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The number and variety of robots active in real-world
environments are growing, as well as the skills they
are expected to acquire, and to this end we present
an approach for non-robotics-expert users to be able
to easily teach a skill to a robot with potentially dif-
ferent, but unknown, kinematics from humans. This
paper proposes a method that enables robots with un-
known kinematics to learn skills from demonstrations.
Our proposed method requires a motion trajectory ob-
tained from human demonstrations via a vision-based
system, which is then projected onto a correspond-
ing human skeletal model. The kinematics mapping
between the robot and the human model is learned
by employing Local Procrustes Analysis, a manifold
alignment technique which enables the transfer of the
demonstrated trajectory from the human model to
the robot. Finally, the transferred trajectory is en-
coded onto a parameterized motion skill, using Dy-
namic Movement Primitives, allowing it to be general-
ized to different situations. Experiments in simulation
on the PR2 and Meka robots show that our method
is able to correctly imitate various skills demonstrated
by a human, and an analysis of the transfer of the ac-
quired skills between the two robots is provided.

Keywords: learning from demonstrations, knowledge
transfer, multi-robot systems, manifold alignment

1. Introduction

The number of robots active in real-world settings is
growing and their capabilities are continuously improv-
ing as well. In some instances these robots are beginning

to assist humans with a variety of tasks in every day en-
vironments, such as cooking, washing dishes and deliv-
ering cutlery in kitchens; helping doctors with surgical
procedures in hospitals; elderly care; grocery shopping,
etc. Some of these tasks may be unknown prior to the
commissioning of the robot. Therefore it is important that
robots can be adapted to new situations by extending their
sets of behaviors or skills.

Conventionally, robot skills – also known as policies
or behaviors – are developed by hand, where they are
hard-coded onto robots by an engineer. However, this re-
quires tedious effort and expertise; and to adapt to new
situations, new behaviors need to be hard-coded onto the
robots. This process is not accessible to a wider range
of non-robotics-expert users. Recently however, machine
learning techniques have been adopted to enable robots
to acquire policies from data. This offers opportunities
for robots to continuously build new policies as new data
arrives, as well as adapt to new situations. One such tech-
nique is robot Learning from Demonstrations (LfD).1

In LfD, a policy is learned from example data sets pro-
vided by a demonstrator. The demonstrator acts as a
teacher, either in the form of a human or another robot,
performing desired behaviors for the robot to learn. With-
out loss of generality we will refer to the teacher as a hu-
man, as is illustrated in Fig. 1. LfD algorithms utilize the
provided data sets to derive policies that attempt to re-
produce and generalize the desired demonstrated behav-
iors on the robot [1]. This is in contrast to other tech-
niques in which robots learn from their own experiences,
either through optimization of some reward function pro-
vided by a human, as in reinforcement learning [2]; or

1. LfD is sometimes known as Imitation Learning (IL), Programming by
Demonstration (PbD) and Learning by Demonstration (LbD), however
the term LfD has gained popularity recently.

Journal of Robotics and Mechatronics Vol.30 No.2, 2018 265



Makondo, N. et al.

Fig. 1. Example of goal-directed imitation learning from
human demonstrations. A robot learner uses a Kinect sensor
to observe a human teacher demonstrate a task of pouring
into a cup. The robot learner must be able to reproduce the
general task of pouring into the cup, rather than merely mim-
icking the human posture. The curves represent trajectories
of the objects during teacher demonstration.

through autonomous self-exploration, as in developmen-
tal robotics [3].

Within LfD, policy acquisition can be facilitated by or-
dinary users (i.e., non-robotics-expert users), because its
formulations do not typically require domain expertise of
the robots and tasks. Furthermore, demonstration is in-
tuitive for humans as they already use it to teach other
humans, making it natural to demonstrate tasks to robots.
The LfD learning problem can be broadly segmented into
two phases: how to gather demonstrations and how to de-
rive policies [1]. Gathering demonstrations is the process
of building a data set of examples, which ranges from the
selection of sensors for collecting the data – which con-
trols the type of data collected – to the type of demonstra-
tion technique to use. Deriving a policy generally involves
encoding the provided data set of examples by learning a
model, which can be used to later reproduce the demon-
strated task on the robot and generalize to different con-
texts.

Within the context of gathering demonstrations, var-
ious techniques, or strategies, exist. A human teacher
can provide demonstrations by tele-operating the robot
learner with a joystick while performing the desired be-
havior [4], physically guiding the robot learner through
the task (also known as kinesthetic guiding) [5], or record-
ing the demonstrations using vision-based systems, such
as a motion capture system, while the teacher performs
the task herself [6].

Each strategy has its own limitations. In tele-operation
and kinesthetic guiding, sensors that record the demon-
stration are typically placed on the robot, so the data
sets collected can be directly used by the robot learner.
However, these strategies are limited to robots with fewer
degrees-of-freedom (DoF), due to the difficulty of a hu-
man controlling each DoF in order to produce a coordi-
nated overall behavior. Strategies that record a human
demonstrator using vision-based systems are natural for
humans as they allow the human teacher to perform the

task as best as they can, without any obstruction from the
robot learner. However, this suffers from so-called corre-
spondence issues [7] – issues that arise due to the differ-
ences in the kinematics of the teacher and robot learner,
which prevent the collected data sets from being directly
used by the robot learner.

With regards to deriving a policy from the provided
data sets, data-driven approaches have received consid-
erable attention recently. Statistical modeling [5, 8] and
dynamical systems [9, 10] are amongst the most popular
approaches. In particular, dynamic movement primitives
(DMPs) are widely used due to their flexibility and stabil-
ity [10–12], and have been used to parameterize policies
for reinforcement learning of continuous robotic motions
in high dimensions.

The focus of this paper is on how to adapt demon-
strations gathered using vision-based systems, such that
they are useful to the robot learner, and to demonstrate
that policies can be derived from the adapted demonstra-
tions. Several approaches have been proposed to deal with
correspondence issues that arise in this setting, including
optimization approaches based on a kinematic model of
the robot learner [6, 13, 14], and data-driven approaches
that attempt to model a mapping from the teacher space
to the robot space [15–17]. Techniques that rely on a
kinematic model of the robot learner are among the most
widely used, and some general methods have been pro-
posed [6, 14]. However, in some cases an accurate kine-
matic model of the robot learner may not be available,
limiting the applicability of these methods.

This may be the case, for example, when the specifi-
cations required for modeling the robot are not released
by the manufacturer [18], and so need to be measured by
hand, leading to an inaccurate kinematic model, requiring
further calibration. This may also be the case when work-
ing with robots whose bodies are not static, potentially
due to modification, repair, or material damage [19]; or
when dealing with biologically-inspired robots, with re-
alistic skeletons and series-elastic, compliant actuators,
such as Coman [20] and Meka [a]; and tendon-driven
joints, such as the iCub [21]. In these cases, data-driven
approaches based on machine learning techniques offer an
alternative.

In this paper we propose a data-driven approach based
on manifold alignment that is suitable in such cases where
knowledge of the kinematic model of the robot learner
is not available. This paper is an extension of our pre-
vious published work [22], in which we showcased the
extraction of simple human movements using a Kinect
sensor and transferring them to a single robot, where the
workspaces of the human teacher and the robot were as-
sumed to intersect. Here, we formalize the problem and
greatly extend our analysis to two humanoids learning
more complex tasks from demonstration, showcasing the
robustness of our method to differences in kinematics,
and a comparison of two manifold alignment techniques.
To address the issue of non-intersecting workspaces, we
propose an approach for aligning the workspaces based
on rough alignment of some data generated in both
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workspaces. Lastly, we provide an analysis of transfer-
ring skills that have been acquired by one robot from hu-
man demonstrations, to another robot. This analyzes the
loss incurred over multiple rounds of transfer, compared
to directly transferring again from a human teacher, who
may not always be available.

