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ABSTRACT: This paper investigates effects of cone-plate (CP) and parallel-plate (PP) 

geometries on rheological properties of various complex fluids from single-phase to multiphase 

systems. Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear 

rheological responses while nonlinear responses were compared via large amplitude oscillatory 

shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT) rheology 

method was used to analyze the nonlinear responses under LAOS flow. Experimental results 

were compared with the predictions by a single-point correction and a shear rate correction. 

For all systems, SAOS data measured by CP and PP coincide with each other. Discordance 

between CP and PP measurements is observed in nonlinear regime. For all systems except 

xanthan gum solutions, first-harmonic moduli are corrected by a single horizontal shift factor 

and FT-based nonlinear parameters (I3/1, Q3, I5/1, and Q5) are corrected by vertical shift factors 

which are predicted well by a single-point correction. Xanthan gum solutions exhibit 

anomalous corrections. Their first-harmonic Fourier moduli are superposed by a horizontal 

shift factor predicted by a shear rate correction which is applicable to highly shear-thinning 

fluids. The distinguished corrections are observed in FT-based nonlinear parameters. I3/1 and 

I5/1 are superposed by horizontal shifts while the other systems display vertical shifts of I3/1 and 



I5/1. Q3 and Q5 of xanthan gum solutions are corrected by both horizontal and vertical shift 

factors. In particular, the obtained vertical shift factors for Q3 and Q5 are two times larger than 

the predictions by a single-point correction. Such larger values are rationalized by the 

definitions of Q3 and Q5. These results highlight the significance of horizontal shift corrections 

in nonlinear oscillatory shear data. 
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1. Introduction 

 

Studying rheological properties of complex fluids is of many scientists’ interests in order to 

investigate and characterize flow behaviors of diverse materials with different morphologies. 

Morphology dependence of rheological properties has led to more systematic investigation of 

rheological properties of various complex fluids having different internal structures from 

single-phase to multi-phase fluids. Dynamic oscillatory shear tests are being mainly used to 

study the viscoelastic behavior of polymer solutions and melts. Hence, rotational rheometers 

are used to perform dynamic oscillatory experiments (Djalili-Moghaddam et al., 2004). 

Different geometries can be used in case of rotational rheometers, among which parallel plate, 

cone plate and concentric cylinder are the most common. In this study, a comparative 

examination of rheological properties from cone-plate (CP) and parallel-plate (PP) fixtures was 

conducted. Schematic views of both parallel-plate (PP) and cone-plate (CP) geometries are 

sketched in Fig. 1. Mathematical equations describing viscoelastic properties corresponding to 

PP and CP geometries are summarized in Table 1, where θ is cone angle, T is torque, Ω is 

angular velocity, R is plate radius, and h is the gap size between two plates while viscosity η is 

considered constant (Bohlin et al., 1980; Djalili-Moghaddam et al., 2004; Kavehpour and 

McKinley, 2004; Macosko, 1994). The subscript R in the equation for shear rate in the PP 

geometry indicates the rim shear rate at the edge of the plate (radius R). 

 



 

Fig. 1. Schematic views of torsional parallel-plate (PP) and cone-plate (CP) geometries for rheological 

measurements. 

 

Table 1. Working equations for parallel-plate (PP) and cone-plate (CP) geometries. 

 Parallel plate Cone plate 

Torque 𝑇 =
𝜋𝛺𝜂𝑅4

2ℎ
 𝑇 =

2𝜋𝛺𝜂𝑅3

3 tan 𝜃
 

Stress 𝜎 =
𝑇

2𝜋𝑅3
[3 +

𝑑 ln 𝑇

𝑑 ln 𝛾̇𝑅
] 𝜎 =

3𝑇

2𝜋𝑅3
 

Shear rate 𝛾̇𝑅 =
𝛺𝑅

ℎ
 𝛾̇ =

𝛺

tan 𝜃
 

 

PP fixtures have the privilege of feasible varying the gap size, leading to application of 

various ranges of materials, which is impossible in a fixed-gap CP geometry. Sample 

preparation and loading is simpler in PP geometry for rigid viscoelastic materials or irreversible 

gels. Moreover, larger strains can be applied in PP because it is simpler geometry. On the other 

hand, CP fixtures can be used to determine first normal force difference as shear stress and 

shear rate are constant throughout the gap while in case of PP geometry they exhibit maximum 

value at the edge of the geometry and zero value along the vertical axis, that is, a radially 

inhomogeneous flow field. This produces a uniform strain field in CP fixture and a non-uniform 



strain field in PP fixture, respectively. For utility and errors of each geometry in detail, see 

Macosko (1994). 

Several studies carried out to assess geometry effects on rheological properties. Lodge (1961) 

conducted an experiment to evaluate wedge effects for both CP and PP fixtures through the 

measurement of pressure distributions. In order to obtain more precise wedge effects, the fixed 

plate was designed in a way which could be easily tilted about horizontal axis to get the 

intended angles with pressure measuring holes. It was found that both CP and PP geometries 

exhibit similar pressure distributions perpendicular along the greatest slope. However, the 

greatest pressure took place near the rotational axis in CP fixture and was three times greater 

than that of PP fixture. Accordingly, the wedge effect was found to be twelve times greater in 

CP than that of PP. Keentok and Tanner (1982) compared the normal stresses obtained from 

CP and PP for two different polymer solutions and observed greater normal stresses in PP than 

that of CP at the same shear rates. Djalili-Moghaddam et al. (2004) compared the results of CP 

and PP geometries for suspensions of polydimethylsiloxane (PDMS) using steady shear 

measurements at two different stress levels. They found that PP geometry yields to higher 

values of viscosities than CP geometry regardless of stress levels. They suggested that the 

generated non-uniform shear flow in PP geometry produced higher viscosities than that of CP 

geometry. Egres and Wagner (2005) applied stress sweep measurements to compare the effect 

of different geometries of PP, CP, and Couette cell on suspensions of polyethylene 

glycol/precipitated calcium carbonate (PEG/PCC). A good agreement was observed in case of 

CP and Couette cell geometries. PP fixture resulted in lower values at higher stress amplitude. 

It was demonstrated that wall slip effect could be the reason for this reduction in PP geometry. 

Shaw and Liu (2006) carried out an experiment to compare the linear and nonlinear rheological 

data from CP and PP for poly[styrene-b-(ethylene-ran-propylene)] (SEP) block copolymer in 



squalane (saturated isoprene oligomer). Dynamic and steady measurements were used to 

evaluate the rheological properties. They also introduced single-point and conventional 

corrections to the PP equations to get the best fitted data with CP data. Surprisingly, both steady 

and dynamic results showed a mismatch fit. They attributed this mismatch to gap setting 

problems. 

