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The sensitivity of a pressurised water distribution system (WDS) to state parameter variations is studied. A novel local regional
sensitivity analysis (LRSA) approach is introduced which applies the same change to a collection of parameters, called a region.
For example, sensitivity to suburbs can be studied. General analytical (using algebraic methods) results are derived. They show
how sensible conclusions arise from LRSA and state this dependence of the WDS on regions for the first time. For most cases,
the WDS is 1.852–2 times more sensitive to pipe roughness coefficients than to pipe lengths. In most cases, when certain pipes do
not have minor losses, the WDS is 4.871–5.333 times more sensitive to pipe diameters than to pipe lengths. Hence, the WDS is
the most sensitive to pipe diameters, medium sensitive to pipe roughness coefficients, and least sensitive to pipe lengths. For most
cases, when all reservoir and tank elevations (and heads) remain the same, changes of other elevations do not change flow rates and
change the pressures in a simple additive way. In most cases, when all the reservoir water surface elevations are changed together,
the flow rates remain unchanged, and the pressures change in a simple additive way.

1. Introduction

The study of sensitivity analysis [1, 2], employed here, is con-
cerned with the following:

(1) Forward use: how much the outputs depend on each
or some of the inputs.

(2) Inverse use: how uncertainty in the outputs can be
apportioned to different sources of uncertainty in the
inputs.

Sensitivity analysis may be performed for a variety of reasons,
including exploration of model response to specific inputs (a
forward use) or identification of keymodel inputs (an inverse
use).The former can be useful for verification or validation of
the model [3] and the latter for the calibration of the model
[4, Section 14.7].

A pressurised water distribution system (WDS) depends
on various state parameters (i.e., “inputs”, e.g., pipe lengths)
that are characteristics of the infrastructure and water status
[5–7]. Numerical models then predict the water hydraulic
variables (i.e., “outputs”, e.g., flow rates and pressures)
from the state parameters (water quality properties are not

considered here). For the objective of a particular sensitivity
study, there is typically interest in a particular hydraulic water
property, or a combination of such properties, called the indi-
cator (or index) function [8–13]. For example, the minimum
pressure in the system [14, p. 131], or the average pressure in
the entire system,might be of interest.The sensitivity analysis
answers the question: What is the sensitivity of an indicator
function to change in the parameters that it depends on?

Various sensitivity analysis methods exist: some are more
mathematical and others more statistical, in nature [1, 3].
Statistical methods typically approach the subject by assum-
ing that parameters are distributed according to a probability
density function. There are numerous applications to the
WDS, as recently reviewed [15]. Common methods used in
WDS applications include Monte Carlo [16, 17] and an ac-
companying approximation called first-order second mo-
ment (FOSM) [8, 16], which uses the sensitivity-matrix eval-
uated at the mean of the distribution. Fuzzy sets, as recently
reviewed [18], have also been used for WDS applications.

The followingmathematicalmethods exist: nominal range
sensitivity analysis (NRSA) [3] (also known as “local sen-
sitivity analysis”, “threshold analysis”, “one-at-a-time”, or
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“one-factor-at-a-time”) and sensitivity-matrix methods [1,
17]. NRSA and sensitivity-matrix methods are applicable to
deterministic models [2], such as the hydraulic pipe network
models used for a WDS, considered here. These methods,
respectively, apply to changes of single and multiple state
parameters. NRSA evaluates the effect on model outputs
exerted by individually varying only one of the model inputs
across its entire range of plausible values, while holding all
other inputs at their nominal or base-case values (i.e., fix them
locally) [2]. NRSA can be repeated for any number of indi-
vidual model inputs. An extension to multiple parameters,
with a linearization approximation, is the sensitivity-matrix,
which consists of first-order partial derivatives of outputs
with respect to (w.r.t.) inputs (Jacobian matrices) [1, 3]. Local
sensitivity analysis methods perturb some inputs at a time,
while the remaining inputs are fixed to base-case values.
NRSA and sensitivity-matrix methods are localmethods [3].

Recent applications of mathematical sensitivity analysis
to the hydraulics of a WDS include a GIS-based sensitivity
analysis method based on NRSA used in several analyses of
an Austrian-based group. For the effect of continuous change
of parameters on hydraulic variables, of interest here, this
method was applied to calibration, pipe diameter design, and
input uncertainty assessment [10], and vulnerability identifi-
cation [11]. Other recent applications include the sensitivity-
matrix method for ranking the relative importance of pipes
[9], leakage localisation [19], and studying demands [20].

Since NRSA is the easiest sensitivity analysis method to
implement and understand [3], a novel sensitivity analysis
formalism that extends this method is developed, called
local regional sensitivity analysis (LRSA). Like the NRSA
and sensitivity-matrix methods, it is local and should hence
preferably be applied to problems where this is an advantage,
or not a disadvantage. Examples of such problems are model
verification or validation [3].

In NRSA and sensitivity-matrix methods different chan-
ges are applied to each parameter individually. LRSA extends
these methods to allow the same change to apply to a
collection of parameters, called a region. The importance of
the study of parameter regions has been emphasized [16]. For
example, by breaking the entire system into suburbs, a com-
plicated calibration problem can be studied incrementally [4,
Section 14.8].

The novelty of LRSA is that it allows, in an easy way,
consideration of the sensitivity of theWDS to state parameter
regions, not just individual state parameters. The unique
contributions that are made to the study of a WDS are as
follows:

(i) Ease of understanding: a complicated WDS is easier
to understand if the number of parameters it is sensi-
tive to is reduced.This is done by lumping parameters
together in regions.

(ii) Simplicity of analysis: because the parameters in the
WDS can be grouped into regions, the process of
sensitivity analysis is simplified.

(iii) Dependence on the collective (the region): because a
change of the collective is made, the sensitivity of the
WDS to the collective can be studied.

Numerical sensitivity calculations have been performed
for two networks [21], using the LRSA techniques in
Section 3.2. In this paper, several results are derived, which
are of a general nature. The results explicitly state the
dependence of a WDS on state parameter regions for the first
time. The results also serve as consistency checks with the
current body of knowledge to show how sensible results arise
from LRSA. One motivation for using these results as con-
sistency checks is that they do not depend on a linearization
approximation.

