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Abstract—Tracking of multiple bright particles (spots) in
fluorescence microscopy image sequences is seen as a crucial
step in understanding complex information in the cell. However,
fluorescence microscopy generates high a volume of noisy image
data that cannot be analysed efficiently by means of manual
analysis. In this study we compare the performance of two
computer-based tracking methods for tracking of bright particles
in fluorescence microscopy image sequences. The methods under
comparison are, Interacting Multiple Model filter and Feature
Point Tracking. The performance of the methods is validated
using synthetic but realistic image sequences and real images.
The results from experiments show that the Interacting Multiple
Model filter performed best, under the test conditions.

I. INTRODUCTION

Spot tracking in time-lapsed fluorescence microscopy image
sequences is seen as a crucial step in understanding the
complex information in the cell. Fluorescence microscopy is
a tool used to study and visualize the intracellular processes.
Recent advances in fluorescence microscopy provide the ability
to image in three dimensions (3D) and record the dynamic
processes in the living cells.

The use of fluorescence microscopy and a specific staining
method makes biological molecules to appear as bright par-
ticles (spots) when viewed through a microscope, as shown
in Figure 1. The quantitative analysis of these data requires
the tracking of spots in large time-varying image sequences.
However, fluorescence microscopy generates a high volume
of noisy data that cannot be analysed efficiently by means of
manual evaluation, hence there is great demand for automation
of the tracking process and it is attracting increased research
attention.

The key idea of particle tracking is to establish correspondence
between particles in a sequence of images in order to con-
struct their trajectories throughout the time-lapsed sequence.
Establishing correspondence between particles in a sequence
of frames is complicated by factors such as, for example,
a temporary high spot density, high levels of noise, particle
disappearance, particle merging, particle splitting and complex
motion patterns. Several tracking methods have been proposed
to overcome these challenges but often fail to yield satisfactory
results in cases of the above mentioned problems [17].

(a)

Fig. 1. (a) Example of real fluorescence image sequence from the study of
endosomal ts1 virus labeled with Texas red with bright spots. The image is a
single frame from the 2D time lapse studies.

Cheezum et al. [2] quantitatively evaluated several tracking
methods for tracking single fluorescent particle. The methods
which were compared are not commonly used in biological
tracking contexts and these methods were found to fail at signal
to noise ratio (SNR) below 4.

Recently, several methods for particle tracking have been
proposed [10], [11], [16], which can help to overcome the
above mentioned problems.

Sbalzarini et al. [16] presented a 2-D feature tracking method
for the automatic detection and analysis of particle trajectories
in video imaging. The tracking algorithm requires no assump-
tion about the motion model, it is self initialized, discriminates
spurious detections and can handle temporary occlusion as
well as particle appearance and disappearance. The algorithm,
as presented in [16], starts by finding the particle locations
using feature point detection [16] then employs a motion
correspondence method for data association based on a graph



theoretical approach to solving the transportation problem [12].

Genovesio et al. [10] presented a method for tracking of
multiple moving spot-like particles showing different kinds
of dynamics. The method uses the 3-D undecimated wavelet
transform to detect spots and the prediction of spot future
states is accomplished by the Interacting Multiple Model
(IMM) algorithm [1]. Several models corresponding to dif-
ferent biologically realistic movement types are used. Then,
association is performed to establish the trajectories based on
the maximum likelihood of the innovation among the IMM
filters. The last step consists of updating the filters to compute
the final estimate.

Godinez et al. [11] developed probabilistic and determinis-
tic approaches for multiple virus tracking in multi-channel
fluorescence microscopy images. The deterministic approach
is based on a spot-enhancing filter for spot localization, and
uses global nearest neighbour for motion correspondences.
The probabilistic approaches are based on mixtures of particle
filters and on independent particle filters. The probabilistic
approaches use particle filters for maintaining and predicting
particle state, they employ a motion correspondance algorithm
presented in [16]. A total of eight tracking methods were
compared in the study and found that the probabilistic methods
based on independent particle filters perform best compared to
deterministic methods and mixtures of particle filters.