The mismatch in rheological properties obtained by CP and PP geometries is no exception 

for large amplitude oscillatory shear (LAOS) test. For strain-controlled LAOS test (LAOStrain) 

(Ewoldt, 2013), typical strain sweep data is divided into linear and nonlinear regimes (Hyun et 

al., 2011). In linear regime, dynamic moduli (G′ and G″) are independent of strain amplitude. 

As strain amplitude increases and moves toward nonlinear regime, the moduli decrease and 

become a function of strain amplitude. Many literatures show consistency of linear viscoelastic 

moduli between the two geometries and imply that no correction is required in the linear regime 

while mismatch occurs in the nonlinear regime (Bharadwaj and Ewoldt, 2015; de Souza 

Mendes et al., 2014; Shaw and Liu, 2006; Stickel et al., 2013). Inconsistency between PP and 

CP geometries is due to different degree of nonlinear intensities generated by existence of 

higher harmonics in nonlinear stress signal. Thus, it is important to quantify nonlinearities of 

LAOS response obtained by CP and PP and to correct difference between the two geometries 

by proper methods. 

Wilhelm et al. (1999) introduced highly sensitive Fourier-transform (FT) rheology as a new 

way to characterize nonlinearities. The ratio of the third harmonic intensity to the fundamental 

intensity (I(3ω)/I(ω) ≡ I3/1, ω is applied frequency) was considered as a new characterization 

parameter to quantify nonlinearities. They evaluated the influence of different shear geometries. 

The horizontal shift factor of 0.75 was used to compensate for the difference of two geometries, 

which is the ratio of the characteristic radius of PP geometry to the total radius. At the 



characteristic radius of PP geometry, the shear rate in the linear regime is similar to that of CP 

geometry (Macosko, 1994). It was observed that the shift factor of 0.75 was able to improve 

the differences between PP and CP.  However, the usage of this horizontal shift factor did not 

result in absolutely identical superposition, especially at large strain amplitude, indicating that 

a single 0.75 factor may not be proper to perfectly match two data. Recently, several new 

nonlinear parameters have been suggested based on the dependency of nonlinear shear stresses 

on strain amplitude: a nonlinear mechanical parameter Q(ω, γ0) ≡ 𝐼3 1⁄ 𝛾0
2⁄ , an intrinsic 

nonlinearity Q0(ω) ≡ lim𝛾0→0 Q(ω, γ0), and four intrinsic Chebyshev coefficients [e1](ω), 

[v1](ω), [e3](ω), and [v3](ω) (Ewoldt and Bharadwaj, 2013; Hyun and Wilhelm, 2009). They 

are asymptotically-nonlinear measures defined in medium amplitude oscillatory shear (MAOS) 

regime where the third harmonic nonlinearity is dominant and the other higher harmonics can 

be ignored. Several approaches have been used to compensate for effects of inhomogeneous 

strain condition in PP geometry on these nonlinear coefficients. Wagner et al. (2011) calculated 

a vertical shift factor of 3/2 for fluids with nonlinear shear stress conforming to the power-law 

series expansion in odd powers. The same shift factor was obtained from single-mode 

corotational Maxwell model (Giacomin et al., 2015). Bharadwaj and Ewoldt (2015) used a 

general single-point correction for four intrinsic Chebyshev measures, which also results in the 

same vertical shift factor of 3/2. Therefore, it is speculated that all MAOS nonlinear properties 

in PP geometry can be balanced by 3/2 correction factor to obtain the values in CP one. 

The object of this paper is to compare the linear and nonlinear viscoelastic behaviors of 

various polymer systems from single-phase to multiphase systems such as homopolymer melts 

and solutions, blends, and nanocomposites for PP and CP geometries. In addition, the shift 

factors from experiments were compared with the theoretical prediction by single-point 

correction and shear rate correction. We show that the predicted value matches experimental 



results for all systems. Our results suggest usage and utility of horizontal shift factor as well as 

those of vertical shift factor for perfect superposition of CP and PP measurements.  



2. Theory 

 

In this work, a general single-point correction was used to compensate for strain-controlled 

LAOS response measured by PP geometry. A single-point correction approach has been 

applied to various test conditions such as large step shear (Soskey and Winter, 1984), steady 

shear (Carvalho et al., 1994), start-up shear (Shaw and Liu, 2006), and creep (de Souza Mendes 

et al., 2014) as well as LAOS (Bharadwaj and Ewoldt, 2015; Fahimi et al., 2014; Ng et al., 

2011; Phan-Thien et al., 2000). Ng et al. (2011) derived a single-point correction for LAOS 

response based on earlier correction methods as follows: 

     0
c 0 p 0 p 0

0

3
; , ; , ; , .

4 4
t t t


        




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
                                                               (1) 

where σc is corrected stress, σp is apparent stress by PP geometry, and γ0 is strain amplitude. 

Eq. (1) was successfully implemented on gluten gels and entangled polymer melt (Bharadwaj 

and Ewoldt, 2015; Ng et al., 2011). In this study, Eq. (1) was applied to more various systems 

containing melts, solutions, blend, nanocomposite, and suspensions. The corrected stress 

requires partial derivative form of the apparent stress. To this end, several stress responses at 

different strain amplitudes can be used for a numerical calculation. However, potential 

experimental error might be expanded by such a numerical approach. 

In general, oscillatory shear stress response under LAOS flow can be expressed by two types 

of equations (Hyun et al., 2011). The nonlinear viscoelastic stress is expanded as an infinite 

Fourier series with the higher odd harmonics (Giacomin and Dealy, 1993). 
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It is also possible to write the shear stress as a power series expansion in frequency and strain 

amplitude (Pearson and Rochefort, 1982). 
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
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Eq. (3) separates the frequency dependence from the strain amplitude dependence, which 

makes the power series coefficients independent of strain amplitude. On the contrary, Fourier 

coefficients in Eq. (2) are functions of both frequency and strain amplitude. Comparing Eqs. 

(2) and (3) gives the relationship between Fourier moduli and coefficients of power series 

expansion as 
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The relative third-harmonic and fifth-harmonic intensities (I3/1 and I5/1) can be defined by using 

Eq. (4). 
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Therefore, I3/1 and I5/1 scale as 𝛾0
2 and 𝛾0

4 in MAOS regime, respectively. From these scaling 

relations, additional nonlinear parameters can be defined. 
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To obtain single-point corrections for LAOS response, Eqs. (2) and (3) can be inserted in Eq. 

(1) under an assumption that the nonlinear shear stress of materials is described well by Eqs. 

