58.7%58.7% 63.2%63.2%63.2%

TABLE II: Analysis of the benefit of knowledge transfer.
Accel. represents the percent gain by accelerating learning
using the corresponding method. (Value1,Value2) indicate
number of trials to converge for ‘Star 1’ and ‘Star 2’
respectively, and [time] the total time for both.

on several robots with different kinematic and dynamic
properties, and showed that transfer biases exploration into
relevant spaces, which leads to accelerated learning and
safe exploration from the start to the end of the learning
process. We also demonstrated that our approach is capable
of learning transfer models between arms with very different
kinematic structures, as shown by learning transfer models
between a 5-DoF redundant arm and 2-link arm.

Since our experiments were conducted in simulation,
future work will look into validating our results on real
robots, as physics based simulators are not guaranteed to
represent all complex dynamics of the real world. Also,
we will look into employing several other model learning
techniques reviewed in Section II-A, as this will ensure that
the conclusions drawn are not biased by a specific model
learning technique.
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