The rest of the paper is organized as follows. Section 2
provides an overview of related work in human motion
adaptation to kinematically different embodiments. In
Section 3 a general description of the problem statement
is given. Section 4 outlines our proposed method. In Sec-
tion 5 the experimental setup is described, and the exper-
imental results are presented. Finally, we conclude the
paper in Section 6.

2. Related Work

The idea of projecting a motion from one kinematic
embodiment to another is also found in other areas of
computer graphics and robotics, where it is generally re-
ferred to as kinematic retargeting [14, 23]. It allows the
transfer of gestures or behaviors that are defined in one
reference frame (the source) to another (the target) [14].
Techniques generally differ based on the type of motions
to be adapted and information to be preserved. For exam-
ple, to adapt dancing motions from a human dancer to a
humanoid, we may be interested in adapting the joint con-
figurations of the human dancer, such that the robot can
mimic the dance moves, thus preserving postural infor-
mation. Another example of motions, which is of partic-
ular interest to our work, are motions in which we instead
desire the preservation of goal-directed characteristics of
the movement, where the focus is on achieving some goal,
typically with an end-effector of the robot. We refer to this
as goal-directed imitation.2

Example cases where goal-directed imitation is useful
include a workshop setting, where it may be desired for
multiple robots to perform some tasks demonstrated by
a human, such as painting, welding, or pouring fluids as
shown in Fig. 1. Another example is playing golf, where
the robot must swing the golf club such that it strikes the
golf ball at a desired location while satisfying some con-
straints such as via-points and obstacles [6]. For a robot
to successfully reproduce such tasks, it must satisfy some
constraints in task space, rather than merely mimicking
the human movements. In our experiments, we use a goal-
directed task of writing letters in the task space, where it
is desired that the robot learner reproduce the letters ex-
actly in size and position relative to the learner’s reference
frame.

Approaches based on kinematic retargeting for adapt-
ing this kind of motion to robots typically assume an
accurate kinematic model of the target robot. The gen-
eral idea is to find an optimal transformation (i.e., lo-
cating the task in the robot frame) and adaptation of the

2. The term goal-directed imitation is also used to mean imitation learning
where the teacher’s intention is inferred from the demonstrations. Here
we use it to describe imitation of whole trajectories in task space.

demonstration to the target robot, where correspondences
between the human and the robot are typically known.
The demonstrations are generally adapted by maximizing
their similarity to the reproductions by the target robot,
while satisfying kinematic constraints, such as joint lim-
its and end-effector reach. This includes techniques based
on non-linear optimization [24], using Inverse Kinematics
(IK) to fit corresponding poses between the human body
structure and the robot structure [25], and optimizing a
generic weighted cost function whose weights control the
similarity of tasks in both task and joint spaces [14].
When correspondences are not known (e.g., adapting to
non-anthropomorphic robots), an automatic method that
searches for the optimal location and adaptation of the hu-
man demonstration, based on the capability of the robot to
reproduce it, can be used [6].

When the kinematic data for the target robot is not
available, data-driven approaches have been employed as
alternatives. Here, a data set of correspondences between
the source (human or robot) and target (robot) spaces is
collected and a mapping between the spaces is learned,
after which this mapping is used to transfer novel points
from the source to the target space. Most techniques in the
literature transfer human demonstrations in joint space,
typically without explicitly addressing goal-directed mo-
tions.

Examples include learning a direct mapping from sen-
sor data from a motion capture suit to the position of
the robot actuator by training a feed-forward neural net-
work for each DoF [15]; or a two-step mapping pro-
cess, where the sensor data and robot actuator data are
assumed to share a common latent space of lower dimen-
sionality, and the goal is to find mappings from the high-
dimensional sensor data to the latent space and then to
the high-dimensional robot actuator space. Several tech-
niques have been proposed for learning these mappings,
including treating the task as a regression problem and
applying Gaussian processes for both mappings [17, 26],
using Kernel Canonical Correlation Analysis (KCCA) to
map to the latent space and Kernel Regression (KR) to
map from the latent space to the robot space [27], and us-
ing a mixture of factor analyzers (MFA) combined with
a dynamical system for modeling and stable reproduction
of trajectories [28].

Another example is using Shared Gaussian Process La-
tent Variable Models (Shared-GPLVM) to jointly learn
a latent representation of skills in a lower-dimensional
space [16]. This has shown to be able to use the hyper-
parameters of one robot to accelerate learning of the same
skills by another kinematically similar robot. This is sim-
ilar to our work in that knowledge acquired by one robot
from demonstrations is transferred to other robots, which
reduces the time the human operator spends on training
the robots. However, the Shared-GPLVM models as pre-
sented assume that the source and target inputs coincide,
which is not necessarily the case if the robots do not share
the same workspace as the human demonstrator. Further-
more, goal-directed motions were not addressed in this
work.
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XH
1:T XR

1:T

Human frame H Robot frame R

Human teacher

Robot learner

ξH1:T = {θθθH ,xxxH}1:T ξR1:T = {θθθR,xxxR}1:T
Demonstration Imitation

Fig. 2. Adapting human demonstrations onto robot learner.

Finally, in our previous work [22] we proposed learning
a mapping directly from sensor data (projected onto a hu-
man skeletal model) to robot actuator space, using Local
Procrustes Analysis (LPA). However, we required that the
human teacher and the robot share the same workspace,
and we only considered the case of teaching a single
robot. In this paper we relax the requirement of shared
workspaces, by allowing a transformation of the demon-
strator’s task space into the robot learner frame, such that
their workspaces overlap and the demonstrations can be
performed by the robot (similar to kinematic retargeting).
We also provide more extensive experimental results on
two humanoids performing more complex tasks, show-
casing the robustness of our method to differences in kine-
matics, a comparison of LPA to a baseline linear Pro-
crustes Analysis, and an analysis of transfer of skills ac-
quired from human demonstrations between the robots,
in which we determine the loss incurred over multiple
rounds of transfer compared to transferring directly to the
second robot from a human teacher.

3. Problem Statement

Assume a given trajectory ξ H
1:T = {θθθ H ,xxxH}1:T of dura-

tion T , provided by a human demonstrator H, consisting
at each time step of a dH dimensional human joint angle
vector θθθ H and a human hand (tip, end-effector, etc.) po-
sition and orientation (pose) vector xxxH in task space XH ,
where dH is the number of the human joints active when
performing a particular task. xxxH is given in the reference
frame of the human demonstrator. A robot R in a different
location is to learn a parameterized skill policy πβββ , that
reproduces a generalized form of the demonstrated trajec-
tory with its own arm w.r.t. to its own reference frame. βββ
is a vector of the policy parameters that must be learned
from the robot data.

We aim to adapt ξ H
1:T to ξ R

1:T = {θθθR,xxxR}1:T such that the
robot is able to reproduce it, where θθθ R is a dR dimensional
joint angle vector of the robot, consisting of joints active
when the robot is performing the task and xxxR is the pose
vector of the robot end-effector in robot Cartesian space
XR. This is illustrated in Fig. 2. The adapted trajectory
data ξ R

1:T is then used to learn the policy parameters βββ .
We aim to adapt the given human demonstration with-

XH
1:T

XR1

1:T

XR2

1:T

Human frame H Robot frame R1

Robot frame R2

Human teacher Robot learner 1

Robot learner 2

Fig. 3. Multi-robot problem setting for two robot learners.

out assuming a kinematic model of the target robot, in
contrast to much of the related work. This can be ex-
tended into a multi-robot problem setting (as illustrated
by Fig. 3 for n = 2 robot learners), where the demon-
stration ξ H

1:T must be adapted to multiple robot trajecto-
ries ξ R1

1:T ,ξ R2
1:T , . . . ,ξ Rn

1:T , for n robots. Each trajectory is
encoded onto its own skill policy for the corresponding
robot. Thus, n different mappings must be learned from
the human data to the n robots. In the next section we
present our proposed data-driven approach for solving this
problem.