The results apply to the standard NRSA and sensitivity-
matrix methods as special cases. Hence the results do not
require adoption of the LRSA method and stand in their
own right. For the NRSA and sensitivity-matrix methods, the
results have not been found to be explicitly stated elsewhere.

The paper is organized as follows. LRSA is introduced in
Section 2 and then developed in Section 3 for a single state
parameter region. The single region results are introduced
in Section 4; the pipe parameter scaling laws are stated
in Section 5 and the node elevation uncertainty results in
Section 6. The multiple state parameter region results are
introduced in Section 7, with the generalized pipe parameter
scaling laws and node elevation uncertainty results in Sec-
tions 8 and 9, respectively. The types of sensitivity analysis
covered by LRSA, and how these relate to conventionalmeth-
ods, are described in Section 10; and Section 11 summarizes
the conclusions. The Appendix contains single region proofs
of results and illustrative examples.

2. Introduction to Local Regional
Sensitivity Analysis

A central characteristic of the sensitivity analysis developed
below is that the same change is made for all the state
parameters in a single set of parameters (either X or Z), as
is partially implemented in some current network models for
demand [4, Section 14.7], [5]. The effect of the change on
a single indicator function (composed of all the water flow
rates and pressures in a single set of linksL⊕ and nodesM⊕)
is then determined mathematically (generalization beyond a
“single” set of parameters will be made later in the paper but
only serves to complicatematters at this stage).There is hence
an association

State parameter region, either X or Z

←→ Variable region (L⊕,M⊕) .
(1)

The two regions are in general unrelated, and a region does
not have to be spatially connected. However, in practical
problems X or Z often represents a connected region in
space and similarly for (L⊕, M⊕). For example, X or Z
can represent a suburb inside a WDS, while (L⊕, M⊕) can
represent the end-nodes of the entire system, where pressure
is often the lowest.

The sensitivity analysis considers two types of continuous
state parameter change.

Proportional Change (𝑋𝑖 → 𝑟𝑋𝑖 for all 𝑖 ∈ X). These are
appropriate for parameters which can only have one sign,
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e.g., pipe length. There are three important characteristics of
proportional change:

(1) 𝑟 is dimensionless, so change made to different types
of parameters can be compared.

(2) The change emphasizes the larger parameter values.
For example, if a set of pipe lengths is changed by the
same amount 𝑟, the pipes with the larger lengths are
changed more.This is sensible, since the larger length
pipes should be more “important” when change due
to pipe lengths is considered.

(3) The change to the individual parameters can naturally
be interpreted as a single property of the collective.
For example, if a set of pipe lengths in a connected
region is changed by the same amount 𝑟, the total pipe
length of the region is changed by 𝑟. This means that
the collective pipe length of the region is changed in
a sensible way.

Additive Change (𝑍𝑗 → 𝑍𝑗 + 𝑧 for all 𝑗 ∈ Z). These are
appropriate for parameters which can have different signs,
e.g., elevation. There are two important characteristics of
additive change:

(1) The change to the parameters is independent of
the parameter values. For example, elevations are
changed by the same amount 𝑧. This is sensible, since
the absolute size of an elevation is arbitrary, because
all elevations refer to a reference elevation (e.g., mean
sea level [5, 14]).

(2) The change to the individual parameters can naturally
be interpreted as a single property of the collective.
For example, if a set of elevations in a connected
region is changed by the same amount 𝑧, the elevation
of the entire region is changed by 𝑧. This means that
the collective elevation of the region is changed in a
sensible way.

All the parameters in a state parameter region are changed
together, so that the changes of the parameters are correlated
in a specific way. It is proposed that it is sufficient for a
parameter region to be changed according to only one of two
types of changes: proportional or additive.

3. Sensitivity Analysis Formulation:
Single Region

3.1. Parameter Variation: Proportional Change. Standard
modelling of a WDS requires the construction of a network
with internal nodes, and links (or lines) joining the external
and internal nodes [5–7] (Figure 1). Water flows at rate 𝑞𝑙
through a link, and every internal node has pressure head 𝑝𝑚
at the position of the node. Pressure is defined in such a way
that atmospheric pressure is zero. The variables

𝑞𝑙 𝑙 ∈ L
⊙,

𝑝𝑚 𝑚 ∈ M
⊙

(2)

are obtained as a solution of a numerical model. Here L⊙

denotes all links and M⊙ all internal nodes. By convention,

Reservoir

Tank

Figure 1: WDS with two external nodes (a reservoir and tank). The
internal nodes are indicated by circles.

flow rates are positive for the base-case solution, and a
pressure is usually positive (when a flow rate is negative,
reversing the direction of the corresponding link will make it
positive). Reservoirs or tanks are by definition external nodes.

The extended-period numerical model contemplated
uses standard concepts and terminology [7], as represented
by the industry-standard public domain software EPANET
2 [5]. To solve the equations, the state of the system must
first be specified by a set of base-case parameters 𝑋𝑖 and 𝑍𝑗
[5–7, 22, 23]. The following types of parameters fall in each
category:

Proportional Change Parameters 𝑋𝑖.

(i) Pipe lengths 𝐿
(ii) Pipe diameters𝐷
(iii) Pipe roughness coefficients 𝐶 (Hazen-Williams), 𝑁

(Chezy-Manning) or for Darcy-Weisbach
(iv) Minor loss coefficients 𝐾
(v) Water demand 𝑑, which usually has the same sign at

a specific node (e.g., for customer water supply, 𝑑 is
positive; for a borehole 𝑑 is negative)

(vi) Pump curve, valve, and emitter (sprinkler) parame-
ters [5]

(vii) Tank diameter𝐷𝑇 (tank shape parameters)

Additive Change Parameters 𝑍𝑗.

(i) Elevations
(ii) Reservoir piezometric head (equal to the water sur-

face elevation if the reservoir is under atmospheric
pressure) [5]

(iii) Tank: the water surface elevation (this an important
parameter relevant to hydraulic analysis), bottom and
top water surface elevations of the tank.

The formalism also covers continuous parameters which
specify curves (e.g., parameters that specify a pump curve,
valve head-loss curve, or tank shape [5]).