In this work we compare the performance of two tracking
methods used for tracking of bright particles in microscopy
images using synthetic images.The methods under comparison
are interacting multiple models (IMM) [10] and feature point
tracking (FPT) [16]. These two methods have been used
in biological tracking contexts [9], however no comparison
between them has been done.

The layout of the paper is as follows: Section II describes the
various algorithms used in the experiments. Section III presents
the performance measures and in section IV experiments are
discussed. Section V discusses the experimental results, and
finally, the conclusions are given in section VI.

II. TRACKING METHODS

A. Feature Point Tracking (FPT)

In Feature point tracking [16], tracks are represented by
associations between sets of detections, where one set is pi, i =
1, ...Nk, in frame k, and the other set is qj , j = 1...Nk+r, in
frame k+r. A set of detections is obtained from the detection
algorithm [16], which returns an Nt × 2 matrix [x̃p, ỹp]Nt

p=1,
where Nt is the total number of particles being detected in
frame t. An association matrix Gk

r (i, j) is built for all pairs of
detected particles, where the association matrix is given as:

Gk
r = gij =

{
1, if pi and qj match, (1)
0, Otherwise (2)

Where r = 1...R is the user-defined integer specifying how
many frames to be considered.

Each association matrix is augmented by one row and one
column for a dummy particle at time step k and k + r,
respectively. Linking a particle to a dummy means that the

particle disappeared from the scene between frames k and
k + r, and linking a dummy to a particle can also reflect a
new particle.

To find the optimal correspondence between links gij , a cost
function based on the transportation problem [12]is defined and
the restriction is that it needs to be linear in the association
variables gij , and thus written as:

Φ =

Nk∑
i=0

Nk+r∑
j=0

φijgij (3)

Where Nk and Nk+r are the number of detections at time k
and k+r. Symbol φij represents the cost of associating particle
pi in frame k with particle qj in frame k+ r, and includes the
Euclidean distance between sets of detections and the intensity
moments of order 0 and 2:

φij = (x̃pi − x̃qj)2 + (ỹpi − ỹqj)2 + (m0(pi)−m0(qj))
2

+(m2(pi)−m2(qj))
2 (4)

Where m0 and m2 are the intensity moments. Tracks are
formed and extended by minimizing this cost function.

B. Interacting Multiple Models (IMM)

The IMM filter is a state estimation algorithm for systems with
multiple motion models. Internal model changing is based on a
finite state Markovian switching coefficient. The algorithm was
first developed for radar tracking systems [1], and introduced
to biological applications in [10]. The generic IMM filter using
the Kalman filter as proposed in [10] contains several models
of linear systems:

xk = Aj
kxk−1 + wj

k−1 (5)

zk = Hj
kxk + vjk (6)

Where xk is the system state at time k, j denotes the index
of models, Aj

k is the state transition matrix for model Lj
k at

time k and wj
k ∼ N(0, Qk) is the process noise. zk is the

measurement state, Hj
k is observation matrix for model Lj

k at
time k, and vjk ∼ N(0, Vk) is the measurement noise. The
n models of the IMM filter form a discrete set denoted as:
L = {L1...Ln} and the probability of switching from Li

k−1 to
Lj
k given as: πij = P{Lj

k|Li
k−1}.

The track initiation in the IMM filter is accomplished by em-
ploying a spot detection method called, Isotropic Undecimated
Wavelet Transform (IUWT) [10], [13]. This detection method
creates a measurement vector consisting of spot location,
volume and the mean intensity. The IMM filter consists of
three steps: Interaction/mixing, filtering and combination. The
details of each step can be found in [10]. To form the tracks, the
maximum likelihood of the innovation among the models of
each IMM filter is computed. The likelihood of each model is
weghted with the predicted model probability of the IMM filter.
Once the association between the measurement and a track is
accomplished, the update of each IMM filter is performed.