4. Proposed Method

Our proposed method employs a data-driven scheme
based on manifold alignment, that maps data from the
domain of one agent to another. It requires that we pro-
vide corresponding samples from the domains, and a non-
linear mapping is learned from these samples. This map-
ping must generalize to samples from the same domains
not seen during training. The domains represent kine-
matic data generated by a human or robot.

An alternative approach would be to instead estimate
kinematic parameters of the robot learner (e.g., link
lengths) or the inverse kinematics model from the sam-
pled robot data, and then employ kinematic retargetting.
Although this approach is interesting, learning kinematics
models accurately, typically framed as a regression prob-
lem, often requires a large amount of data, which is par-
ticularly costly in the case of robots [29, 30].

In [29], it has been shown that a mapping between
kinematic domains can be learned from very few sam-
ples using Local Procrustes Analysis, compared to the
number of samples required to instead learn a kinematic
model of a robot. The learned mapping could be further
used to provide more samples for learning a kinematics
model of a target robot, by mapping samples generated
by another robot. This is an instance of a general trans-
fer learning problem, in which estimating a mapping be-
tween different domains, from a few samples of corre-
spondences, is typically easier than collecting a sufficient
amount of data in the target domain to accurately learn a
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Section 4.2 – Offline

Section 4.3.3 – Online

Section 4.3

Manifold Alignment

by

LPA

7. Encode skill by DMPs

Section 4.4
1. Motor/Goal

babbling Dt

TH
R
−1

2. Transform

task space

3. Generate corresponding

human data Ds

with IK solver

4. Learn mapping

from correspondences

{DS , Dt}

5. Extract human

demos ξH1:T

6. Transfer to

robot demos ξ̂R1:T

Execute

χt : Target domain χs : Source domain

Human demo

Project to human

skeletal model Corresponding

skeletal demo

Fig. 4. Overview of proposed method.

target model [29–31].
Below, a high-level overview of our method is pre-

sented (Section 4.1), followed by the processes of collect-
ing sample correspondences between the domains (Sec-
tion 4.2), learning the mapping (Section 4.3), and encod-
ing the mapped trajectories as parametrized skills (Sec-
tion 4.4).

4.1. Overview
Figure 4 shows the overview of our proposed method.

Given human demonstrations, represented as trajectories
of a human skeletal model in joint space and correspond-
ing points in task space, we aim to map the trajecto-
ries onto the body of a robot, such that we obtain joint-
space trajectories for the robot corresponding to the hu-
man demonstrations. These mapped trajectories are sub-
sequently encoded as parametrized skills for later use in
new situations. We adopt the approach of projecting hu-
man captured data onto a corresponding human skeletal
model, because this allows for a unified representation of
captured human data from different sensors [32–35], and
also enables our method to be applied in conjunction with
different motion capture systems.

In the first phase of our method, corresponding samples
between the human (source) and robot (target) spaces are
collected. These samples must be representative of the re-
spective spaces in which the human teacher demonstrates
the tasks and the robot learner is expected to perform the
tasks. This phase is composed of steps 1–3 in Fig. 4 and
is described in Section 4.2. Then a non-linear mapping is
learned from these samples using LPA in step 4 of Fig. 4,
as described in Section 4.3.

The second phase is composed of steps 5–7 in Fig. 4,
where the learned mapping is employed to adapt human
joint trajectories onto robot joint trajectories, as described
in Section 4.3.3, after which the adapted trajectories are
encoded as parametrized skills (see Section 4.4). Since

A

B

A

B

TH
R

TH
R

XH

XR

Human frame

Robot frame

Fig. 5. Illustration of workspace alignment T H
R between a

human model and robot with different reference frames.

the learned mapping is defined globally within the limits
of the given spaces, any trajectory that lies in the domain
of the human space can be mapped onto the robot space.
This consequently allows the transfer of any skills that
both the human and the robot are capable of performing
within their respective domains.

4.2. Correspondence
As described in Section 2, goal-directed imitation re-

quires that the robot preserves task-space information.
For this reason, we define correspondences in end-effector
space. That is, a human joint configuration and a robot
joint configuration correspond if they both reach the same
end-effector pose defined in the same reference frame. In
the general case, in which the end-effector spaces of two
arms do not overlap, a workspace alignment T H

R is needed
to be able to relate points in the two end-effector spaces.
This is illustrated in Fig. 5.

For redundant arms (e.g., a 7-DoF human or robot
arm in a 3D space) there may be an infinite number of
joint configurations that reach the same end-effector pose.
Thus, using correspondences in the end-effector space
alone can cause configurations in one joint space to cor-
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Source robot Target robot

A

B

A

B

Source robot Target robot

A

B

A

B

(a) Inconsistent IK solutions for
neighboring points A and B due
to redundancies.

(b) Consistent IK solutions for
neighboring points A and B
with redundancy resolution.

Fig. 6. Illustration of inconsistent IK solutions due to arm
redundancies for 3-DoF planar robots in a 2D task space.
The solid and dashed lines correspond to similar tasks for the
same robot. (a) Target data set will have inconsistent neigh-
bors due to redundancies. (b) With redundancy resolution,
target data set will have consistent neighbors.

(a) Human T-posture. (b) PR2 T-posture.

(c) Human U-posture. (d) PR2 U-posture.

Fig. 7. Illustration of the T-posture and U-posture with the
PR2 robot.

respond to configurations potentially lying far from each
other in another joint space, resulting in an inconsistent
sample of correspondences, as illustrated in Fig. 6(a). To
resolve this inconsistency, in addition to joint configura-
tions reaching the same end-effector pose, we require that
they also assume similar postures, resulting in consistent
configurations shown in Fig. 6(b).

The similarity of postures can be determined visually
by the human teacher [15, 16]. To this end, the robot is
programmed to assume a pre-defined sequence of pos-
tures, such as the T-posture [36] and U-posture shown
in Fig. 7. Then the human teacher mimics these robot
postures, thus generating corresponding human postures.
From this generated set of human-robot posture pairs, the
teacher visually identifies the order of the robot joints and
their movement in relation to hers (i.e., direction of rota-
tion), and can thus generate a mapping fpost from robot
postures to human postures, and vice versa. Given target
robot configurations that reach A and B in Fig. 6(b), we
can use the posture mapping to select similar source robot
postures θθθ s

similar = fpostθθθ t out of the many that can reach
A and B, thereby resolving redundancies consistently.

To collect a data set of correspondences, we propose

A A

Init. IK

Source frame Target frame

Fig. 8. Biasing IK for target arm with target posture sim-
ilar to corresponding source arm posture. The dashed links
represent the target arm posture similar to the source arm
posture that reaches A (solid links in Source frame), and this
is used to bias IK to find the target posture (solid in Target
frame) that reaches A with a similar posture to that of the
source arm.

generating N random robot pose data Dt , which can gen-
erally be accomplished by employing autonomous robot
exploration strategies from developmental robotics, such
as motor babbling or goal babbling [3, 37] – step 1 in
Fig. 4. This data consists of robot joint angles θθθ t

i and their
corresponding task space points xxxt

i , where i = 1,2, . . . ,N
– i.e., Dt = {θθθ t

i,xxx
t
i}. Then we use a numerical IK solver

on the human skeletal model to generate corresponding
human joint angles θθθ s

i , from their corresponding end-
effector points3 xxxs

i = T H
R

−1 × xxxt
i , forming the correspond-

ing human data Ds = {θθθ s
i ,xxx

s
i} – steps 2–3 in Fig. 4.

To avoid the inconsistencies that can arise due to arm
redundancies, the IK solver is biased towards a solution
consistent with the corresponding robot posture, by ini-
tializing it with a similar human posture generated using
fpost , as illustrated in Fig. 8.