The solutions of the equations can formally be denoted as
a nonlinear function 𝑓, such that the solution vector (q, p) =
𝑓(X,Z). Inverse sensitivity analysis involves the inversion
of 𝑓, which is usually complicated. However, a meaningful
case where inversion is simple is developed in the formalism
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below. Consider the parameter state label set corresponding
to all parameters of type 𝑋𝑖. Let X be a single subset of the
parameter state label set (called a “single region”) and let
X𝑐 (the complement) be the set containing the remaining
elements. Define the proportional change

𝑋𝑖 (𝑟) = 𝑟𝑋𝑖, 𝑖 ∈ X,

𝑋𝑖 (𝑟) = 𝑋𝑖, 𝑖 ∈ X
𝑐,

𝑍𝑗 (𝑟) = 𝑍𝑗.

(3)

Hence a subset of the state parameters is scaled by a common
factor 𝑟 (e.g., all pipe lengths can be scaled by a common
factor, while other parameters are not scaled).

Most of the mathematical formalism that follows before
Section 3.3 was previously developed as a first orientation
[21], restricting to a single region and proportional change.
The current work is comprehensive, due to including additive
change and extending to multiple regions.

Equation (3) implies that the real number 𝑟 is mapped
into the solution vector

(q (𝑟) , p (𝑟)) = 𝑓 (X (𝑟) ,Z (𝑟)) . (4)

Thus as 𝑟 varies, a line is traced out in solution space. Consider
a function 𝑔(q, p), mapping into a real number. Define an
indicator function 𝜉 as

𝜉 : R 󳨃󳨀→ R where 𝜉 (𝑟) ≡ 𝑔 (𝑓 (X (𝑟) ,Z (𝑟))) . (5)

The inversion of 𝑓, which maps a vector into a vector, is often
required for the full inverse solution of sensitivity problems.
However, these problems will be studied here as an inversion
of the much simpler function 𝜉, which maps a number into a
number.

In this work a meaningful choice of 𝑔, relevant to model
calibration [4, Section 14.5] [8], will be studied as an example.
Define the specific instance of𝑔 as𝑔𝑎 and the specific instance
of 𝜉 as ⟨𝑝⟩, such that

𝑔𝑎 (q, p) ≡
1

𝑁 (M⊙)
∑
𝑚∈M⊙

𝑝𝑚

⟨𝑝⟩ (𝑟) = 1
𝑁 (M⊙)

∑
𝑚∈M⊙

𝑝𝑚 (X (𝑟) ,Z (𝑟))
(6)

𝑔𝑎 is the average pressure head in the internal nodes.𝑁(M⊙)
is the number of labels in the set M⊙, i.e., the number of
internal nodes.

3.2. Linearization: Proportional Change. In the case where
some state parameters vary around the base-case parameters
with 𝑟 very near to 1, it follows that 𝜉(𝑟) is very near to 𝜉(1).
Particularly,

Δ𝑟 ≡ 𝑟 − 1,

|Δ𝑟| ≪ 1,

Δ𝜉 ≡ 𝜉 (𝑟) − 𝜉 (1) = 𝐷Δ𝑟,

𝐷 ≡ 𝜉󸀠 (1) ,

(deriv. w.r.t. 𝑟 at 𝑟 = 1) ,
(7)

where the Taylor expansion is utilised. This equation can
be used as follows in practical applications. Choose state
parameters satisfying (3) with 𝑟 very near to 1. Calculate Δ𝜉
using software, e.g., EPANET 2. Then use (7) to infer𝐷.

Take the specified uncertainty for 𝜉(𝑟) to be

Δ𝜉 Δ𝜉 positive or negative. (8)

The deduced uncertainty is (from (7))

Δ𝑟 = Δ𝜉
𝐷

. (9)

The procedure for a linear sensitivity study is hence suggested
to be as follows. Obtain𝐷 for a set of scaling state parameters
X, representing deviations around the base-case parameters.
Then use (9) to obtain Δ𝑟 for a given value of Δ𝜉. The
corresponding value of 𝑟 then yields the state parameter
uncertainty limits by using (3).

In order for the procedure to be meaningful, Δ𝜉 must
represent a tolerance that is allowable for the WDS. The
sensitivity examples in this paper take the average pressure
to have a certain tolerance. They therefore use 𝜉 = ⟨𝑝⟩ from
(6).

Equation (9) is the main result used for the linear
approximation. It is only exact for 𝑟 very near to 1.

3.3. Parameter Variation: Additive Change. Consider the pa-
rameter state label set corresponding to all parameters of type
𝑍𝑗. LetZ be a single subset of the parameter state label set and
letZ𝑐 (the complement) be the set containing the remaining
elements. Define the additive change

𝑋𝑖 (𝑧) = 𝑋𝑖,

𝑍𝑗 (𝑧) = 𝑍𝑗 + 𝑧, 𝑗 ∈ Z,

𝑍𝑗 (𝑧) = 𝑍𝑗, 𝑗 ∈ Z
𝑐.

(10)

Hence a subset of the state parameters (elevations) is
increased by a common factor 𝑧.

Compare the additive change in (10) with the propor-
tional change in (3). The analysis for additive change is
very similar to that of proportional change, and (4)–(6) are
obtained with all references to 𝑟 replaced with 𝑧, and 𝜉(1) →
𝜉(0).

3.4. Linearization: Additive Change. The analogue to (7), for
state parameters (elevations) varying around the reference
parameters with 𝑧 very near to 0, is

Δ𝑧 ≡ 𝑧,

|Δ𝑧| ≪ 1,
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Δ𝜉 ≡ 𝜉 (𝑧) − 𝜉 (0) = 𝐷Δ𝑧,

𝐷 ≡ 𝜉󸀠 (0) ,

(deriv. w.r.t. 𝑧 at 𝑧 = 0) .
(11)

The analogue of (9) is

Δ𝑧 = Δ𝜉
𝐷

(12)

which is only exact for 𝑧 very near to 0. This equation
gives the limits of the state parameters (elevations) according
to (10). The procedure for a linear sensitivity study is as
follows. Obtain 𝐷 for a set of changing state parameters
Z, representing deviations around the base-case parameters.
Then, given the value Δ𝜉, determine Δ𝑧 in accordance with
(12).