(2) or (3). The right-hand side of Eq. (1) involves the partial derivative of stress signal. Fourier 

moduli of Eq. (2) have the dependency on both frequency and strain amplitude, which make 

difficulty in mathematical calculation for partial derivative with respect to strain amplitude 

because in general, Fourier moduli cannot be specified analytically for any materials. Thus, 

power series expansion of Eq. (3) was inserted to the right-hand side of Eq. (1). For nth order 

powers of the strain amplitude, single-point correction factors are obtained as 

n = 1 (SAOS): c p  , 11,c 11,pG G  , and 11,c 11,pG G                                                          (9) 

n = 3 (MAOS): c p1.5  , 3 ,c 3 ,p1.5k kG G  , and 3 ,c 3 ,p1.5k kG G   (k = 1, 3)                     (10) 



n = 5 (LAOS): 
c p2  , 

5 ,c 5 ,p2k kG G  , and 
5 ,c 5 ,p2k kG G   (k = 1, 3, 5)                          (11) 

The subscripts, c and p, indicate corrected and apparent properties, respectively. Using the 

relations of Eq. (4), the corrected Fourier moduli is also expressed. 
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By definition, I3/1 and Q3 have the shift factor of 1.5 and I5/1 and Q5 the shift factor of 2 in the 

MAOS regime. 

The above single-point correction approach uses vertical shifting of PP measurements only. 

An alternative approach is to adjust the shear rate at the rim (radius R) to match a corresponding 

value in CP flow, which means horizontal shifting (Giacomin et al., 2015; Wilhelm et al., 1999). 

Giacomin et al. (2015) derived the shear rate correction for shear-thinning power-law fluids. 
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where 𝛾̇CP is the homogeneous shear rate in CP flow, 𝛾̇𝑅 is the apparent shear rate in PP flow, 

and n is the shear thinning index (< 1). For shear-thinning power-law fluids, the correction 

factor is bounded by 

CP

3

1 3

4Re




 

&

&
                                                                                                                     (14) 

For the special case of a Newtonian fluid, the shear rate correction gives 3/4. 



3. Experimental 

 

3.1. Single-phase system 

3.1.1. Homopolymer melt and solution 

Isotactic polypropylene (PP) (grade HP562T, Mn = 56,000 g/mol, Mw = 157,000 g/mol, PDI 

= 2.81) was obtained from PolyMirae Company Ltd. Two different polystyrene (PS) were used. 

Polydisperse linear PS (grade HF2680, Mn = 59,200 g/mol, Mw = 168,700 g/mol, PDI = 2.85) 

was provided from Samsung Cheil Industries Inc. Monodisperse linear PS (Mn = g/mol, Mw = 

g/mol, PDI = ) was synthesized by anionic polymerization. We labeled PP and PS as PP562T, 

PS2680, and PS139k, respectively.  

As a homopolymer solution, monodisperse linear PS (Mn = 275,781 g/mol, Mw = 297,757 

g/mol, PDI = 1.07) was dissolved in dioctyl phthalate (DOP) with 20% mass concentration. 

DOP is a θ solvent for PS at the θ temperature of 22°C. Tetrahydrofuran (THF), a good solvent 

for PS, was added as a co-solvent to facilitate mixing and ensure homogeneity of solutions. 

The mixture was stirred at room temperature for 1 day. THF was gradually removed by vacuum 

evaporation without substantial DOP loss although a small loss of DOP was inevitable. We 

labeled this PS solution as PS300_20. 

 

3.1.2. Xanthan gum solution 

Xanthan gum (grade G1253) was obtained from Sigma-Aldrich Inc. In this work, seven 

xanthan gum solutions with concentrations of 0.5, 0.8, 1, 1.5, 2, 3, and 4 wt% were prepared 

by slowly adding the required amount of polymer powder weighed using an electronic balance 

into a known volume deionized water filled in a glass container, which was maintained at 65°C 

with constant stirring for 4 h until the polymer was perfectly dissolved. During stirring, the 

Commented [HYS1]: 교수님께서 PS139k 의 정보를 

채워주셨으면 합니다. 



glass container was sealed up with an air-tight film to prevent evaporation. In order to complete 

hydration of the polymer, the prepared solutions were kept at rest at room temperature for more 

than 12 h prior to conducting rheological measurements. 

 

3.2. Multiphase system 

3.2.1. Polymer blend and nanocomposite 

PP562T and PS2680 were mixed for PP/PS (80/20) blend system. They were dried in a 

vacuum oven at 80°C for 12 h and then mixed using a Haake mixer at 50 rpm and 200°C for 5 

min. For nanocomposite system, 5 wt% cloisite20A (C20A) was mixed with PP562T. C20A, 

purchased from Southern Clay Products Inc., is a dimethyl-hydrogenated tallow ammonium-

modified montmorillonite with a density of 1.77 g/cm3. C20A was kept in a convection oven 

at 100°C to remove excess amount of moistures. The dried constituents were simultaneously 

mixed at 180°C and 100 rpm for 7 min. 

 

3.2.2. Suspension 

Poly(ethylene oxide) (PEO) and LUDOX HS-30 colloidal silica were purchased from 

Sigma-Aldrich Inc. The molecular weight of PEO was 600,000 g/mol. LUDOX HS-30 

colloidal silica contained 30 wt% of spherical silica nanoparticles (SiNPs) of diameter of 15 

nm in deionized (DI) water. PEO powder was dissolved in DI water at 40°C by magnetic 

stirring at 200 rpm. SiNPs were dropwisely added to aqueous PEO solution during stirring time 

and the mixture was homogenized for 12 h. Based on the total mass of PEO, DI water, and 

SiNPs, three different PEO/SiNP suspensions were prepared and labeled with concentration in 

wt% as PEO/SiNP (2/25), PEO/SiNP (3/20), and PEO/SiNP (3/25). 



3.3. Rheological measurements 

In this study, two strain-controlled rheometers, RDA Ⅱ (Rheometrics Inc.) and ARES-G2 

(TA Instruments Inc.), were used to compare effects of parallel-plate (PP) and cone-plate (CP) 

geometries. 25-mm sized geometries were used for RDA Ⅱ and 40-mm sized geometries for 

ARES-G2. Cone angle of CP geometry was 0.1 and 0.04 rad for RDA Ⅱ and ARES-G2, 

respectively. Melt measurements were conducted with forced convection oven (FCO) at 

various temperatures, 180°C for PP562T and PS139k, 200°C for PS2680 and PP/PS (80/20) 

blend, and 170°C for PP/C20A nanocomposite. Solution measurements were carried out at 

25°C with advanced peltier system (APS). Linear rheological properties were obtained through 

frequency sweep tests under small amplitude oscillatory shear (SAOS) flow. On the other hand, 

large amplitude oscillatory shear (LAOS) tests were conducted via strain sweep measurements 

to get nonlinear rheological responses.  