The workspace alignment T H
R transforms points be-

tween the robot task space XR and the human task space
XH , as shown in Fig. 5, and can be determined as an affine
transformation as illustrated in Fig. 9. Firstly, we select
a preferred human home posture θθθ H

home (e.g., at the cen-
ter of the demonstrations θθθ H

1:T ) and map it to the robot
joint space using the posture mapping fpost , to obtain a
corresponding robot home posture θθθ R

home. Then the N
random robot poses Dt = {θθθ t

i,xxx
t
i} are generated around

θθθ R
home. This is illustrated in Fig. 9(a).
Secondly, as illustrated in Fig. 9(b), we map the N ran-

dom robot joints θθθ t
1:N into the human joint space, using

the inverse of fpost (shown as the grey dashed arrow),
effectively locating xxxt

1:N in the human frame as auxil-
iary points x̂xxs

1:N using forward kinematics on the human
model. Due to differences in kinematics, x̂xxs

1:N may not
be exactly aligned with the human demonstrations xxxH

1:T ,
but this allows us to compute an auxiliary alignment Taux
(shown as the black solid arrow) from xxxt

1:N to correspond-
ing points x̂xxs

1:N in the human frame.
Then, thirdly, we can directly compare the human

demonstrations xxxH
1:T and the mapped auxiliary robot data

3. The inverse T H
R

−1 of the workspace alignment T H
R maps points from the

robot end-effector space to the human end-effector space.
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Demos

xxxH
1:T

Random robot data

xxxt
1:N

Human frame

Robot frame
θθθHhome

θθθRhomefpost

(a) Generating random robot data near θθθR
home.

Human frame

Robot frame

TH
R

Taux

TH
aux

x̂xxs
1:N

f−1
post

θθθt1:N
θ̂θθ
s

1:N

xxxH
1:T

xxxt
1:N

p(xxxH
1:T )

p(x̂xxs
1:N )

(b) Steps for computing the alignment T H
R .

Fig. 9. Proposed workspace alignment approach. See text
for details.

x̂xxs
1:N in the human frame. Since we do not have pairwise

correspondences between xxxH
1:T and x̂xxs

1:N , we propose em-
ploying the rough alignment algorithm [30], in which we
model xxxH

1:T and x̂xxs
1:N as Gaussian distributed and find the

alignment T H
aux (shown as the short solid arrow between

the two Gaussian ellipses) between them by minimizing
the Kullback-Leibler divergence (KL) between the Gaus-
sians p(xxxH

1:T ) and p(x̂xxs
1:N). The final alignment T H

R is then
computed as a composition of T H

aux and Taux (the curved
solid arrow).

The KL-divergence between two Gaussian distributed
data sets Ms and Mt has the following analytical form

2KL(p(Ms)||p(Mt)) = (μμμ s −μμμt)
�Σ−1

tt (μμμ s −μμμt)

+tr(ΣssΣ−1
tt − I)− ln|ΣssΣ−1

tt |, (1)

where μμμs and μμμ t are the means of Ms and Mt , and Σss
and Σtt their covariance matrices. In the case where we
only care about the translation between Ms and Mt we can
model the linear alignment T H

aux as the difference between
their Gaussian centers μμμ s and μμμ t ; however, a general so-
lution was derived in [30], using Eq. (1) as a cost function,
and is as follows. First, the data sets are standardized by
substracting the mean and whitening, and then obtaining
the rotation A as follows

A = UtΛ
1
2
t Λ− 1

2
s U�

s , . . . . . . . . . . . (2)

where UsΛsU�
s is an eigenvalue decomposition of Σss and

similarly for UtΛtU�
t and Σtt . Thus, to map a random

robot point xxxt
i to its corresponding point xxxs

i in the human
frame, we first map it to its auxiliary point x̂xxs

i using Taux
and finally map it using T H

aux, after it has been standard-
ized4 and then rotated by A; and we set Ms = {x̂xxs

1:N} and
Mt = {xxxH

1:T} to compute A in Eq. (2).

4.3. Learning the Mapping: Local Procrustes Anal-
ysis

Once a sample of corresponding points has been col-
lected using the method presented in the previous section,
we can use it to learn a mapping between two domains –
step 4 in Fig. 4. To this end, we employ Local Procrustes
Analysis [29]. Consider a scenario where there are two
different but related domains: the source domain χs ⊂Rd

and the target domain χt ⊂ Rd , where d is the dimen-
sionality of the domains. In our case they belong to the
source (human or robot) and the target robot respectively.
They are related in the sense that their data is generated by
kinematic chains,5 and they are different due to the chains
having different parameters (link lengths).

Given samples of correspondences from each domain,
Ds = {θθθ s

i ,xxx
s
i}N

i=1 and Dt = {θθθ t
i,xxx

t
i}N

i=1, where N is the
sample size, the objective is to learn a mapping function,
f : χs �→ χt , that maps data points from the source do-
main to the target domain, through which knowledge can
be shared between the domains.

Manifold alignment techniques are useful in this kind
of problem because they allow for knowledge transfer be-
tween two seemingly disparate data sets, by aligning their
underlying manifolds [38, 39]. Applications include auto-
matic machine translation [40], cross-lingual information
retrieval [38, 39], transfer learning for Markov Decision
Processes [38] and robot model learning [29, 30], object
pose alignment [41, 42] and bioinformatics [38, 39, 42].

In knowledge transfer for robots, the aim is typically
to avoid expensive data collection on the target robot. A
linear manifold alignment algorithm based on Procrustes
Analysis [38] was employed to show the possibility of
learning a mapping between robots for accelerating learn-
ing of forward kinematics of a new robot [30], based on
a small sample of correspondences generated from the
robots. Procrustes Analysis represents the source and tar-
get data as manifolds, and assumes that the target man-
ifold was generated by linearly transforming the source
manifold. This allows determination of this linear trans-
formation from a few samples of corresponding points be-
tween the manifolds, making it data efficient.

However, it has been shown that to align manifolds of
robot kinematics data, non-linear functions are generally
more accurate [29]. LPA extends the Procrustes Analysis
algorithm to handle such non-linear mappings, while at-
tempting to retain its data efficiency, by approximating a
global non-linear manifold alignment with locally linear

4. The procedure is similar to the Procrustes Analysis without correspon-
dences, discussed in Section 4.3.2.

5. A human (or robot) body can be described mathematically as a group of
links (or rigid bodies) connected by joints, forming a kinematic chain.
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π1,N (μμμ1,Σ1)

π2,N (μμμ2,Σ2)

π3,N (μμμ3,Σ3)

π4,N (μμμ4,Σ4)

Source manifold
Target manifold

χs χt

f1

f2

f3

f4

Fig. 10. Illustration of LPA with 4 clusters. The gray shaded
ellipses represent GMM components and the shaded areas
on the manifolds represent areas for which the GMM com-
ponents are responsible. f1 to f4 are linear mappings learned
from the data in their corresponding clusters.

functions. This idea of approximating a global non-linear
function with locally linear models has also been applied
in locally weighted learning for control [43, 44] and learn-
ing non-linear image manifolds [45].

LPA assumes that the domains are locally continuous
and smooth, and that the mapping can be computed lo-
cally using linear models on the corresponding instances
ddds

i ↔ dddt
i , where ddds

i ∈ Ds and dddt
i ∈ Dt . To achieve this,

LPA first clusters the two data sets into K local clusters
(see Section 4.3.1 and Fig. 10). Then a linear mapping
for each cluster is computed using the Procrustes Analy-
sis algorithm (see Section 4.3.2). A new data point from
the source domain can then be mapped to the target do-
main by a weighted sum of the linear mappings (see Sec-
tion 4.3.3).

4.3.1. Clustering and Mapping
This section describes how the two data sets can be

clustered such that the weighted sum of the linear map-
pings, learned on the resulting clusters, yields a good non-
linear mapping from the source domain to the target do-
main. The aim is to represent the two data sets Ds and
Dt by a mixture of K regions, where corresponding points
in the data sets map to the same region, as illustrated in
Fig. 10.