3.5. Generalization of 𝑔. The specific instance of 𝑔 in (6) is
defined in terms of the pressures at all the nodes. More
generally, 𝑔 can be considered to be defined in terms of a
subset M⊕ of the internal nodes 𝑚 (at which pressures are
calculated, and state parameters [elevations] are specified)
and a subset L⊕ of the links 𝑙 (at which flow rates are
calculated, and state parameters are specified). Hence, as
described in Section 2, there is the association in (1).

3.6. Time Dependence and Tank Diameter Scaling Law. Most
of the quantities discussed here are in principle functions of
time. For example, demand, flow rate, and pressure are usu-
ally functions of time. Although the formalism and the results
of this paper apply to both steady-state and extended-period
simulations, time dependence is not explicitly indicated.

The proportional or additive change is considered at a
specific instant in time (and can be time-dependent) and
is hence naturally suited to a state-state simulation. For
an extended-period simulation, it is often meaningful to
consider proportional or additive change that is independent
of time.

Tank water surface level at the next time step 𝑡 + Δ𝑡 is
derived from the flow in or out of the tank at a specific instant
in time 𝑡 [14] and is hence a “derived” quantity. It can be
shown that the flow in or out of the tank at 𝑡 is not dependent
on the diameter of the tank 𝐷𝑇, or the shape of the tank, but
only on the water surface elevation in the tank [14]. Hence, we
have the following.

Result 1 (tank diameter scaling). When only tank diameters
are scaled, the change in 𝜉 can be calculated analytically by
noting that the flow rates and pressures remain unchanged. If
𝜉 is not explicitly dependent on tank diameters, it will remain
unchanged, implying that derivatives of 𝜉 for tank diameter
scaling will be zero.

The latter statement implies that 𝐷𝐷𝑇 = 0. On the other
hand, the tank water surface level at the next time step 𝑡 + Δ𝑡
will depend on 𝐷𝑇, or the shape of the tank, unless there is
no flow from the tank at time 𝑡 (i.e., it is in equilibrium or has
reached the minimum or maximum level).

4. Introduction to the Results:
Single State Parameter Region

It has been emphasized that uncertainty in pipe length,
diameter, and roughness coefficient, as well as reservoir/tank
surface elevation or head, needs to be taken into account in
WDS analysis [18]. This will now be considered.

None of the results in this paper depend on the lineariza-
tion approximation. However, the practical consequences of
pipe property scaling use this approximation (around (16)
and (23)).

Although the formalism in Sections 3.1 and 3.2 allows for
a proportional change to apply to different types of parame-
ters (e.g., lengths and diameters being scaled together), this
possibility will not be explored further in this paper. Propor-
tional changeswill be studied for different types of parameters
referring to a common set of links 𝑙 inL. For example, scaling
of all pipe lengths 𝐿 𝑙 by 𝑟𝐿 will be studied, similarly for pipe
diameters and roughness coefficients corresponding to the
same set of links.

When additive change is studied, the following labels will
refer to an elevation:

(i) 𝑗: an internal or external node (as in (10));
(ii) 𝑚: only an internal node;
(iii) 𝜇: only an external node.

When results are stated without proof, the proof is in the
Appendix. Sections 5 and 6 contain results for the case where
there is a single state parameter region.

5. Pipe Parameter Scaling Laws

Assume that the major friction loss in a pipe is described by
either the Hazen-Williams (H-W) or Chezy-Manning (C-M)
formulae (defined in the Appendix), with 𝐶 and𝑁 denoting
the respective roughness coefficients. Scale the pipe length,
diameter, and roughness coefficient by, respectively, 𝑟𝐿, 𝑟𝐷
and 𝑟𝐶 or 𝑟𝑁 for all links L. Assume a general indicator
function 𝜉 defined, as discussed in Section 3.5, in terms of
flow rates, pressures, and state parameters.

Result 2 (pipe parameter scaling without minor losses).
Assume that there are no minor losses in the pipes corre-
sponding to the links L. Assume that 𝜉 does not explicitly
depend on any pipe length, diameter, or roughness coefficient
for a link in L. Then 𝜉(𝑟𝐿) = 𝜉(𝑟𝐷) = [𝜉(𝑟𝐶) or 𝜉(𝑟𝑁)] if the
parameter uncertainties are related by

H-W: 1
𝑟4.871𝐷

= 𝑟𝐿 =
1

𝑟1.852𝐶

⇓

𝐷𝐷 = −4.871𝐷𝐿

𝐷𝐶 = −1.852𝐷𝐿,

C-M: 1
𝑟16/3𝐷

= 𝑟𝐿 = 𝑟2𝑁
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⇓

𝐷𝐷 = −16
3
𝐷𝐿

(13)

𝐷𝑁 = 2𝐷𝐿. (14)

Result 3 (pipe parameter scaling with minor losses). Assume
that there areminor losses in the pipes corresponding to the
linksL. Assume that 𝜉 does not explicitly depend on any pipe
length or roughness coefficient for a link inL. Then 𝜉(𝑟𝐿) =
[𝜉(𝑟𝐶) or 𝜉(𝑟𝑁)] if the parameter uncertainties are related by

H-W: 𝑟𝐿 =
1

𝑟1.852𝐶
󳨐⇒

𝐷𝐶 = −1.852𝐷𝐿,

C-M: 𝑟𝐿 = 𝑟2𝑁 󳨐⇒

𝐷𝑁 = 2𝐷𝐿.

(15)

There are no corresponding results for the Darcy-
Weisbach (D-W) major friction formula. The Results refer-
ence the pipe length, because its dependence is the same for
the H-W and C-M major friction loss formulae (see (A.1)),
as well as for D-W [14]. The derivatives for the pipe length,
diameter, and roughness coefficient scaling are denoted by
𝐷𝐿,𝐷𝐷 and𝐷𝐶 or𝐷𝑁, respectively.

Examples of the applicability of the Results are as follows:

(i) If 𝜉 is only dependent on pressure (e.g., ⟨𝑝⟩), flow
rate, or piezometric head 𝐻 (which is dependent on
pressure and elevation [14]), both Results may hold.

(ii) If 𝜉 is dependent on velocity in a pipe for a link inL
(which is dependent on flow rate and pipe diameter
according to (A.1)), only the second Result may hold.

