
A survey for service selection approaches in dynamic

environments
1Lindelweyizizwe Manqele, 2Mqhele Dlodlo, 3Louis Coetzee and 4George Sibiya
1,2 University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa

1, 3, 4 CSIR, Meraka Institute, P O Box 395, Pretoria, 0001, South Africa
1, 3, 4 {lmanqele, lcoetzee1, gsibiya}@csir.co.za

2mqhele.dlodlo@uct.ac.za

Abstract
The usage of the service selection approaches across different

dynamic service provisioning environments has increased the

challenges associated with an effective method that can be used to

select a relevant service. The use of service selection approach should

depend on certain factors. In order to address this challenge, the

literature analysis is conducted on various service selection

approaches. A proposed approach needs to be tested by manipulating

the relevant services description of available services. This paper,

proposes various aspects that needs to be considered when choosing

a method of service selection. The aspects were used in a scenario to

select the effective method and later the method was evaluated based

on response time, recall and precision metrics. The experiments

showed that the approach works better based on the results yielded

among the technical algorithms applied on the approach. The content-

based algorithm returned more relevant services to the user and took

shorter time as compared to the collaborative filtering.

Keywords— service selection, Internet of Things, cloud

computing, big data and dynamic environments

I. INTRODUCTION

The dynamic environment is the environments that keeps

changing. The influence of change includes time, location,

status, and other factors. The dynamic environments involves

an increasing number of smart interconnected devices and

sensors (e.g. cameras, biometric, smart meter, and medical

sensors) for a smart world [2], these interconnected devices and

sensors are referred as “Things”. The dynamic environment

considered in this study is the emerging technology of the

Internet of Things (IoT). IoT appears to be the anticipated

technology occurrence of machine-to-machine or machine-to-

human communication over the Internet that will influence the

future [3]. The environment like IoT is not dependent on

developing new technology but on connecting and integrating

existing technologies. Peer-to-peer communications among

devices will push services down to the device layer that

implements “Things” and create new opportunities for

functionality like discovery and selection [5]. In order to select

a relevant service, the user needs an effective approach that suits

the environment. The approach should be able to gather all the

input required to match the service with the requirement(s).

This study, therefore, classifies the different approaches used in

the dynamic environments and later suggests the important

factors that should be considered to choose the approach that

will work better for any defined dynamic environment.

II. BACKGROUND

In order to appreciate the significance of this paper and the

study more generally, it is necessary to put the discussion of

service selection in context. To do this, it is necessary to draw

from service-oriented computing (SOC) literature because this

lays the foundation for the topic of service selection. Service

Oriented Computing is discussed next. Service-oriented

computing is defined as a computing paradigm that utilises

services as fundamental elements for developing business

solutions and applications [7].The set of concepts, principles

and methods that represent computing in service-oriented

architecture (SOA), in which software applications are

constructed based on independent component services with

standard interfaces, is referred to SOC [6]. SOC supports the

development of rapid, low-cost and easy composition of

distributed applications even in heterogeneous and highly

dynamic environments. The emergence of the SOC paradigm

promises to enable businesses and organisations to collaborate

in an unprecedented manner by means of technologies such as

web services [14]. Kuropka, Laures& Troger [8] captured the

provisioning of web services by means of a service-delivery

life cycle which is accomplished through three sub-cycles,

namely the planning, binding and enactment sub-cycles. The

service-delivery life cycle presents a good view of what is

necessary in order to provide electronic services of any kind

[8].

Figure 1: Service delivery lifecycle [8]

When a user makes a request, the first step that a service-

providing platform takes is to find a service that can satisfy the

incoming request. If a requested service is not readily available,

the service space (e.g. a smart campus) searches for those

services that can satisfy some aspects of the service request

until the request can be satisfied in its entirety. This process is

called planning and consists of two main activities: service

selection or matchmaking, and service composition. When a

service is found that can satisfy the entire request or some

aspect of it, such a service is selected for invocation.

This is service selection. In the case where multiple services

are needed to satisfy the request, when each of those services

is found and selected dynamically or manually, this is the

process of service composition and such services are selected

for composition. Service composition becomes important

when a complex request from the client cannot be satisfied by

a single service. The focus of this chapter, and the study as a

whole, is service selection that, according Figure 1, is done

during the planning sub-cycle of the service-delivery lifecycle.

When a service is found, the service provision platform

needs to bind to this service – this entails contracting on some

of the non-functional requirements of the request and,

negotiating if such requirements cannot be readily satisfied.

After binding with a service, the bound service can now be

enacted. Enactment of a service also involves invoking the

service, profiling its execution and monitoring it. When errors

occur, the service-provision platform may resort to re-binding

or, if the error is severe, a complete re-assembling of a service

is done by returning to the planning sub-cycle. In the preceding

description of the steps necessary to provide a service, no

particular mention was made of the nature of services being

provided. However, as the focus of this chapter is service

selection, it is necessary to describe the nature of services. The

services that are the subjects of selection are IoT services,

which are discussed next.