LPA employs Gaussian Mixture Modeling (GMM),
where the Gaussian mixtures correspond to the local re-
gions, trained using the Expectation-Maximization (EM)
algorithm, because it allows interpolating the output
of local mappings using component responsibilities as
weights. A GMM is represented by three parameters: the
mixing coefficients πk, the mean vectors μμμk and the co-
variance matrices Σk. The total probability density over a
vector yyy is then defined as a superposition of K Gaussian
densities of the form

p(yyy) =
K

∑
k=1

πkN (yyy | μμμk,Σk), . . . . . . . (3)

Ds = {θθθsi ,xxxs
i}Ni=1 Dt = {θθθti,xxxt

i}Ni=1

{θθθsi}Ni=1 {θθθti}Ni=1

f : χs �→ χt

Share cluster info.

Train GMM: p(θθθs) =
∑K

k=1 πkN (θθθs | μμμk,Σk).

Source domain Target domain

Fig. 11. Illustration of clustering in joint space. A GMM
model is trained in the joint space of the source domain, and
the clusters found are transferred to the joint space of the
target domain, using the correspondence information. The
non-linear mapping f is learned in all dimensions.

and the components’ responsibilities are defined as

γk =
πkN (yyy | μμμk,Σk)

K

∑
j=1

π jN (yyy | μμμ j,Σ j)

, . . . . . . . . (4)

where N is a multivariate normal distribution. γk can be
viewed as the responsibility that component k takes for
explaining the point yyy.

In LPA, a GMM is trained on only one of the do-
mains (the source domain in our experiments) and the
data is clustered by assigning points to components with
the highest responsibilities. This is indicated in Fig. 10
by having GMM parameters only in the source domain.
This clustering information, together with the informa-
tion about correspondences, is then used to fit another
GMM to the target domain, i.e., points in the target do-
main that correspond to points in the same cluster in the
source domain are clustered together. Furthermore, our
domain data consists of robot joints and end-effector po-
sitions, which are correlated through the kinematics of
the body (i.e., moving arm joints affects the end-effector
movement). So in order to efficiently obtain clusters, the
GMMs are trained in the joint spaces of the data sets, as
illustrated in Fig. 11.

In order to determine the number of GMM components
K and initialize the parameters Π = {πk,μμμk,Σk} for the
EM algorithm, an algorithm was proposed in [29]. As
there are many ways to initialize the EM algorithm, no
restriction is put on this choice of initialization. The al-
gorithm proposed in [29] employs a decisive hierarchical
scheme, that automatically estimates the number of com-
ponents (see Algorithm 1 for the pseudocode). Fig. 12
illustrates this procedure. It begins by training a GMM
with one component and learning a linear mapping on its
cluster, and then evaluating this mapping on the training
data (Fig. 12(a)).

If the mapping error ck is evaluated to be less than some
pre-defined threshold cmin then the EM algorithm is ini-
tialized with one component and the corresponding pa-
rameters are initialized accordingly; otherwise the GMM
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Source domain
Target domain

C1 C1

Source domain
Target domain

C1

C1C2 C2

(a) Begin with one cluster. (b) Split into two clusters.

Source domain
Target domain

C1 C1

C2

C2C3

C3

C4 C4

Source domain
Target domain

(c) Four clusters. (d) Final initialization.

Fig. 12. Illustration of the EM initialization procedure. In
the final stage a GMM is learned in the source domain.

Algorithm 1 initEM
1: IN: Training sets Ds,Dt , cmin, Nmin
2: Set cluster assignment vector hhh to ones and K = 1
3: while not terminated do
4: for each GMM component k ∈ [1,K] do
5: Compute ck on data belonging to its corre-

sponding cluster Ck (see Eqs. (5) and (10))
6: if ck > cmin then
7: Split cluster Ck into two (Ck,1 and Ck,2)
8: if NCk,1 ≥ Nmin and NCk,2 ≥ Nmin then
9: Update assignment vector hhh accord-

ingly
10: end if
11: end if
12: end for
13: Update number of components K
14: end while
15: Compute each component parameters {πk,μμμk,Σk}
16: OUT: K, Π = {πk,μμμk,Σk}

component is split into two using the K-means algorithm
and the whole process is repeated on the corresponding
two new clusters (Figs. 12(b)–(c)). ck is defined as fol-
lows

ck =
1

Nk

√
√
√
√

Nk

∑
n=1

‖ fk(zzzs
ik)− zzzt

ik‖2, . . . . . . (5)

where Nk is the number of points in cluster k, fk is a linear
mapping for cluster k (see Section 4.3.2), and zzzs

ik and zzzt
ik

are corresponding data points in cluster k. This process is
repeated until either (a) all ck are less than the threshold
cmin, or (b) none of the clusters can be split further be-
cause one or both of the resulting clusters have number of
points less than some pre-defined threshold Nmin.

The output of this procedure is the number of
GMM components and the parameters Π = {πk,μμμk,Σk}
(Fig. 12(d)). In practice, this initialization procedure is
run multiple times and parameters with the highest log-
likelihood estimate are used to initialize the EM algo-
rithm, which is run until convergence. After the EM al-
gorithm has converged, clusters are created locally by as-

signing points to components with the highest responsi-
bilities.

4.3.2. Linear Mapping with Procrustes Analysis
Given an assignment of points to local clusters as dis-

cussed in Section 4.3.1, we must learn a linear mapping
for each cluster. To this end, we employ the Procrustes
Analysis algorithm [30, 38]. The Procrustes Analysis is
similar to the rough alignment algorithm discussed in Sec-
tion 4.2, however Procrustes Analysis computes an ex-
act alignment between two data sets based on provided
pairwise correspondences. The goal is to find an optimal
alignment from some source data set Zs ⊂Rd to some tar-
get data set Zt ⊂ Rd , where both data sets are assumed to
have the same dimensionality d.

In our case Zs and Zt are data sets belonging to cor-
responding clusters in both source and target domains.
Through this linear transformation, novel points in the
source domain can be mapped onto the target domain.
The optimal alignment is achieved by removing the trans-
lational, rotational and scaling components from one data
set such that the two data sets are optimally aligned [38].

The first step in applying PA is to preprocess the data
by subtracting the mean and whitening it, thus obtaining
standardized matrices Ms and Mt , as follows:

sss = Bs(zzzs −ωωωs), . . . . . . . . . . . . (6)

ttt = Bt(zzzt −ωωωt), . . . . . . . . . . . . (7)

where sss ∈ Ms and ttt ∈ Mt . The values ωωωs = E{Zs} and
ωωωt = E{Zt} are the means of the data, where E{·} de-
notes the expectation operator. Matrices Bs and Bt can be
obtained using the Singular Value Decomposition (SVD)
of the covariance matrices of Zs and Zt respectively, and
are such that the data Ms and Mt are whitened. For exam-
ple, the SVD decomposition of covariance Σz of matrix
Z is Σz = BΛB�, where B is the eigenvector and Λ a di-
agonal matrix of eigenvalues of Σz, ordered in decreasing
order of eigenvalues. Here, Bs and Bt are eigenvectors ob-
tained from SVD decompositions of covariance matrices
of Zs and Zt respectively.

The manifold alignment function is modeled as a linear
mapping fk : Ms �→ Mt , with

fk(sss) = Asss . . . . . . . . . . . . . . (8)

where Ad×d is a transformation matrix. The expression
for A was derived in [30], and is as follows:

A = Σ−1
ss Σts, . . . . . . . . . . . . . . (9)

where Σss is the covariance matrix of the source matrix
Ms and Σts is the covariance between the source and target
matrices Ms and Mt . The reader is referred to [30] for a
full derivation.