(iii) For tank water surface elevations, which are com-
monly used formodel calibration [4, Section 14.5] [8],
both Results may hold (see the Appendix).

For a very small toleranceΔ𝜉, the changeΔ𝑟 is very small,
and the relationships between the 𝑟’s in (13)-(14) in the first
Result become, from the Taylor expansion,

H-W: − 4.871Δ𝑟𝐷 = Δ𝑟𝐿 = −1.852Δ𝑟𝐶,

C-M: − 16
3
Δ𝑟𝐷 = Δ𝑟𝐿 = 2Δ𝑟𝑁.

(16)

The relationships between the 𝑟’s in (15)-(16) of the second
Result are the same, with reference to Δ𝑟𝐷 removed in (16).

Assume the indicator function is known with a very
small tolerance Δ𝜉, and an uncertainty in the pipe lengths is
consistent with this tolerance (this can be calculated for the
WDS for a single state parameter region via software from
(9)). Then, assuming the assumptions stated in the Results
above, the Results have the following practical implications:

(i) For Result 2: a pipe diameter uncertainty of −4.871
times smaller, or a roughness coefficient uncertainty

of −1.852 times smaller than the pipe length uncer-
tainty, is consistent with the tolerance (H-W). For C-
M, the same statement holds with the replacement
−4.871 → −16/3 and −1.852 → 2.

(ii) For Result 3: a pipe roughness coefficient uncertainty
of −1.852 times smaller than the pipe length uncer-
tainty is consistent with the tolerance (H-W). For C-
M, the same statement holds with the replacement
−1.852 → 2.

There was a computer-based NRSA study of pipe length,
diameter, and roughness variation for an Alpine WDS [10].
Specifically, uncertainly in roughness is especially frequently
studied [8, 15, 16, 18].

6. Analytical Calculation of
Node Elevation Uncertainty

The effect of uncertainty in the elevation of nodes that do
not correspond to reservoirs or tanks (internal nodes) can
be determined via a simple analytical calculation, using the
following Result.

Result 4 (internal node elevation uncertainty). Consider
internal nodes 𝑚 in M. An additive change of elevation for
the nodes M according to (10) means that all flow rates
remain unchanged, and all state parameters and pressures
remain unchanged, except the following:

𝑍𝑚 󳨀→ 𝑍𝑚 + 𝑧

𝑝𝑚 󳨀→ 𝑝𝑚 − 𝑧

𝑚 ∈ M

(17)

The Result only applies if there are no pressure-dependent
components in the WDS.

Note that an emitter, Pressure Reducing Valve, Pres-
sure Sustaining Valve, Pressure Breaker Valve, or pressure-
dependent demand is a pressure-dependent component [5].

Let M󸀠 denote the set of all external node labels 𝜇. It
corresponds to the following state parameters:

(i) Reservoir water surface elevation (if the reservoir is
under atmospheric pressure)

(ii) Reservoir piezometric head (if the reservoir is under
pressure)

(iii) Tank water surface elevation

(iv) Tank bottom and top water surface elevation

The effect of uncertainty in the elevation of nodes that
correspond to reservoirs or tanks (external nodes) can be
determined via a simple analytical calculation, using the
following Result.

Result 5 (external node elevation uncertainty). Consider an
additive change for all state parameters corresponding toM󸀠.
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A change according to (10) means that all flow rates and state
parameters remain unchanged, except the following:

𝑍𝜇 󳨀→ 𝑍𝜇 + 𝑧󸀠 𝜇 ∈ M
󸀠

𝑝𝑚 󳨀→ 𝑝𝑚 + 𝑧󸀠 𝑚 ∈ M
⊙

(18)

The Result only applies if there are no pressure-dependent
components in the WDS.

Examples of applications of the Results in this section to
average pressure and tank water surface elevation are given in
the Appendix.

A particularly practical application of Result 5 is obtained
when the interest is in uncertainty due to reservoir water
surface elevation (if the reservoirs are under atmospheric
pressure). This can be the same for all reservoirs due to a
common water level measurement uncertainty, or when rain
or evaporation causes the water levels to change by the same
amount. If the tank level evolution is such that the tank
water surface elevation never goes below the minimum or
maximum for the tank, either before or after the change, the
tank bottom and top water surface elevations do not have to
be changed (since the water level is then the only parameter
onwhich theWDSdepends).Thismeans that Result 5 applies
for the same change in reservoir water levels, as long as all
tank water levels are changed by the same amount, which is
a sensible possibility of considering. Hence only water levels
are changed.

7. Introduction to Results: Multiple State
Parameter Regions

So far, a common change for a single set of state parameters
(corresponding to the region X or Z) was considered.
The effect of the change on a single indicator function was
determined. Consider a generalization to multiple regions as
follows.

Consider the parameter state label set corresponding to
all parameters of type 𝑋𝑖. Let X𝑘1 be disjoint subsets of
the parameter state label set and let X𝑐 (the complement)
be the set containing the remaining elements. Consider the
parameter state label set corresponding to all parameters of
type 𝑍𝑗. Let Z𝑘2 be disjoint subsets of the parameter state
label set and let Z𝑐 be the set containing the remaining
elements. Define the change

𝑋𝑖 󳨀→ 𝑟𝑘1𝑋𝑖 𝑖 ∈ X𝑘1

𝑋𝑖 󳨀→ 𝑋𝑖 𝑖 ∈ X
𝑐

𝑍𝑗 󳨀→ 𝑍𝑗 + 𝑧𝑘2 𝑗 ∈ Z𝑘2

𝑍𝑗 󳨀→ 𝑍𝑗 𝑗 ∈ Z
𝑐

(19)

which describes a common proportional change for each of
the regionsX𝑘1 (compare (3)) and a common additive change
for each of the regions Z𝑘2 (compare (10)). An example
of a regional application of proportional change of H-W
roughness coefficients can be found in a numerical Monte
Carlo and FOSM study (see Table 1 of [16]).