4. Results and Discussion 

 

4.1. SAOS data correction 

Frequency sweep tests were carried out to evaluate linear rheological properties of the 

intended materials at small amplitude oscillatory shear (SAOS) flow. Experiment conditions 

are demonstrated in the Experimental section. Figure 2 compares the linear rheological 

response of single-phase systems including homogeneous melts and solution and xanthan gum 

solutions for PP and CP geometries. Alvarez et al. (2007) investigated the geometry effects on 

dynamic oscillatory shear flow of mashed potatoes. The lower values in case of CP geometry 

were reported at all temperatures and gap sizes compared with PP geometry. However, our 

results show that the linear viscoelastic measurements with CP and PP fixtures coincide well 

within experimental range of frequency and confirm that, in the linear viscoelastic regime, no 

shifting, horizontally or vertically, is required for PP geometry as expected by a general single-

point correction of Eq. (1). 

 

      



Fig. 2. Comparison of linear viscoelastic properties of single-phase systems at SAOS flow for parallel-

plate (PP – filled symbols) and cone-plate (CP – open symbols) geometries. For (a) homogeneous melts 

and solution, each modulus has been artificially shifted by 100 (PS300_20), 101 (PS2680), 102 

(PP562T), and 104 (PS139k) for the sake of clarity. For (b) xanthan gum solutions, each modulus has 

been shifted by 100 (0.5 wt%), 101 (1.0 wt%), 102 (2.0 wt%), and 103 (4.0 wt%), respectively. 

 

Figure 3 shows the effect of inhomogeneous strain field of PP geometry on SAOS 

measurements of multiphase systems. Along with the single-phase systems, multiphase 

systems also display good coincidence between CP and PP measurements even though PP/PS 

(80/20) blend exhibits small deviations between CP and PP measurements (Fig. 3a). The PP 

data of PP/PS (80/20) blend are relatively lower than the CP data. This result is in agreement 

with those of Egres and Wagner (2005) and Shaw and Liu (2006) where they believed it as a 

result of errors due to wall slip effects or gap setting problems. However, taken together, no 

significant differences are observed in both single-phase and multiphase systems when two 

geometries are compared. It is reinforced that the prediction of Eq. (1) was obtained from a 

generalized approach. To compensate for remained differences between two geometries, PP 

data were vertically shifted to CP data using complex modulus, and the corresponding shift 

factors (VG*) are summarized in Table 2. 

 

 



      

Fig. 3. Comparison of linear viscoelastic properties of multi-phase systems at SAOS flow for parallel-

plate (PP – filled symbols) and cone-plate (CP – open symbols) geometries. For (a) polymer blend and 

nanocomposite, each modulus has been artificially shifted by 100 (PP/C20A) and 101 (PP/PS) for the 

sake of clarity. For (b) PEO/SiNP suspensions, each modulus has been shifted by 100 (2/25), 104 (3/20), 

and 107 (3/25). 

  



Table 2. Vertical shift factors used in SAOS data of single-phase and multiphase systems. 

Sample name VG* [Pa] 

PS300_20 1.09 

PS2680 1.00 

PS139k 1.00 

PP562T 0.94 

XG 0.5wt% 1.05 

XG 0.8wt% 1.09 

XG 1.0wt% 1.04 

XG 1.5wt% 1.01 

XG 2.0wt% 0.99 

XG 3.0wt% 0.99 

XG 4.0wt% 1.01 

PP/C20A (95/5) 1.13 

PP/PS (80/20) 1.08 

PEO/SiNP (2/25) 1.02 

PEO/SiNP (3/20) 1.11 

PEO/SiNP (3/25) 0.99 

Average 1.03 ± 0.05 

 

  



4.2. LAOS data correction 

To probe differences in two geometries at higher deformations, large amplitude oscillatory 

shear (LAOS) tests were carried out via strain sweep tests. Details of the experiment conditions 

are shown in the Experimental section. LAOS tests were carried out at different frequencies to 

compare the effect of geometries at different frequencies. Differences in PP and CP geometries 

on LAOS flow of 1 rad/s are compared for homopolymer melts and solution and multiphase 

systems in Figs. 4 and 5. Corrections for xanthan gum solutions are discussed in the next 

section. 

 

 

Fig. 4. Comparison of first-harmonic Fourier moduli of homopolymer melts and solution under LAOS 

flow for parallel-plate (PP – filled symbols) and cone-plate (CP – open symbols) geometries. The 

moduli have been artificially shifted by 100 (PS300_20), 101 (PS2680), 103 (PP562T), and 105 (PS139k) 

for the sake of clarity. 

 



      

Fig. 5. Comparison of first-harmonic Fourier moduli of multiphase systems under LAOS flow for 

parallel-plate (PP – filled symbols) and cone-plate (CP – open symbols) geometries. For (a) polymer 

blend and nanocomposite, the moduli have been artificially shifted by 100 (PP/C20A) and 102 (PP/PS) 

for the sake of clarity. For (b) PEO/SiNP suspensions, the moduli have been shifted by 100 (2/25), 103 

(3/20), and 106 (3/25). 

 

In the linear regime, the first-harmonic Fourier moduli (G′ and G″) by CP and PP geometries 

overlap reasonably even though PP562T melt and PP/PS (80/20) blend display small deviations 

which might be induced by wall slip effects or gap setting problems (Egres and Wagner, 2005; 

Shaw and Liu, 2006). As strain amplitude goes toward the nonlinear regime, both 

measurements start to decrease but the reduction in CP measurements is more remarkable. The 

decrease rate in CP is faster than in PP. The same effect is observed when samples were sheared 

at different frequencies (Fig. 6a). In general, PP geometry softens the first-harmonic 

nonlinearities (e.g. 𝐺31
′ , 𝐺31

′′ , 𝐺51
′ , and 𝐺51

′′  in Eq. (4)) and leads to small overestimation of the 

first-harmonic Fourier moduli. This is because part of the sample still remains in the linear 

regime at small radial position but nonlinear behavior already occurs at the edge of the plate 



(de Souza Mendes et al., 2014; Ewoldt et al., 2010). Thus, all first-harmonic nonlinearities 

measured by PP should be vertically corrected to match CP responses. Validity of this vertical 

shifting was experimentally verified for two first-harmonic intrinsic nonlinearities (𝐺31
′  and 

𝐺31
′′ ) in MAOS regime by using 1.5 correction factor predicted by a single-point correction (Eq. 