A new point sss� = Bs(zzzs
� −ωωωs) in the source manifold

can then be mapped using ẑzzt
� = Bt #Asss� + ωωωt , where ẑzzt

� is
the transferred point and B# is a Moore-Penrose inverse of
B. Algorithms 2 and 3 show pseudocode for learning and
transferring using Procrustes Analysis.
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Algorithm 2 Procrustes Analysis: Learning
1: IN: Cluster Ck training sets Zs,Zt

2: Compute Ms and Mt (see Eqs. (6) and (7))
3: Compute alignment matrix: A = Σ−1

ss Σts
4: OUT: Cluster Ck parameters Θ = {Ak,Bs

k,B
t
k,ωωω

s
k,ωωω

t
k}

Algorithm 3 Procrustes Analysis: Transfer
1: IN: Cluster Ck parameters Θ = {Ak,Bs

k,B
t
k,ωωω

s
k,ωωω

t
k}

2: IN: Source domain novel point zzzs
�

3: Compute standardized novel point: sss� = Bs
k(zzz

s
�−ωωωs

k)
4: Compute estimated target point: ẑzzt

� = Bt
k

#Aksss� +ωωωt
k

5: OUT: ẑzzt
�

Algorithm 4 Local Procrustes Analysis
1: IN: Training set Ds and Dt

2: IN: Parameters cmin and Nmin
3: (Π, K) ⇐ initEM(Ds, Dt , cmin, Nmin) {see Algo-

rithm 1}
4: Π ⇐ fitGMM({θθθ s

iii}N
i=1, Π, K)

5: for each cluster k ∈ [1,K] do
6: Compute {Ak,Bs

k,B
t
k,ωωω

s
k,ωωω

t
k} {see Algorithm 2}

7: end for
8: Θ = {Ak,Bs

k,B
t
k,ωωω

s
k,ωωω

t
k}K

k=1
9: OUT: {Π, Θ}

Given this expression for the linear mapping, the map-
ping fk in Eq. (5) can be substituted by this expression,
obtaining the following expression for mapping error ck:

ck =
1

Nk

√
√
√
√

Nk

∑
n=1

‖Bt
k

#Aksssik +ωωωt
k − ẑzzt

ik‖2. . . . (10)

4.3.3. Transfer with LPA
Once the GMM parameters, Π = {πk,μμμk,Σk}, and

corresponding linear mappings, Θ = {Ak,Bs
k,B

t
k,ωωω

s
k,ωωω

t
k},

have been learned, we can build an LPA model and use
it to transfer novel points from the source domain to the
target domain. Note that only one GMM (in the source
domain in our experiments) is required for interpolation
when approximating the non-linear mapping, and that it
is learned in the joint space, i.e., μμμk is a vector in joint
space and Σk is the covariance matrix of the joint angles.
Algorithm 4 summarizes the steps followed when learn-
ing an LPA model.

For a novel point ddds
� = {θθθ s

�,xxx
s
�}, ddds

� ∈ χs in the source
domain to be transferred to the target domain, we compute
each Gaussian component’s weights using Eq. (4),

γk =
πkN (θθθ s

� | μμμk,Σk)
K

∑
j=1

π jN (θθθ s
� | μμμ j,Σ j)

. . . . . . . . (11)

Finally, we map the query point ddds
� as follows:

d̂dd
t
� =

K

∑
k=1

γk(Bt
k

#Akzzzs
k�

+ωωωt
k), . . . . . . . (12)

where zzzs
k�

= Bs
k(ddd

s
�−ωωωs

k) from Eq. (6).
For a given source trajectory, say a human demonstra-

tion ξ H
1:T = {θθθ H ,xxxH}1:T , transfer is performed for each

point individually along the trajectory, using Eqs. (11) and
(12), to obtain estimated target robot trajectories ξ̂ R

1:T =

{θ̂θθ R
, x̂xxR}1:T . Then each transferred trajectory can be en-

coded onto a parametrized skill as discussed below in Sec-
tion 4.4.

A straightforward extension of our method to multi-
robot systems involves applying the method separately for
each robot to learn from the same human demonstrations.
This approach, as illustrated in Fig. 3, assumes that all
robots are learning at roughly the same time, in paral-
lel from the same human demonstrations. This requires
learning an LPA model for each teacher-learner pair.

Teaching multi-robot systems is attractive for complex
tasks that require collaboration of multiple robots. Such
tasks can be solved more easily by combining the unique
capabilities of each robot, or faster by extending the area
of coverage and range of operation [46, 47].

There may be a case where only one robot is available
to learn from a human demonstrator, and after some pe-
riod of time a new robot becomes available to learn the
same skills. This may be the case where a new robot is
delivered to a factory with existing robots that have previ-
ously learned these skills or a skilled robot is shipped to
a different location with other robots that must learn the
same skills.

In these settings, if the existing robot has mastered
the skills and a human teacher is not available to teach
the new robot, it may be beneficial to transfer knowl-
edge from the existing robot to the new one. In this ap-
proach, human demonstrations are transferred to the new
robot via the existing robot. The existing robot can mas-
ter the skills by (a) correction with human feedback [48–
50], (b) refining and fine-tuning with reinforcement learn-
ing approaches [51, 52], or (c) its own experience, using
techniques based on socially guided exploration for robot
learning of motor skills [53].

To apply our method in this setting, we must learn a
mapping from a human teacher to the robot that will then
act as a teacher to other robot learners. Then we learn a
mapping between the robot teacher and the robot learners
using the same procedure described in our method (Al-
gorithm 4), without the step of projecting the trajectories
onto a skeletal model. The challenge is how to get a robot
to mimic the movement of another robot, in the same way
a human would as described in Section 4.2.

However, for our purpose of analyzing the error ac-
cumulation of transfer from a human to multiple robots
in series, we assume that the robot teacher has success-
fully learned its kinematic models, or that the models are
well understood analytically. This assumption is reason-
able, since a robot deployed in some environment for an
extended period of time would generate some data from
which to learn its kinematics models. Examples of this
setting can be found in developmental robotics and life-
long learning.
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Under this assumption we can replace the human
teacher with a robotic teacher and apply the same method
to transfer knowledge between robots. We explore and
analyze knowledge transfer between robots in this context
experimentally in Section 5.2.

4.4. Skill Encoding
We use Dynamic Movement Primitives to encode joint

space trajectories as parametrized policies πβββ and demon-
strate that we can recover useful skills from human
demonstrations adapted using our method. A DMP is
specified by a set of nonlinear differential equations with
well-defined attractor dynamics [10]. For a single DoF
trajectory θ , the DMP is defined as follows:

τ ż = αz(βz(θg −θ)− z)+g(x), . . . . . . (13)

τθ̇ = z, . . . . . . . . . . . . . . . . (14)

τ ẋ = −αxx, . . . . . . . . . . . . . . (15)

where x is the phase variable, z is the auxiliary variable
and θg is the desired goal of the movement. Parame-
ters αz, βz, αx and τ define the behaviour of this second
order system. If the parameters are selected as τ > 0,
αz = 4βz > 0 and αx > 0, then the dynamic system has
a unique point attractor at θ = θg, z = 0. Given the ini-
tial condition x(0) = 1, Eq. (15) is solved analytically by
x(t) = exp(−αxt/τ). However, to implement different
modulations of the DMP such as phase stopping [11], it is
better to keep Eq. (15) as a differential equation.

The forcing term g(x) is defined as a linear combination
of radial basis functions, which enable the robot to follow
any smooth point-to-point trajectory from the beginning
of the movement θ0 to the end configuration θg:

g(x) =

N

∑
i=1

wiΨi(x)

N

∑
i=1

Ψi(x)

x, . . . . . . . . . (16)

Ψi(x) = exp(−hi(x− ci)2). . . . . . . . (17)

Here ci are the centers of the radial basis functions
distributed along the trajectory and hi > 0. For robots
with more than one DoF, each degree is represented by
Eqs. (13)–(14) with different wi and θg, but with a com-
mon phase variable x and time constant τ as specified in
Eq. (15). To approximate any smooth trajectory with a
DMP, we need to estimate the weights wi, time constant
τ , and the goal configuration θg. τ is usually set to the
duration of the movement, θg to the final configuration
on the trajectory, while wi are estimated from the train-
ing data (sampled positions, velocities and accelerations)
using regression techniques. See [10] for more details.