Generalizing to multiple indicator functions will allow
inverse sensitivity analysis via studying the LRSA analogue
of the sensitivity-matrix. In the case where eachX𝑘1 andZ𝑘2
above refers to a single state parameter, the linearized version
of the formalismwould just be the sensitivity-matrixmethod.
Although sensitivity-matrix methods are computationally
efficient [9], they require a high cost of human effort and time
and present difficulty in mathematical formulation and com-
puter program implementation [3].Therefore, full sensitivity-
matrix methods will not be developed further here. Only a
single indicator function will be considered, implying that
results will only be useful for forward sensitivity analysis.

The results for multiple state parameter regions are gen-
eralizations of those for a single state parameter region and
are hence stated without proof. Result 1 is identical to what
was stated before but is now applied to scaling of multiple
groups of tank diameters. Sections 8 and 9 contain further
generalized results.

8. Pipe Parameter Scaling Laws

Scale the pipe length, diameter, and roughness coefficient as
three multiple region scaling cases, where the regions are the
same in each case:

Length: 𝐿 𝑙 󳨀→ 𝑟𝐿𝑘𝐿 𝑙 𝑙 ∈ L𝑘

Diameter: 𝐷𝑙 󳨀→ 𝑟𝐷𝑘𝐷𝑙 𝑙 ∈ L𝑘

Roughness: H-W: 𝐶𝑙 󳨀→ 𝑟𝐶𝑘𝐶𝑙 𝑙 ∈ L𝑘

C-M: 𝑁𝑙 󳨀→ 𝑟𝑁𝑘𝑁𝑙 𝑙 ∈ L𝑘.

(20)

Let ∪L denote the union of the links in L𝑘, i.e., all the
links which correspond to pipe parameters that scale. Let {𝑟𝑘}
denote all the scaling factors 𝑟1, 𝑟2, . . . , 𝑟𝑘, . . ..

Result 6 (pipe parameter scaling without minor losses).
Assume that there are no minor losses in the pipes corre-
sponding to the links ∪L. Assume that 𝜉 does not explicitly
depend on any pipe length, diameter, or roughness coef-
ficient for a link in ∪L. Then 𝜉({𝑟𝐿𝑘}) = 𝜉({𝑟𝐷𝑘}) =
[𝜉({𝑟𝐶𝑘}) or 𝜉({𝑟𝑁𝑘})] (for the three cases in (20)) if the
parameter uncertainties are related, for each region 𝑘, by

H-W: 1
𝑟4.871
𝐷𝑘

= 𝑟𝐿𝑘 =
1

𝑟1.852
𝐶𝑘

,

C-M: 1
𝑟16/3
𝐷𝑘

= 𝑟𝐿𝑘 = 𝑟2𝑁𝑘.
(21)

Result 7 (pipe parameter scaling with minor losses). Assume
that there are minor losses in the pipes corresponding to
the links ∪L. Assume that 𝜉 does not explicitly depend on
any pipe length or roughness coefficient for a link in ∪L.
Then 𝜉({𝑟𝐿𝑘}) = [𝜉({𝑟𝐶𝑘}) or 𝜉({𝑟𝑁𝑘})] (for the “length” and
“roughness” cases in (20)) if the parameter uncertainties are
related, for each region 𝑘, by

H-W: 𝑟𝐿𝑘 =
1

𝑟1.852
𝐶𝑘

,

C-M: 𝑟𝐿𝑘 = 𝑟2𝑁𝑘.
(22)
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In the case where each L𝑘 represents only one link and
where ∪L is all the pipe links, i.e., where all pipe lengths
corresponding to all links are scaled by a different amount for
each link, the two Results give the most general relationship
between the sensitivity of the indicator function to pipe
lengths, diameters, and roughness coefficients.

For a very small tolerance Δ𝜉, the change Δ𝑟 is very
small, and (21) of the first Result becomes, from the Taylor
expansion,

H-W: − 4.871Δ𝑟𝐷𝑘 = Δ𝑟𝐿𝑘 = −1.852Δ𝑟𝐶𝑘,

C-M: − 16
3
Δ𝑟𝐷𝑘 = Δ𝑟𝐿𝑘 = 2Δ𝑟𝑁𝑘.

(23)

Equation (22) of the second Result is the same, with reference
toΔ𝑟𝐷𝑘 removed in (23).The practical implications of (23) are
similar to what was discussed in Section 5.

The following practical example elucidates a possible
application. Consider a WDS with three suburbs modelled
with the H-W major friction formula. The model must be
calibrated for two of the suburbs (denoted by 𝑘 = 1, 2).
WDS calibration data being used are a pressure and flow
meter reading and a measured tank water surface elevation.
A suitable combination of the three measurements is chosen
to define an indicator function. Assume that the indicator
function (calibration data) is known with a small tolerance
of 5% and that the model predicts a value for the indicator
function outside the measured range (a “calibration error”).
Assume that a numerical calculation yields that for suburbs
𝑘 = 1, 2 pipe length uncertainties of Δ𝑟𝐿𝑘 = −10%, −20%
are consistent with the tolerance. The pipe lengths are
actually known to a higher accuracy in the model. Hence the
calibration data do not constrain the lengths. Assume that an
estimate yields that pipe roughness coefficients and diameters
are known to 8%.

Equation (23) implies that the roughness coefficient
uncertainties for suburbs 𝑘 = 1, 2 are Δ𝑟𝐶𝑘 = −Δ𝑟𝐿𝑘/1.852 =
5%, 11%. Only for the first suburb this implies that the
calibration data constrain the roughness coefficients tighter
than they are known, so that there is a need to investigate
whether the calibration error is due to inaccurate roughness
coefficients. If only the second suburb is modelled to have
no minor losses, (23) implies that the diameter uncertainty
for suburb 2 is Δ𝑟𝐷2 = −Δ𝑟𝐿2/4.871 = 4%. For suburb 2
this implies that the calibration data constrain the diameters
tighter than they are known, so that there is a need to
investigate whether the calibration error is due to inaccurate
diameters.

9. Analytical Calculation of
Node Elevation Uncertainty

Apply an additive change in such a way that it is the same for
all internal node elevations in a region M𝑘 and is the same
for all elevations (or heads) corresponding to external nodes
M󸀠 (defined in Section 6)

𝑍𝑚 󳨀→ 𝑍𝑚 + 𝑧𝑘 𝑚 ∈ M𝑘

𝑍𝜇 󳨀→ 𝑍𝜇 + 𝑧󸀠 𝜇 ∈ M
󸀠

(24)

Let ∪M denote the union of the internal nodes in M𝑘, i.e.,
all the internal nodes which correspond to elevations that
change.