(10)) (Bharadwaj and Ewoldt, 2015). However, for the other first-harmonic nonlinearities 

higher than third order, such vertical shifts have not been reported yet. In addition, it is 

impossible to calculate the infinite number of first-harmonic nonlinearities from experiments. 

Another method to perform vertical shifting is to calculate the partial derivative of PP stress 

response in Eq. (1) by numerical techniques such as a centered difference method at each 

instant in time (Ng et al., 2011). However, it contains much tedious calculation at all instant 

time and such numerical techniques can magnify any experimental error. Instead, we used 

horizontal shifting approach because PP and CP data can be superposed by only one shift 

process. The corresponding shift factors (HG*) are summarized in Table 3, with vertical shift 

factors (VG*) to compensate for remained differences between CP and PP data. Figure 6b shows 

that the horizontal shift gives good superposition of the first-harmonic Fourier moduli between 

CP and PP geometries. The HG* < 1 in Table 3 confirms again that nonlinear behavior is 

observed faster in CP fixture. The horizontal shifts used in this section might not be explained 

by shear rate correction theory of Giacomin et al. (2015) because the maximum correction 

factor in shear rate correction is 0.75 of a Newtonian fluid limit whereas the experimental 

average value is 0.89. We lastly highlight that each coefficient of power series expansion is 

corrected by the vertical shifting of the single-point correction but the first-harmonic Fourier 

moduli, which have complex relationship as Eq. (4), are properly corrected by the horizontal 

shifting. 

 



       

Fig. 6. First-harmonic moduli (G′ and G″) of PS2680 melt as a function of strain amplitude at 5 rad/s 

and 200°C for parallel plate (PP – filled symbols) and cone plate (CP – open symbols). (a) Raw results 

and (b) shifted results by horizontal and vertical shift factors (0.78 and 0.99). 

 

FT-rheology was used to investigate shift factors of nonlinear parameters defined in the 

Theory section (I3/1, Q3, I5/1, and Q5). First, I3/1 and Q3 are plotted as a function of strain 

amplitude in Fig. 7 for PS2680 melt. We obtained theoretically the vertical shift factor of 1.5 

from the single-point correction. Figure 7 shows that single vertical shift factor is enough to 

superpose I3/1 and Q3 between CP and PP and that no horizontal shifting is needed. The obtained 

vertical shift factors (𝑉𝑄3
) are listed in Table 3. The experimentally-determined shift factors are 

identical to the theoretical value of 1.5 within measurement uncertainty, which agrees with the 

result of Giacomin et al. (2015) and reinforces validity of the single-point correction method. 

Simultaneously, Q3,0 parameter, an asymptotic value of Q3 at low strain amplitude, can be 

corrected by the value of 1.5, as applied to homopolymer systems (Song et al., 2016; Song et 

al., 2017; Wagner et al., 2011). Small amount of deviations might be explained by wall slip 

effects or gap setting problems (Egres and Wagner, 2005; Shaw and Liu, 2006). Giacomin et 

al. (2015) derived differences of I3/1 between CP and PP measurements as functions of 



frequency and strain rate amplitude using a single-mode corotational Maxwell model. The 

model expression for I3/1 (Eq. (50) in their paper) displays a constant value of 1.5 at Wi (≡ λγ0ω) 

< 0.1 and becomes a function of strain rate amplitude at Wi > 0.1. Experimental condition of 

PS2680 in Fig. 7 gives Wi = 5.83 at γ0 = 1. However, the experimental data still exhibit good 

superposition. It is speculated that the vertical shifting is enough for CP and PP data to be 

superposed. 

 

      

      

Fig. 7. Relative third-harmonic intensity (I3/1) and nonlinear parameter (Q3) of PS2680 melt as a 

function of strain amplitude at 5 rad/s and 200°C for parallel plate (PP – filled symbols) and cone plate 

(CP – open symbols). (a), (c) Non-shifted and (b), (d) shifted results by vertical shift factor only. 



 

Correction factors of I5/1 and Q5 are investigated in Fig. 8 and summarized in Table 3. 

Compared with I3/1 and Q3, I5/1 and Q5 do not display clear scaling behaviors at low strain 

amplitude (𝐼5/1  ∝  𝛾0
4 and plateau for Q5). It is difficult to obtain reliable LAOS data higher 

than the third harmonic because experimental artifacts such as edge fracture and wall slip 

frequently occur at larger strain amplitudes and (Hyun et al., 2011). Thus, vertical shifting was 

evaluated for some of samples used. The obtained correction factors for I5/1 and Q5 exhibit 

larger deviations with the theoretical value of 2 than those for I3/1 and Q3. However, considering 

possible experimental difficulties mentioned above, the correction factor of I5/1 and Q5 looks 

indeed 2. The same result was obtained using a corotational Maxwell model (Giacomin et al., 

2015). In addition, Q5,0 parameter, an asymptotic value of Q5 at low strain amplitude, can be 

corrected by the value of 2 if the data display a plateau behavior in the plot of Q5 as a function 

of strain amplitude. 

  



      

      

Fig. 8. Relative fifth-harmonic intensity (I5/1) and nonlinear parameter (Q5) of PS300_20 solution as a 

function of strain amplitude at 6.3 rad/s and 25°C for parallel plate (PP – filled symbols) and cone plate 

(CP – open symbols). (a), (c) Non-shifted and (b), (d) shifted results by vertical shift factor only. 

  



Table 3. Horizontal and vertical shift factors used in LAOS data of homopolymer melts and solution 

and multiphase systems. 

Sample name 

Test 

frequency 

[rad/s] 

HG* [-] VG* [Pa] 𝑉𝑄3
 [-] 𝑉𝑄5

 [-] 

PS300_20 1 0.90 1.09 1.42 2.06 

 1.6 0.97 1.07 1.40 1.83 

 2.5 0.95 1.05 1.40 1.84 

 4 0.92 1.03 1.39 1.76 

 6.3 0.89 1.03 1.43 1.92 

 10 0.95 1.02 1.44 1.90 

PS2680 1 0.85 1.03 1.53 - 

 5 0.78 0.99 1.53 2.01 

PS139k 1 0.85 1.07 1.56 - 

 3 0.70 1.05 1.43 - 

 5 0.91 1.05 1.50 - 

 7 0.94 1.06 1.56 - 

PP562T 1 0.92 1.23 1.48 - 

 2 0.95 1.00 1.58 - 

 3 0.90 1.02 1.48 - 

 5 0.87 0.99 1.50 - 

PP/C20A (95/5) 1 0.92 1.06 1.38 1.81 

PP/PS (80/20) 1 0.88 1.14 1.60 - 

 5 0.87 1.02 1.48 1.88 

PEO/SiNP (2/25) 1 0.84 1.00 1.42 - 

PEO/SiNP (3/20) 1 0.86 1.13 1.52 - 

PEO/SiNP (3/25) 1 0.82 1.00 1.37 - 

Average  0.88 ± 0.06 1.05 ± 0.05 1.47 ± 0.07 1.89 ± 0.09 

  



4.3. Vertical and horizontal shifting in xanthan gum solutions 

We now focus on shift factors used in nonlinear rheological properties of xanthan gum 

solutions. As the previous section, we start a discussion with the first-harmonic Fourier moduli. 