III. EVALUATION

The particle tracking benchmark generator plugin [3], [4] in
the ICY software from Institut Pasteur in France [7], [8],
was used to create the synthetic image time sequences. The
plugin creates realistic 2D/3D time fluorescent particles. By
adjusting parameters in the plugin configuration text file, dif-
ferent characteristics of particles can be achieved, for example,
particle motion type, number of particles, background noise,
particle intensity, and dimension and length of sequences.

In order to measure the performance of the two algorithms,
we used common measures [15], precision, or true positive
measure (TPR), recall rate (RR) defined as:

TPR =
NTP

NTP +NFP
, (7)

RR =
NTP

NTP +NFN
. (8)

Where NTP is the number of recovered ground truth trajec-
tories, NFN is the number of non-recovered trajectories and
NFP is the number of false tracks.

The Jaccard similarity coefficient [4], [5], [15] for tracks is
then defined by combining the TPR and RR as:

JSC =
NTP

NTP +NFN +NFP
(9)

The JSC takes values in the interval [0, 1]. Thus a tracking
method with JSC → 1 is the best while the one with JSC
→ 0 is the worst.

IV. EXPERIMENTS

A. Experiments with synthetic data

The performance of the proposed tracking methods was eval-
uated using synthetic (with ground truth) image sequences, as
shown in Figure 2.

Four types of synthetic image sequences, Seq A, Seq B, Seq C
and Seq D, were created using the synthetic data benchmark
generator [3]. These synthetic sequences simulated different
imaging conditions and different spot movement. Each syn-
thetic sequence was a two dimension plus time (2D+t) image
with size of 512 × 512 pixels containing multiple spots in
random locations. The length of the time sequences was fixed
at 50.

The first three sequences (Seq A, Seq B and Seq C) contained
10, 50 and 200 spots respectively, moving in linear motion
at random directions, with randomly varying velocity between
vmin = 2 and vmax = 4. Gaussian noise was then added to
each sequence resulting in noisy synthetic sequences of signal
to noise ratio (SNR) ranging from {10, 7, 5, 3, 2, 1}. SNR in
our experiments was defined as the ratio of spot intensity,
Imax, divided by the noise standard deviation, σnoise:

SNR =
Imax

σnoise
(10)

(a) (b)

(c) (d)

Fig. 2. Examples of synthetic images used in the experiments. (a) Seq A
synthetic image with spots at random locations moving in a linear motion.
(b) Corresponding ground truth trajectories of Seq A images (c) Seq D
synthetic image with spots at random locations moving in Brownian motion
(d) corresponding ground truth trajectories

The last sequence type (Seq D) contained ten spots mov-
ing in brownian motion with the standard deviation of the
motion fixed at sigmabMax = 4 and sigmabMin = 2.
Gaussian noise was added to produce SNR ranging from
{10, 7, 5, 3, 2, 1}.

B. Experiments with real data

We also tested the performance of the two tracking methods
using a real fluorescence microscopy image sequence from the
study of endosomal ts1 virus labeled with Texas red, as shown
in Figure 1. This sequences was of 2D+ t with multiple spots
moving in random directions. Since the ground truth of these
images was not available, we compared the tracking results
with manual inspection. For, manual inspection we used a
manual tracking plugin developed by Cordelières [6] in ImageJ
[14]. This plugin allows one to follow the movements of spots
in time lapsed sequences.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Tables I, II, III and IV show the results of two tracking methods
using synthetic images.

The results from Table I indicate that at SNR 10 and 5 the two
methods performed well with the same number of JSC = 1
for image sequence with 10 spots, however, as SNR decreases
to 3 and 2 the performance of the two methods also decreases
with FPT having JSC = 0.0415 at SNR of 2, while the
IMM has JSC = 0.538. In overall, the IMM has the highest
average JSC = 0.633 as compared to FPT with average JSC



= 0.483. These results shows that IMM is more reliable when
image noise increases.