Result 8 (node elevation uncertainty). Consider internal
nodes 𝑚 in M𝑘, for some region 𝑘. Let M󸀠 refer to all the
external nodes 𝜇. An additive change of elevations (or heads)
according to (24)means that all flow rates remain unchanged,
and all state parameters and pressures remain unchanged,
except the following:

𝑍𝑚 󳨀→ 𝑍𝑚 + 𝑧𝑘

𝑝𝑚 󳨀→ 𝑝𝑚 + 𝑧󸀠 − 𝑧𝑘

𝑚 ∈ M𝑘

𝑝𝑚 󳨀→ 𝑝𝑚 + 𝑧󸀠 𝑚 ∉ ∪M

𝑍𝜇 󳨀→ 𝑍𝜇 + 𝑧󸀠 𝜇 ∈ M
󸀠

(25)

The Result only applies if there are no pressure-dependent
components in the WDS.

A special application of this Result is obtained when 𝑧󸀠 =
0, i.e., when there are no changes for reservoirs and tanks
(external nodes). For this application, there is no need for
the restriction that all external node elevations (and heads)
should change in the same way. In the case where each
M𝑘 represents only one node, and where ∪M = M⊙, i.e.,
where all elevations corresponding to all internal nodes are
changed by a different amount for each node, and there are
no changes for reservoirs and tanks, the Result gives the most
general sensitivity of the indicator function to internal node
elevations.

An example application is now given for the WDS in
Figure 1, which is assumed to have no pressure-dependent
components.Thewater surface elevations of the reservoir and
tank are assumed to be well known. Assume the six left-most
nodes are in an area where it was later determined that the
elevation was 3m lower than that represented in the original
model (𝑘 = 1). Also, another node should have represented
the top of a building, which is 2m higher than the ground
level represented in the original model (𝑘 = 2).Then Result 8
implies that in the revisedmodel the pressure headwill be 3m
higher at the six left-most nodes and 2m lower at the node
which represents the top of a building.

10. Types of Sensitivity Analysis
Covered by LRSA

In local regional sensitivity analysis (LRSA) state parameters
change in the same way for all parameters defining the
region. Different categories of change can be distinguished,
with corresponding Results that apply, as shown in Table 1.
The changes considered in this paper (19) apply to all these
categories. Categories C–E “interpolate” between the most
complex (Categories A-B) and least complex (Category F)
parameter change commonly considered.



Mathematical Problems in Engineering 9

Table 1: Different types of sensitivity analysis ordered from most to least complex.

Which state parameters
change? p = parameter(s),
m = multiple, s = single

Cor Max Number of
modifications Results that apply R

A All p individually No 1 All None m
B All p of a type individually No 1 𝑁𝑝 1, 6 m
C P of a type in m regions Yes >1 >1 7, 8
D All p of a type in a s region Yes >1 1 5 s
E P of a type in a s region Yes >1 1 1, 2 s
F One p individually No 1 1 3, 4
The first column labels the category. The column “Cor” indicates whether state parameters are correlated in a specific way. The column “Max” indicates the
maximum number of parameters that change in the same way.The column “Number of modifications” indicates the number of different modifications that are
made to parameters, e.g., if there are two parameter regions in which change is made, there are two modifications.𝑁𝑝 refers to the number of parameters that
exist of a specific type. The enclosed boxes under “Results that apply, R” can apply to multiple categories. The column “R” indicates the number of parameter
regions.

Table 2: The types of parameters to which the various Results apply.

Name Parameter types that change s Result m Result
Tank scaling Diameter 1 1
Pipe scaling Length, diameter, roughness coefficient 2, 3 6, 7
Elevation change Any elevation 4, 5 8
s = “single region” and m = “multiple region”.

The formalism for change in a region corresponding to
more than one parameter assumed that the parameter change
in the region is correlated, in either a proportional (3) or
additive (10) way. However, the specific choice of correlation
is only a restriction when there is more than one parameter
that changes in the same way, i.e., for Categories C–E. These
categories are unique to the LRSA developed here. The study
of Categories F and A-B changes reduces to conventional
methods, respectively, NRSA and (when linearized) the
sensitivity-matrix.

As discussed in Section 1, sensitivity analysis can be used
forward or in inverse. Although both directions of use can in
principle be accommodated in the formalism developed here,
only Categories D–F (single state parameter region) have
been developed in both directions. Categories A–C (multiple
regions) have only been developed for the forward direction,
for the reasons explained in Section 7.

11. Conclusions

To study the sensitivity of a WDS with respect to parameters,
the sensitivity of some property of the WDS needs to
be measured. This property is quantified by the indicator
function 𝜉. The types of parameters to which the various
Results apply are summarized in Table 2.

The tank scaling Result states that flow rates and pressures
obtained by solving the WDS equations at a specific instant
in time are independent of tank diameters. Also, 𝜉 is usually
completely independent of tank diameters, and if not, the
dependence can be calculated analytically.

The pipe scaling Results give a relationship between pipe
length and pipe roughness coefficient scaling, for two of the
three commonly used major friction loss formulae. For most

choices of 𝜉, the WDS is 1.852–2 times more sensitive to
roughness coefficients than to lengths. When certain pipes
do not have minor losses, there is an additional relationship
between pipe length and pipe diameter scaling. For most
choices of 𝜉, the WDS is 4.871–5.333 times more sensitive
to pipe diameters than to lengths. The WDS is hence the
most sensitive to pipe diameters, medium sensitive to pipe
roughness coefficients, and least sensitive to pipe lengths.

The elevation change Results apply to a WDS with no
pressure-dependent components (e.g., sprinklers and certain
valves) and have two main application areas:

(1) When all reservoir and tank elevations (and heads)
remain the same, changes of other elevations do not
change flow rates and change the pressures in a simple
additive way.

(2) When all the reservoir water surface elevations are
changed together, and the tanks do not reach the
bottom or top of their allowed water surface elevation
ranges, the flow rates remain unchanged, and the
pressures change in a simple additive way.