Non-shifted storage and loss moduli (G′ and G″) are plotted as a function of strain amplitude 

in Fig. 9. Here again, samples measured by CP geometry display a little larger storage and loss 

moduli within linear regime compared with PP geometry. The distinguished effect of 

homogeneity of flow field is observed at loss modulus of 1.0 wt% solution. The CP-measured 

loss modulus exhibits a weak strain overshoot, indicating LAOS type Ⅲ. On the contrary, the 

PP-measured loss modulus exhibits a strain thinning, indicating LAOS type Ⅰ (Hyun et al., 

2002). Xanthan gum is a non-gelling biopolymer but a gel-like structure is present in 

concentrated xanthan gum solutions (Song et al., 2006). In addition, the maximum overshoot 

peak of G″ in 4 wt% solution has a larger value in PP measurement than in CP measurement 

(83.4 Pa in PP and 101.65 Pa in CP). For materials showing a gel-like response, the usage of 

CP geometry seems necessary to capture nonlinear rheological properties exactly. Both moduli 

are shifted horizontally and vertically to correct PP measurements as shown in Fig. 10 and the 

corresponding shift factors are listed in Table 5. The results show good agreement between CP 

and PP measurements except near a strain overshoot in G″. 

 



      

Fig. 9. Non-shifted first-harmonic (a) storage and (b) loss moduli of xanthan gum solutions with 0.5, 1, 

and 4 wt% concentrations under LAOS flow at 1 rad/s and 25°C for parallel-plate (PP – filled symbols) 

and cone-plate (CP – open symbols) geometries. 

 

      

Fig. 10. Shifted first-harmonic (a) storage and (b) loss moduli of xanthan gum solutions with 0.5, 1, and 

4 wt% concentrations under LAOS flow at 1 rad/s and 25°C for parallel-plate (PP – filled symbols) and 

cone-plate (CP – open symbols) geometries. The horizontal and vertical shift factors are listed in Table 

5. 

 



Xanthan gum has been known to a highly shear thinning behavior originating from its unique 

rigid, rod-like conformation. In an aqueous solution at 25°C, backbone of xanthan gum is 

disordered but highly extended. Due to the highly extended structure, it is more responsive to 

shear than a general polymer melt or solution which has a random-coil conformation (Hyun et 

al., 2003; Song et al., 2006). Complex viscosity of xanthan gum solutions used was plotted in 

Fig. 11 to reveal the highly shear thinning property. The data were fitted by power-law type 

equation (η* = aωn-1) and resultant shear thinning index (n) is listed in Table 4. Giacomin et al. 

(2015) derived shear rate correction factor as a function of shear thinning index for shear-

thinning power-law fluids (Eq. (13) in the Theory section). Because xanthan gum solutions 

display a shear thinning following power law behavior, theoretical shear rate correction factor 

was calculated by Eq. (13) and summarized in Table 4. Interestingly, the calculated values 

agree with the average value of experimentally-determined horizontal shift factors within 

standard deviations. It is speculated that the horizontal shifting in xanthan gum solutions is 

related to shear rate correction approach of Eq. (13). 

 

 

Fig. 11. Complex viscosity of xanthan gum solutions as a function of frequency at 25°C. 

 



Table 4. Shear thinning index (n) of xanthan gum solution and corresponding shear rate correction 

factor calculated by Eq. (13). 

Concentration [wt%] n [-] 𝛾̇CP 𝛾̇𝑅⁄  [-] 

0.5 0.208 0.724 

0.8 0.179 0.723 

1.0 0.153 0.722 

1.5 0.111 0.721 

2.0 0.094 0.720 

3.0 0.078 0.720 

4.0 0.076 0.719 

 

We mentioned that first-harmonic Fourier moduli measured with PP are also corrected 

vertically at each strain amplitude by a single-point correction approach instead of the use of 

one horizontal shift factor. In Fig. 12, stress responses of 4 wt% xanthan gum solution are 

presented at two different strain amplitudes. For PP correction, partial derivative of stress signal 

in Eq. (1) was numerically calculated from a centered finite difference formula. At γ0 = 0.2, PP 

response lies in a transition from linear to nonlinear regime while CP response already displays 

nonlinear behavior. At γ0 = 8.0, both responses display intercycle strain softening behavior (see 

Fig. 9). The corrected stress at γ0 = 8.0 shows a good agreement with the CP-measured stress. 

However, the situation is totally reversed at γ0 = 0.2. The CP response is highly distorted but 

the PP and corrected responses look sinusoidal. Similar phenomenon was observed in Lissajous 

curves of elastic Bingham model (Ewoldt et al., 2010). At extremely low or high strain 

amplitudes, both homogeneous and inhomogeneous strains produce the same Lissajous 

patterns. When the maximum stress starts to exceed the yield stress under homogeneous strain 

(e.g. σmax/σY = 1.001), the model exhibits plastic behavior. However, at the same maximum 

stress under inhomogeneous strain, most of the model response is still in the unyielded regime 

although strain amplitude at the edge of PP plate might move to the yielded regime. Thus, a 



general single-point correction, which vertically shifts PP measurements, cannot explain the 

effect of inhomogeneous flow properly in shear-thinning power-law fluids or yield stress fluids. 

Instead, shear rate correction method can be an adequate solution. 

 

      

Fig. 12. Stress response of 4 wt% xanthan gum solutions measured by CP (blue color) and PP (black 

color) at 1 rad/s and 25°C. The PP data corrected by a single-point correction are red-colored. 

 

Table 5. Horizontal and vertical shift factors used in first-harmonic Fourier moduli of xanthan gum 

solutions. 