The training data here is the estimated target robot tra-
jectory {θ̂θθ R}1:T in joint space, which is transferred from
human demonstrations by LPA, and the policy parameters
to be learned are the DMP weights βββ = {wi}. We compute
the first and second derivatives of the adapted trajectory to
obtain its velocities and accelerations.

4.5. Summary
This section summarizes the steps involved in learning

from demonstrations using our method. We described in
Section 4.2 how a sample of correspondences between the
human and robot domains can be collected. This involved
identifying a pair of joints between the domains, that are
in correspondence for a particular class of tasks, and iden-
tifying how we can convert between them; and also locat-
ing the demonstrated task in the workspace of the robot
learner. Then a sample of correspondences is collected by
generating random robot data in the vicinity of the tasks to
be performed and using an IK solver of the human model
on each robot data point to generate a corresponding hu-
man data set.

Once the sample of correspondences is available, an
LPA model is learned on the data, as described in Sec-
tion 4.3. Then any sequence of points in the human do-
main involving the joints used when collecting the train-
ing data, can be transferred to the robot domain using the
learned LPA model. Finally, the transferred trajectories
can be encoded as parametrized skills as described in Sec-
tion 4.4. We also discussed how the same procedure can
be applied to transfer knowledge between robots by re-
placing a human teacher with a robot, where the robot
teacher is assumed to have learned its kinematics models
from experience.

5. Experiments

To evaluate our transfer method, we designed exper-
iments in simulation to demonstrate and transfer trajec-
tories from a 7-DoF arm of a human model, to two hu-
manoid robots, each with 7-DoF arms, namely the Willow
Garage PR26 and Meka M1,7 shown in Fig. 13. Table 1
shows the parameters (lengths) of their arms as well as
those of the human model. Note that, in addition to the
arm length difference, the robots also have different off-
sets between their links.

We demonstrated goal-directed tasks of writing letters,
using the common 2D handwriting movement data set.8
The letters are distributed, scaled and rotated such that
they span the 3D task space, as shown in Fig. 13. We
also analyzed the transfer of the demonstrated tasks from
one robot to another robot, to evaluate the possibility of
knowledge transfer between robots.

The data set contains handwritten letters from A to Z,
with several demonstrations per letter. In our experiments
we only used 5 demonstrations for each letter in Fig. 13
as test data. To model human demonstrations, we used an
IK solver on the left arm of the human kinematic model to
trace the letters and obtain the tasks in joint space; how-
ever, these demonstrations could have been recorded by
any motion capture system and adapted onto the human

6. http://www.willowgarage.com/pages/pr2/overview
[Accessed June 26, 2017]

7. https://github.com/ahoarau/mekabot [Accessed June 26, 2017]
8. https://gitlab.idiap.ch/rli/pbdlib-matlab/tree/master/data/2Dletters

[Accessed June 26, 2017]
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(a) PR2. (b) Meka.

Fig. 13. Robots used in our experiments.

Table 1. Parameters (lengths) of human and robot models
in mm. �Estimated from URDF model.

Link Human PR2 Meka�

Upper arm 250 400 279
Forearm 250 321 322

model, using for example, the Master Motor Map (MMM)
framework [34]. We then used our method to adapt these
trajectories onto the left arms of the robots and encoded
them using DMPs.

To evaluate our method we executed reproductions of
the transferred tasks on the robots, by computing for-
ward kinematics on the simulated robots, to obtain the
adapted trajectories in task space, and compared these
against ground-truth data. As ground-truth, we used an
IK solver on the robots to trace the letters to obtain their
corresponding joint-space trajectories, encoded them us-
ing DMPs and executed their reproductions on the robots
to obtain corresponding reproductions in task space. As a
measure of performance, we computed the error in repro-
ducing the letters in task space, using our method and the
IK-based method.

When drawing small characters, the last three joints
tend to move more whereas the first four stay relatively
static. For the large characters in our experiments, the task
lies almost entirely in the space of the first four joints, and
can be reproduced in this 4-dimensional joint space. In
this case, the domains χs and χt , data sets Ds and Dt , and
trajectories ξ s and ξ t are 7-dimensional – 4 in joint space
and 3 in task space. As described in Section 4.2, we iden-
tified correspondences between the 4 DoFs of the human
and the PR2 as
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and the Meka as
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where the 5× 5 matrices are the posture mappings f pr2
post

and f meka
post respectively.

To generate training data for learning the mapping for
each robot, we simulated motor babbling by randomly
sampling the 4-dimensional joint space of the robot and
applying forward kinematics to obtain corresponding end-
effector positions. As described in Section 4.2, we trans-
formed the end-effector position of each robot data into
the human frame using T H

R
−1 and used an IK solver to

collect the corresponding human data point, where the
IK was initialized using human poses similar to corre-
sponding robot poses generated using f pr2

post and f meka
post as

described above. The rest of the joints (last three joints)
were kept at constant values. The workspace alignment
matrices T H

pr2 and T H
meka were computed using the rough

alignment algorithm using f pr2
post and f meka

post to map data in
the joint spaces as described in Section 4.2.

We start by evaluating the accuracy of mapping the tra-
jectories from the human model onto the robots using Pro-
crustes Analysis and Local Procrustes Analysis and en-
coding them using DMPs in Section 5.1, and finally we
analyze the transfer of acquired knowledge by one robot
to another robot in Section 5.2.

5.1. Skill Transfer and Encoding
In this section we evaluate our method by analyzing

the mapping of 5 human demonstrations per letter onto
the robots, using Procrustes Analysis and Local Pro-
crustes Analysis, and reproducing the corresponding en-
coded skills on the robots. We learned a DMP model for
each letter from its 5 transferred demonstrations, and re-
produced the first demonstration of each letter from these
learned DMPs. To measure the transfer accuracy, the
reproductions are compared against their corresponding
original demonstrations. We repeated this for the IK-
based method and averaged the results over 5 runs.

To train LPA (see Algorithm 4), we set Cmin to 0.005,
encouraging narrow clusters, and we experimented with
several values of Nmin. Encouraging narrow clusters runs
a risk of overfitting the mapping but this can be controlled
by choosing a large value of Nmin. We found Nmin = 15
for the PR2 and Nmin = 12 for the Meka to learn more
accurate mappings. Smaller values overfit the data and
larger values produced less accurate mappings.

Figure 14 shows the accuracy in transferring and repro-
ducing the letters, for PA and LPA, for increasing training
sample size, compared to the IK-based method. The re-
sults of the IK method are shown in black, dashed lines.
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Fig. 14. Comparison of transferring using Procrustes Analy-
sis and LPA, and the baseline method for the PR2 and Meka.
The black dashed line corresponds to the results of the base-
line method, and the error bars represent one standard devi-
ation from the mean.

0.60.70.8 00.20.40.6

−0.2

0

0.2

X (m) Y (m)

Z
(m

)

IK-based
Our method

0.30.40.5
00.20.40.6

0

0.2

0.4

X (m) Y (m)

Z
(m

)

IK-based
Our method

(a) Imitation for the PR2. (b) Imitation for the Meka.

Fig. 15. Sample task imitation for the PR2 and Meka using
LPA.

We observe that transfer with LPA improves with increas-
ing data points, and always out-performs PA. Transfer
with PA does not improve with more data, as its linear-
ity assumption limits it to model simple mappings.

Figure 15 shows some qualitative results of reproduc-
ing the transferred skills using LPA, for the PR2 (see
Fig. 15(a)) and the Meka (see Fig. 15(b)), where the
transferred trajectories are overlaid on the ground-truth
trajectories. Similarly, Fig. 16 shows the results of trans-
fer using PA.

The reproductions using our method with LPA are com-
parable with the reproductions of the IK-based method,
which makes use of kinematic models of the robots. Due
to limited linear mappings, which resulted in less accu-
rate transfer, the reproductions of our method using PA
are offset from the IK-based reproductions. This is par-
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Fig. 16. Sample task imitation for the PR2 and Meka using
Procrustes Analysis.

ticularly clear for the PR2, where the PA mapping caused
the final reproductions to differ significantly.