III. LITERATURE

In the IoT domain, any software component that enables

controlling of an IoT device or provides information on an

entity or enables controlling of an IoT device is called a

“resource” [9][34]. A well-defined and standardised interface,

offering all necessary functionalities for interacting with

entities and related processes is called a “service” [34]. An IoT

service is modelled as a virtual concept that is exposed by an

IoT resource. IoT services delivery devices mostly have

limited computation capabilities, their exposed resources

operate in dynamic environments, and they are less reliable

than the general web service [11]. The model in figure 2 is

created based on the SOAP/WSDL and RESTful service

technologies [9].

Figure 2: Overview of the IoT description model [9]

The SOAP/WSDL-based services have associations with

business process modelling and have been adopted in the

business world, while RESTful style services are data-centric

and have been prevalent in web 2.0 applications due to their

flexibility and simplicity [31]. Figure 2 gives an overview of

the IoT description model. In this figure, the profile of a service

defines the non-functional aspects of the service and it contains

properties for linking to semantic concepts in the existing

knowledge bases or taxonomies which are essential for service

search and discovery. Barnaghi et al. [9] proposed the OWL-S

ontology as a semantic model for SOAP/WSDL services, and

OWL-S is designed based on the so-called “Profile-Process-

Grounding” pattern. In the literature, ontology is presented as

a model-based approach, therefore the approach adopted by

Wang [10] solves the complexity that originates from process

modelling. In contrast, RESTful services is a simple service

ontology that excludes the profile and grounding modelling

which is important for service discovery and access.

The model was developed by identifying and analysing

commonalities between different service technologies. It

represents a trade-off between the SOAP/WSDL-based and

RESTful services. The concept of grounding provides a

mapping between the concepts defined in the semantic

description ontology and those defined in the service

documents such as WSDL (for SOAP-based services). The

mapping concept is optional in IoT services, which usually do

not present service documents. The next section presents

existing service selection approaches in dynamic environments.

 EXISTING SERVICE SELECTION APPROACHES

 Existing approaches in helping a user to compare and select

infrastructure for services in cloud computing involve

manually reading the provider documentation to find out which

services are most suitable for hosting an application.

Therefore, selecting and composing the right services with

which to meet the application’s requirements is still a

challenge. Web services are typically highly configurable and

a service requester often has dynamic preferences for service

configuration. Services composed need to be planned in an

optimised way. There may be no single web service that

directly offers the desired functionality. A combination of web

services may need less investment or capabilities than a single

service. In most cases, providers compose web services in

order to offer the composite service as a new web service. The

service has to be selected in an environment consisting of

multiple functionally equivalent operators, but with possibly

different implementations and time-varying resources [35]. Yu

and Marganeic [1] presented a survey and a classification of

the service selection approaches. A survey and a classification

includes: firstly, Model for non-functional properties where a

service requestor needs to objectively distinguish services

based on his non-functional criteria to get the most appropriate

choice amongst a number of available services with equal or

similar functionality. A non-functional properties model is

required, it can be used in service descriptions as well as in

service requests [3]. Secondly, is the hierarchical properties,

this approach is meaningful to place properties into a

hierarchical structure. This approach allows, for example, to

gather properties and order them by domains and by broader

aspects such as performance or safety [1]. The speed and the

quality properties are the performance aspects while security

and privacy are a safety aspects. Lastly, user preference

approach. In this approach, service requestors usually have

varying preferences for the non-functional criteria depending

on the situation they find themselves in, and of course different

requesters will have different preferences [4]. Jembere et al.

[27] Yu and Marganeice [1] outlined that personalisation could

be any information that can be used to adapt the interaction of

a user with a system or service to the needs and preferences of

the user or user group. Personalisation of a user’s information

must be well defined and made available for the context-aware

system. Current service selection approaches are as follows:

A. Service selection based on the multi-agent approach

This approach, as proposed by Maximilien and Singh [5],

uses the ontology for Quality of Service (QoS) and a new

model of trust. The approach gathers and shares a service based

on ratings; even its user preferences are based on ratings. This

approach assumes that the system should give an empirical

basis for the service for selection. These ratings are made to be

quality-specific through monitoring and user input. Agents

used in this approach show that they are able to dynamically

adjust their trust assignment and select a service that best

satisfies a user. The challenge associated with this approach is

that a user is forced to make an ad hoc decision about the

service requested. The selection is based on how a given

service behaved previously (as deduced from ratings).

However, this approach depends on users sharing their

experiences. The service that performed poorly previously

should be given a chance to improve in the next request.

Another challenge identified in this approach according to the

focus of this research is the design of a system that would be

able to handle user preferences in a machine-readable format

such that cloud work flow engines will be able to process them,

regardless of whether the preferences are explicitly given by

the user or leant from user-session data.