Concentration 

[wt%] 

Test 

frequency 

[rad/s] 

HG* [-] VG* [Pa] 

0.5 1 0.65 1.07 

 3 0.73 1.04 

 5 0.74 1.04 

 7 0.72 1.05 

 10 0.72 1.06 

0.8 1 0.71 1.10 

 3 0.69 1.12 

 5 0.71 1.10 

 7 0.73 1.13 

 10 0.69 1.14 



1.0 1 0.68 1.14 

 3 0.73 1.14 

 5 0.70 1.11 

 7 0.73 1.07 

 10 0.76 1.04 

1.5 1 0.63 1.00 

 3 0.71 1.03 

 5 0.72 1.00 

 7 0.75 1.00 

 10 0.80 1.07 

2.0 1 0.65 1.11 

 3 0.80 1.08 

 5 0.69 1.09 

 7 0.80 1.13 

 10 0.71 1.08 

3.0 1 0.60 1.03 

 3 0.76 1.02 

 5 0.72 1.05 

 7 0.74 1.05 

 10 0.77 1.30 

4.0 1 0.70 1.00 

 3 0.74 1.00 

 5 0.71 1.03 

 7 0.75 1.00 

 10 0.75 1.00 

Average  0.72 ± 0.04 1.07 ± 0.06 

 

 

 

 



The shear rate correction was applied to four nonlinear parameters, I3/1, Q3, I5/1, and Q5. In 

Figs. 13 and 14, non-shifted and shifted I3/1 and Q3 are given as a function of strain amplitude. 

All correction factors used for I3/1 and Q3 of xanthan gum solutions are listed in Table 6. 

Although a single vertical shift factor of about 1.5 is able to superpose I3/1 and Q3 measured by 

CP and PP for materials used in the previous section, the superposition is achieved by using a 

horizontal shift factor as well as a vertical shift factor, in case of xanthan gum solutions. The 

xanthan gum solution of 0.5 wt% concentration, which displays a strain thinning of LAOS type 

Ⅰ (Hyun et al., 2002), obtains perfect superposition of I3/1 with a horizontal shift factor 

accounting for shear rate correction (averagely 0.72) and a small vertical shift factor (Figs. 13a 

and b). Unlike the systems in the previous section where the superposition of I3/1 and Q3 was 

obtained by vertical shift factors only, a horizontal shift factor has a dominant contribution to 

the superposition of I3/1 of 0.5 wt% xanthan gum solution. In case of Q3 superposition, it needs 

a large vertical shift factor as well as the same horizontal shift factor as used for I3/1 (Figs. 13c 

and d). It is rationalized by definition of Q3. 

 
3 1 3 1

3

3 1
3 1

3 1 3 1

3 2 2 2

0
0

,
I I

Q

I
I

V I V I
V Q

HH 
                                                                                             (15) 

where 𝑉𝑄3
 is a vertical shift factor for Q3 and 𝐻𝐼3/1

 and 𝑉𝐼3/1
 are a horizontal and vertical shift 

factor for I3/1. From Eq. (15), 𝑉𝑄3
= 𝑉𝐼3 1⁄

𝐻𝐼3 1⁄

2⁄ . The experimentally-determined and calculated 

values are almost identical (e.g. 𝑉𝑄3
 = 2.12 and 𝑉𝐼3 1⁄

𝐻𝐼3 1⁄

2⁄  = 2.12 at 1 rad/s). Thus, the 

obtained correction factors are reasonable. The xanthan gum solution with 4 wt% concentration 

also exhibits good agreement between CP and PP data with both horizontal and vertical shift 

factors, except a strain overshoot regime in Q3 (Fig. 14). The difference between overshoot 

peaks of CP and PP measurements is observed in xanthan gum solutions displaying LAOS type 

Ⅲ in the first-harmonic moduli (1, 1.5, 2, 3, and 4 wt%). The higher loss modulus peak in CP 



measurement is not perfectly attenuated even after vertical shifting. Because the dominant 

contribution near this overshoot of Q3 is viscous nonlinearity (not shown here), Q3 parameter 

displays a strain overshoot and a similar deviation of overshoot peaks between CP and PP 

results. 

 

      

      

Fig. 13. Relative third-harmonic intensity (I3/1) and nonlinear parameter (Q3) of 0.5 wt% xanthan gum 

solution as a function of strain amplitude at 1 rad/s and 25°C for parallel plate (PP – filled symbols) and 

cone plate (CP – open symbols). (a), (c) Non-shifted and (b), (d) shifted results by horizontal and vertical 

shift factors. 

 



      

      

Fig. 14. Relative third-harmonic intensity (I3/1) and nonlinear parameter (Q3) of 4 wt% xanthan gum 

solution as a function of strain amplitude at 1 rad/s and 25°C for parallel plate (PP – filled symbols) and 

cone plate (CP – open symbols). (a), (c) Non-shifted and (b), (d) shifted results by horizontal and vertical 

shift factors. 

 

The same method was applied to I5/1 and Q5 of xanthan gum solutions. Likewise, the 

superposition of I5/1 and Q5 is achieved by using a horizontal shift factor as well as a vertical 

shift factor although a single vertical shift factor of about 2 is able to superpose I5/1 and Q5 

measured by CP and PP for materials used in the previous section. The xanthan gum solutions 

of LAOS type Ⅰ display a perfect superposition of I5/1 and Q5 with both horizontal and vertical 



shift factors, as I3/1 and Q3 in Fig. 13. However, the solutions of LAOS type Ⅲ display a 

deviation at overshoot point of Q5 due to the same reason as for Q3 (Fig. 15). All correction 

factors used for I5/1 and Q5 of xanthan gum solutions are listed in Table 6. Interestingly, all 

horizontal shift factors used in first-harmonic Fourier moduli and FT-based nonlinear 

parameters are averagely 0.72, which reinforces the importance of shear rate correction in 

shear-thinning power-law fluids or yield stress fluids. From superposition for Q5, the average 

vertical shift factor is 4.11. It is also rationalized by definition of Q5. 
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Thus, 𝑉𝑄5
= 𝑉𝐼5 1⁄

𝐻𝐼5 1⁄

2⁄ . The experimentally-determined and calculated values are almost 

identical (e.g. 𝑉𝑄5
 = 4.44 and 𝑉𝐼5 1⁄

𝐻𝐼5 1⁄

2⁄  = 4.41 at 1 rad/s for 0.5 wt% solution). Again, the 

obtained correction factors are reasonable. 

One interesting point should be addressed. The general single-point correction of Eq. (10) 

gives vertical shift factors of 1.5 for Q3 and 2 for Q5. However, the experimentally-determined 

values for all xanthan gum solutions are averagely 2.11 for Q3 and 4.10 for Q5 (Table 6). One 

possibility is a violation of odd-harmonic strain amplitude scaling of I3/1 and I5/1 in the MAOS 

regime. Recently, for some thixotropic models, even-harmonic or non-integer strain amplitude 

scaling was reported (e.g. 𝐼3/1  ∝  𝛾0
1) (Blackwell and Ewoldt, 2014; Blackwell and Ewoldt, 

2016). The shift factors of 2.11 for Q3 and 4.10 for Q5 correspond to scaling exponents of 5.44 

and 13.4, respectively. (𝐼3/1  ∝  𝛾0
5.44 and 𝐼5/1  ∝  𝛾0

13.4). Thus, even-harmonic or non-integer 

strain amplitude scaling cannot be the reason for such differences. Another possibility is an 

invalidity of a power-series expression of nonlinear shear stress in xanthan gum solutions. 