The dependence of 𝜉 on elevation can be calculated analyti-
cally.

The Results about the sensitivity of the WDS, stated here,
are general mathematical (specifically, analytical) results.The
Results hence contribute to the theoretical understanding of
the nature of a WDS. Because the Results are stated analyti-
cally, they can be used for practical engineering, without the
need for specialised software.They also provide a cross-check
for the veracity of computer-based sensitivity analyses.

The Results state the dependence of the WDS on state
parameter regions for the first time. This is made possible by
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the novel sensitivity approach, based on regions, developed
here.

Future work can apply the approach to breaking a large
WDS into suburbs, in order to study a complicated problem
incrementally. For example, model calibration can be per-
formed by combining the calibration data to define a suitable
𝜉 for the WDS. Within a suburb, the dependence of 𝜉 (the
calibration data) on various state parameter categories can
then be determined numerically (for example, dependence
on pipe roughness coefficients, water demands, pumpparam-
eters, and reservoir water surface elevations).This determines
how accurately each category of state parameter needs to be
determined within each suburb.

Appendix

Single Region Proofs and Examples

Section 5.TheH-WandC-Mmajor friction loss formulae and
the minor loss formula (for SI units) are [5, 14]

ℎ𝑓,HW =
10.68𝐿𝑞1.852

𝐶1.852𝐷4.871

ℎ𝑓,CM =
10.29𝑁2𝐿𝑞2

𝐷16/3

ℎ𝑓,𝑀 = 𝐾 V2

2𝑔
=

8𝐾𝑞2

𝜋2𝑔𝐷4

(A.1)

The H-W pipe head-loss for a pipe on link 𝑙 is, before the
proportional change,

ℎHW (1) =
10.68𝐿 𝑙𝑞

1.852
𝑙 (1)

𝐶1.852
𝑙

𝐷4.871
𝑙

+
8𝐾𝑙𝑞
2
𝑙 (1)

𝜋2𝑔𝐷4
𝑙

, (A.2)

where “(1)” indicates the variable before the change. For a link
inL the length scaling yields

ℎHW (𝑟𝐿) = 𝑟𝐿
10.68𝐿 𝑙𝑞

1.852
l (𝑟𝐿)

𝐶1.852
𝑙

𝐷4.871
𝑙

+
8𝐾𝑙𝑞
2
𝑙 (𝑟𝐿)

𝜋2𝑔𝐷4
𝑙

. (A.3)

A similar expression is obtained for roughness coefficient
scaling. If the relationship between 𝑟𝐿 and 𝑟𝐶 in (15) holds,
ℎHW(𝑟𝐿) = ℎHW(𝑟𝐶) when 𝑞𝑙(𝑟𝐿) = 𝑞𝑙(𝑟𝐶). This means that
the same solution (q(𝑟𝐿), p(𝑟𝐿)) = (q(𝑟𝐶), p(𝑟𝐶)) is produced
by the two proportional changes (see (4)). This establishes
Result 3 for the H-W case. The proof of the C-M case follows
a similar argument.

Because the minor friction loss depends on 𝐷𝑙, the
argument cannot be extended to pipe diameter scaling.
However, for the case 𝐾𝑙 = 0 (no minor loss) this problem
disappears, and Result 2 is obtained.

The relationships between 𝑟𝐿, 𝑟𝐷 and 𝑟𝐶 or 𝑟𝑁 in (13)–(15)
imply the relationships between𝐷𝐿, 𝐷𝐷 and𝐷𝐶 or𝐷𝑁 by use
of the Taylor expansion and (7).

Example of Both Results. Tank water surface elevation: a
proportional change in pipe length and roughness coefficient
related by (15) (and in addition pipe diameter change, related

by (13), if there are nominor losses for pipes corresponding to
the linksL) gives the same time evolution of the tank water
surface elevation.

Section 6. The Results follow for aWDS where the solution of
the equations is fully determined by the flow rates 𝑞𝑙 for all
links 𝑙 and piezometric heads𝐻𝑗 for all internal and external
nodes 𝑗. In such a WDS pressure head does not need to be
specified to obtain a solution and is purely a derived quantity
computed from𝐻𝑚 via 𝑝𝑚 = 𝐻𝑚 −𝑍𝑚, for all internal nodes
𝑚.There are no pressure-dependent components which need
the pressure to be specified to obtain the solution.TheResults
follow from the following observations. If (𝑞𝑙, 𝐻𝑗) is a solution
before the change, then one has the following:

(i) ForResult 4: (𝑞𝑙, 𝐻𝑗) is a solution after the change (this
can be viewed as a special case of the next observation
with 𝑧󸀠 = 0).

(ii) For Result 5: (𝑞𝑙, 𝐻𝑗+𝑧
󸀠) is a solution after the change,

using the translational invariance of the entire WDS
w.r.t. elevation, and hence head, change.

The Results then follow by noting that, for external nodes 𝜇,
𝐻𝜇 = 𝑍𝜇.

Example of Result 4. Average pressure: using ⟨𝑝⟩ from (6) a
simple analytical calculation shows that the change 𝑍𝑚 →
𝑍𝑚 + 𝑧means that

⟨𝑝⟩ (𝑧) = ⟨𝑝⟩ (0) − 𝑁 (M)
𝑁 (M⊙)

𝑧 󳨐⇒

𝐷 = − 𝑁 (M)
𝑁 (M⊙)

.
(A.4)

Example of Result 5. Average pressure: using ⟨𝑝⟩ the change
𝑍𝜇 → 𝑍𝜇 + 𝑧󸀠 means that

⟨𝑝⟩ (𝑧) = ⟨𝑝⟩ (0) + 𝑧󸀠 󳨐⇒ 𝐷 = 1. (A.5)

Example of Both Results. Tank water surface elevation: either
the change 𝑍𝑚 → 𝑍𝑚 + 𝑧 (in connection with Result 4) or
the change𝑍𝜇 → 𝑍𝜇+𝑧󸀠 (in connection with Result 5) leaves
the tankwater surface elevation relative to the bottom and top
elevations, as well as all flow rates, unchanged.Hence the time
evolution of the tank water surface elevation relative to the
bottom and top water surface elevations remains unchanged
for both changes.
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