Some letters with complex shapes, such as H, K, A and
B, could not be reproduced exactly by DMP, accounting
for much of the errors in Fig. 14, for both our method and
the IK method. This is most likely because DMP aims to
reproduce a generalized skill that can be adapted to new
contexts, rather than an exact skill as demonstrated. Nev-
ertheless, all the letters reproduced by the robots were rec-
ognizable, and the DMP was able to reproduce smooth
generalized letters. The results presented here demon-
strate that we are able to recover skills from adapted
demonstrations, without assuming a kinematic model of
the robot.

The results indicate that mapping with LPA adapts to
the differences in kinematics, which requires less data for
the PR2 than for the Meka. This difference is affected by
the relative differences of the robots w.r.t. to the human
model. It was observed in [29] that the complexity of the
mapping required between manifolds of agents increases
with the difference between the ratios of their arm links.
The ratio of the first link to the second one of the human
model is 1, and it is 1.25 for the PR2 and 0.87 for the
Meka.

Although transfer with PA is unable to handle large dif-
ferences in kinematics, it manages to preserve the overall
gist of the demonstrated tasks. The trade off between LPA
and PA is that LPA achieves better transfer accuracy given
more data, but PA requires very few samples to learn the
mapping. In the results presented here, the smallest sam-
ple size was 1000, however we observed that PA is able to
learn a mapping with the same accuracy as reported here
from a sample size as small as 500.

5.2. Knowledge Transfer Between Robots
In the previous experiment we demonstrated the trans-

fer of skills from a human teacher to two robot learners.
In this experiment we analyze the transfer of knowledge
acquired from a human, between robots, where the PR2 is
the teacher and the Meka is the learner, using LPA. In or-
der to analyze this using our method, we assume that the
teacher robot either has successfully learned its kinemat-
ics models, or that they can be modeled analytically. This
is compared to the direct transfer from a human teacher
to a new robot, the Meka, as presented in the previous
experiment.
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Fig. 17. Accuracy of transferring tasks of writing letters
from the PR2 and human teacher to the Meka.

Firstly we took trajectories mapped to the PR2 from hu-
man demonstrations and mapped them to the Meka, thus
effectively cascading the human-PR2 mapping and the
PR2-Meka mapping. This is denoted Human-PR2-Meka.
Separately, we assume the PR2 has mastered the skills
transferred from a human, and transferred these mastered
skills to the Meka, denoted PR2-Meka. We discussed
some techniques which a robot can use to improve or
refine skills learned from human demonstrations in Sec-
tion 4.3.3. In this paper, we assume any of these tech-
niques can be used, and thus model mastered robot skills
using an IK solver on the robot teacher, the same way we
modeled human demonstrations. These two approaches
are compared with direct transfer from the human teacher
to the Meka, denoted Human-Meka.

Figure 17 shows the comparison of transferring to the
Meka using the three approaches. Direct transfer from
human demonstrations is taken from the previous section.
We observe that transferring refined skills via the PR2 is
not as effective as direct transfer for the same amount of
training data. This is due to the kinematics differences
between the two robots being larger, compared to the dif-
ference between the Meka and the human model, indi-
cated by the ratio of their links discussed in the previous
section. However, given more training data, transferring
refined skills via the PR2 becomes as effective as direct
human transfer. Transferring unrefined skills via the PR2
is even less accurate because of the accumulation of errors
from the human domain.

In Fig. 18, we show some qualitative results of trans-
ferring to the Meka, using the three approaches. The gen-
eralized letters reproduced are recognizable and compa-
rable to the IK method. Table 2 summarizes the results,
where we show the minimum errors achieved by each ap-
proach. Direct transfer from the human teacher and trans-
fer of refined skills from the PR2 are within the standard
deviations of each other, and therefore are not statistically
significantly different from each other. On the other hand,
transferring unrefined skills from the PR2 is the least ac-
curate and further refinement of the skills by the robot
learner would be needed.
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Fig. 18. Transferred tasks reproduced by the Meka.

Table 2. Comparison of errors for transferring to the Meka,
from human and the PR2. The numbers in brackets are stan-
dard deviations.

Source Human Human-PR2 Human-PR2
refined unrefined

mapping (m) 0.0045 0.0062 0.0152
(0.0008) (0.0041) (0.0035)

encoding (m) 0.0140 0.0138 0.0192
(0.0013) (0.0005) (0.0012)

5.3. Discussion
The results presented in Section 5.1 demonstrated the

efficacy of our proposed data-driven approach in adapt-
ing human demonstrations onto the arms of two hu-
manoid robots with different kinematic parameters; and
confirmed that skills on the robots can be successfully re-
covered from the adapted demonstrations. In contrast to
the standard approach taken by other methods, we showed
that generalized forms of the tasks can be reproduced by
the robots, while preserving the goal-directed characteris-
tics of the tasks, i.e., preserving the shape and size of the
letters, rather than mimicking the posture of the teacher.

An interesting finding that requires further investi-
gation is that, although complex non-linear mappings
are generally preferred in most transfer learning prob-
lems for robotics, such as shared Autoencoders, Shared-
GPLVM [16] and LPA [22, 29], simple linear mappings
such as Procrustes Analysis could be more beneficial in
a case where human demonstrations are used to provide
initialization for learning with reinforcement learning for
humanoids [51, 52], or a case where a human is allowed
to provide feedback to the robot learner for correcting its
reproductions [48–50]. This is because they can learn
mappings from very few samples, which is desired for
physical robots, and that they preserve the overall gist of
the transferred skills, which would guide a reinforcement
learner towards relevant spaces for exploration.

Results presented in Section 5.2 demonstrated the pos-
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sibility of human-robot knowledge transfer in a multi-
robot setting, where one robot acquired knowledge from a
human teacher and then acted as a teacher to a new robot.
Due to the accumulation of errors when transferring from
a human to the new robot via the existing one, our results
show that it is better for the robot acting as a teacher to
first improve its skills, or alternatively the new robot can
further refine its skills after transfer, where the transferred
knowledge acts as prior knowledge for accelerating the
learning process of the new robot.

6. Conclusion

This paper proposed a data-driven LfD approach for
humans to easily transfer goal-directed skills to humanoid
robots without knowledge of their kinematics. Exper-
iments conducted on two simulated humanoid robots
demonstrated that this approach is able to adapt human
demonstrations onto the robots, and that useful skills
can be recovered from the adapted demonstrations using
DMPs. Furthermore, experimental results also showed
that the skills learned by one robot from a human teacher
can also possibly be transferred to another robot, in cases
where a human teacher is not available.

A possible extension of our work is applying it to trans-
fer human skills to non-anthropomorphic robots, where
the challenge is that correspondences with the human
body are not obvious. This would require that we re-
vise our workspace alignment approach, which relies on
the availability of correspondences between the human
and the robot learner (which is easy to determine for hu-
manoids). Furthermore, relaxing the requirement of cor-
respondences, and considering non-linear mappings that
do not rely on pairwise correspondences, would aid our
approach to transfer knowledge to robots with arbitrary
configurations.

The tasks used in our experiments allowed us to model
non-linear mappings in a lower-dimensional subspace
which was easy to determine. However, in other tasks in
general it may not be obvious, thus requiring non-linear
techniques that project the tasks onto some latent space.
Investigating techniques such as those based on shared la-
tent spaces (e.g., Shared-GPLVM) for learning mappings
from random data is an interesting direction, or a combi-
nation of a non-linear dimensionality reduction technique
with LPA. However, choosing the optimal dimensionality
of the latent space is still a challenging problem. Lastly,
for future work we aim to incorporate our method with re-
inforcement learning approaches for skill refinement for
tasks that could not be accurately transferred, or alterna-
tively to incorporate human feedback post-transfer.
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