Table II and III presents the results of two methods when the
density of spots is 50 and 200, respectively. These results show
that when the density of spots increases the FPT method
performance dropped with an average JSC of 0.327 and 0.275
respectively, while the IMM has the average JSC of 0.574
and 0.571 respectively.

The reason for the poor performance of FPT in Table II and
III appears to be that when the density of spots increases, there
is an increase in overlapping spots causing the FPT method
lose tracks.

Table IV presents the results when particles are moving in
Brownian motion. The results indicates that the IMM still
has the highest average JSC = 0.541 as compared to FPT
with average JSC = 0.367, however, at SNR = 3, the FPT
algorithm has the highest JSC = 0.769 than the IMM with
JSC = 0.526. The reason for the best performance by FPT at
SNR = 3 in Table IV, is that no overlapping of spots occurred
at SNR of 3. This shows that when there is no overlapping
of spots, the FPT method can perform well.

It may be possible to improve the performance of FPT by
adding a post processing step to link track fragments that occur
when spots overlap.

The results from real images, Table V, indicates that the IMM
performs better with JSC = 0.675 than the FPT with JSC
= 0.5.

TABLE I. RESULTS OF SPOT TRACKING METHODS USING SEQ A

SNR 10 5 3 2 1 AVERAGE

IMM

NTP 10 10 10 7 0
NFP 0 0 6 3 0
NFN 0 0 0 3 0
JSC 1 1 0.625 0.538 0 0.633

FPT

NTP 10 10 10 10 6
NFP 0 0 17 231 1367
NFN 0 0 0 0 4
JSC 1 1 0.370 0.0415 0.00436 0.483

TABLE II. RESULTS OF SPOT TRACKING METHODS USING SEQ B

SNR 10 5 3 2 1 AVERAGE

IMM

NTP 50 50 49 29 0
NFP 4 3 44 10 0
NFN 0 0 1 21 0
JSC 0.926 0.943 0.521 0.48 0 0.574

FPT

NTP 48 48 50 49 45
NFP 19 45 88 748 4126
NFN 2 2 0 1 5
JSC 0.696 0.505 0.362 0.0614 0.0108 0.327

TABLE III. RESULTS OF SPOT TRACKING METHODS USING SEQ C

SNR 10 5 3 2 1 AVERAGE

IMM

NTP 198 199 195 104 2
NFP 14 24 145 22 0
NFN 2 1 5 96 198
JSC 0.925 0.889 0.565 0.468 0.01 0.571

FPT

NTP 197 199 199 200 200
NFP 149 239 424 1955 15127
NFN 3 1 1 0 0
JSC 0.564 0.453 0.319 0.0245 0.0131 0.275

VI. CONCLUSION

We compared the performance of two tracking methods, IMM
and FPT. In our study we included four types of synthetic

TABLE IV. RESULTS OF SPOT TRACKING METHODS USING SEQ D

SNR 10 5 3 2 1 AVERAGE

IMM

NTP 10 10 10 7 0
NFP 0 4 9 5 1
NFN 0 0 0 3 10
JSC 1 0.714 0.526 0.467 0.0 0.541

FPT

NTP 10 10 10 10 8
NFP 6 16 3 157 1413
NFN 0 0 0 0 2
JSC 0.625 0.385 0.769 0.05 0.00562 0.367

TABLE V. RESULTS OF SPOT TRACKING METHODS USING REAL
DATASET

Manual IMM FPT
NTP 29 27 25
NFP 0 11 21
NFN 0 2 4
JSC 1 0.675 0.5

images containing realistic image sequences and real images.
The results from the experiments indicates that the IMM
tracking method performs better than the FPT . The poorer
performance of FPT appears to be caused by the overlapping
of spots, where an increase in overlapping spots causes the mo-
tion correspondence algorithm to deteriorate, which decreases
the overall performance of the method.
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