Vertical stress correction by the single-point correction is still valid except the points where 

CP measurement exhibits nonlinear response while PP measurement lies in the linear regime, 



as shown in Fig. 12. Thus, the failure in prediction is from usage of a power-series expansion 

of stress response. That is, nonlinear shear stress of xanthan gum solutions might not be 

explained by a power-series expansion. However, it is difficult to draw any definite conclusion 

at this level. We just leave it as a future work. 

 

      

      

Fig. 15. Relative fifth-harmonic intensity (I5/1) and nonlinear parameter (Q5) of 4 wt% xanthan gum 

solution as a function of strain amplitude at 1 rad/s and 25°C for parallel plate (PP – filled symbols) and 

cone plate (CP – open symbols). (a), (c) Non-shifted and (b), (d) shifted results by horizontal and vertical 

shift factors. 

 



Table 6. Horizontal and vertical shift factors used in FT-based nonlinear parameters of xanthan gum 

solutions. 

Concentration 

[wt%] 

Test 

frequency 

[rad/s] 

𝐻𝐼3/1
 [-] 𝑉𝐼3/1

 [-] 𝑉𝑄3
 [-] 𝐻𝐼5/1

 [-] 𝑉𝐼5/1
 [-] 𝑉𝑄5

 [-] 

0.5 1 0.71 1.07 2.12 0.70 1.06 4.44 

 3 0.70 1.06 2.17 0.73 1.11 3.88 

 5 0.73 1.10 2.05 0.73 1.11 4.02 

 7 0.73 1.10 2.09 0.73 1.16 4.02 

 10 0.72 1.11 2.11 0.74 1.20 3.90 

0.8 1 0.72 1.08 2.10 0.72 1.15 4.27 

 3 0.73 1.10 2.04 0.73 1.17 4.08 

 5 0.73 1.08 2.02 0.72 1.14 4.14 

 7 0.73 1.08 2.01 0.72 1.14 4.08 

 10 0.71 1.06 2.12 0.73 1.23 4.33 

1.0 1 0.72 1.06 2.04 0.70 1.10 4.49 

 3 0.70 1.06 2.11 0.73 1.12 4.00 

 5 0.72 1.08 2.11 0.72 1.08 4.08 

 7 0.72 1.07 2.13 0.72 1.07 4.10 

 10 0.72 1.08 2.07 0.71 1.06 4.20 

1.5 1 0.72 1.33 2.60 0.78 1.79 4.91 

 3 0.65 1.24 2.98 0.77 1.61 4.58 

 5 0.74 1.16 2.07 0.74 1.29 4.22 

 7 0.73 1.08 1.93 0.72 1.13 4.02 

 10 0.79 1.02 1.40 0.75 1.00 2.94 

2.0 1 0.60 1.02 2.80 0.72 1.12 4.10 

 3 0.73 1.03 1.89 0.72 1.03 3.878 

 5 0.72 1.03 2.00 0.72 1.12 4.20 

 7 0.87 1.01 1.29 0.71 1.00 3.65 

 10 0.71 1.08 2.10 0.71 1.09 4.14 

3.0 1 0.57 1.17 3.61 0.73 1.25 4.33 

 3 0.70 1.08 2.24 0.73 1.22 4.08 



 5 0.74 1.06 1.98 0.73 1.19 4.08 

 7 0.73 1.00 1.70 0.73 1.11 4.00 

 10 0.74 1.00 1.71 0.71 1.00 3.81 

4.0 1 0.72 1.06 1.99 0.73 1.05 3.51 

 3 0.70 1.07 2.18 0.70 1.15 4.60 

 5 0.74 1.10 1.96 0.71 1.12 4.24 

 7 0.72 1.08 2.01 0.71 1.12 4.24 

 10 0.71 1.06 2.10 0.73 1.12 3.86 

Average  0.72 ± 0.04 1.08 ± 0.06 2.11 ± 0.39 0.72 ± 0.02 1.15 ± 0.15 4.10 ± 0.33 

 

  



5. Conclusion 

 

A comparative study of rheological properties of various complex fluids from single-phase 

to multiphase systems for parallel-plate (PP) and cone-plate (CP) geometries was conducted. 

Linear and nonlinear rheological properties were measured using strain-controlled SAOS and 

LAOS tests. 

Two theoretical approaches were adopted: a general single-point correction and a shear rate 

correction. A general single-point correction shifts nonlinear data vertically at a fixed strain 

amplitude whereas a shear rate correction shifts them horizontally. Theoretical predictions 

were validated with strain-controlled SAOS and LAOS experiments. It was confirmed that 

within linear regime of strain sweep results, CP- and PP-measured first-harmonic moduli 

coincide with each other. As nonlinear behavior is generated, vertical and horizontal shift 

factors are required. For all systems except xanthan gum solutions, first-harmonic Fourier 

moduli are perfectly superposed by use of one horizontal shift factor of averagely 0.88. Four 

FT-based nonlinear parameters (I3/1, Q3, I5/1, and Q5) need only vertical shift factor. I3/1 and Q3 

measured by PP are vertically shifted by multiplying 1.47 averagely. I5/1 and Q5 are corrected 

vertically by the average value of 1.89. These experimentally-determined values are identical 

to the theoretical values of 1.5 and 2 by the single-point correction within a standard deviation.  

On the contrary, xanthan gum solutions display anomalous corrections in nonlinear data. 

The first-harmonic Fourier moduli are superposed by a horizontal shift factor, as the other 

systems. However, smaller value of 0.72 is obtained, which corresponds to the prediction by 

shear rate correction. In contrast with the other systems, I3/1 and I5/1 of xanthan gum solutions 

are corrected by horizontal shift factors. Q3 and Q5 are corrected by both horizontal and vertical 

shift factors. The obtained vertical values for Q3 and Q5 (2.11 and 4.10) are larger than the 

theoretical values of the single-point correction (1.5 and 2), which indicates a possibility that 



nonlinear stress response of xanthan gum solutions might not be explained by a power-series 

expansion. This finding for xanthan gum solutions reinforces the importance of shear rate 

correction in shear-thinning power-law fluids or yield stress fluids. 
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