B. Service selection based on ontology

This approach is based on semantic matching for each

service. Semantic matching focuses on meanings behind every

service comprising the repository. Services may differ in their

syntax but if they serve the same purpose or functionality, they

will likely be recommended. Some ontologies use models and

those models are supported by QoS properties like name,

category, data type, relationship, priority, dynamic attributes

and other properties. Maximilien and Singh [5] proposed QoS

ontology that let service agents match advertised quality levels

for its consumers with specific QoS preferences. Much such

ontology has been proposed in the literature. DAML-QoS

complements DAML-S by providing a better QoS metrics

model [6]. This approach presents a matchmaking algorithm

for QoS property constraints and describes different matching

degrees. OWL-Q ontology is proposed by Kyriakos & Dimitris

[13], an approach that addresses a challenge of web-service

registries returning many functionally equivalent web services

advertised for each user request. QoS is used for distinguishing

between functionally equivalent web services. Discovery

algorithms for QoS-based web services fail to yield accurate

results because they rely on either syntactic or semantically

poor QoS metric descriptions. Hence, these discovery

algorithms cannot infer the equivalence of QoS metrics based

on descriptions provided by different parties. This approach

does not incorporate evaluation of metric matching in order to

show their performance and accuracy. Damiano, Giallonardo

& Zimeo [7] proposed a query language that is used to define

complex constrains and it is called onQoS, which captures QoS

requirements. The language that was used before was based on

SPARQL, whereas onQoS is able to select services based on

QoS requirements and specifications. This approach focuses

only on improving quality of service language, and presents

how the user defines themselves on semantic webs. According

to Tran, Tsuji and Masuda [12], there is a need to distinguish

and rank web services that have similar functionalities. QoS

has been used as an important factor in distinguishing the

quality of web services. Tran [12] proposed a web-service

QoS-based ontology (WS-QoSOnto), this approach supports in

describing QoS information in detail and facilitating different

service participants expressing their QoS offers and demands

at various levels of expectation. This approach needs to

develop a ranking algorithm for web services, basing it on the

QoS description specified by the QoS ontology. The challenge

identified according to the focus of this research, is the need to

find a mechanism to query for inferred preferences from

preference repositories and a personalised selection of services

both functional and non-functional requirements.

C. Service selection based on Quality of Service

SOA enables a multitude of service providers to provide

loosely coupled and interoperable services at various QoS and

cost levels in a number of service domains. The QoS-based

mechanism is a non-functional-based service selection

approach that evolves trust computing and market-oriented

computing development. Ahsan [14] defines QoS as the

collective effort of service performance that determines the

degree of satisfaction from a user about the recommended

service. QoS has non-functional constraint requirements that

must be met during the process of selecting services. Those are

constraints such as reliability, response time, throughput and

integrity. The QoS value from the perspective of a consumer

can be positive, negative, closer, or exact and sometimes

functional properties make use of domain ontology [15]. In

order to provide the consumer with the requested service, non-

functional properties use QoS ontology. QoS has non-

functional constraint requirements that must be met during the

process of selecting the services. The QoS constrains are

reflected in various parameters that the provider can monitor

during service invocation and are used to evaluate the quality

level. Considering the relevance of this paper, some of those

constraints are reliability, response time, cost, throughput,

integrity and platform/API. The QoS constrains are briefly

discussed as follows:

Integrity is a degree of trust that is expected from a service

provider for reliability and availability purposes. However, the

user can check whether the recommended service matches the

job submitted when the system claims to be trusted. Reliability

is the ability of a system or component to perform its required

functions under stated conditions for a specified period.

Response time is the total amount of time taken to recommend

the service. It consists of execution time and network-

transmission time. The job-execution time depends on the

workload and system performance, and can be estimated using

existing performance-estimation techniques. The network-

transmission time depends on network latency and the size of

input data. Response time can be predicted exactly and simply

by using processing speed, representing the computing power

of the service provider. Throughput is the movement of inputs

and outputs through a selection process. It can be described as

the rate at which a system generates services per unit of time.

Cost is the total amount charged per successful execution.

Depending on the formula used, which is likely to be

determined by the nature of environments where selection is

processed, cost may include data volume transferred (which is

currently charged for data space such as kilobytes, megabytes,

gigabytes, terabytes, etc.), execution time, and other properties.

Cost reasonableness attracts more people that would like to

participate in the market. Availability is important in presenting

services during runtime. The availability is not a problem in

environments like cloud since they provide on-demand

services. Services are provided when they are needed, and

providers understand the sense of emergency. In

Platform/application Program Interface (API), a user may

want to specify the API requirements. It is straightforward to

deploy a Java-based application to Google’s AppEngine [16].

Yau & Yin [17] proposed a selection method based on the QoS

ranking. This approach uses the results of the last phase to

select relevant services according to the functional aspect. The

approach has two phases. First, the classification of the data-

mining algorithms copes with the web-service environment

into the QoS level based on the QoS constraints. Lastly, it

composes the best services by means of the services’ semantic

connections.

The challenge with the QoS-based approach is that the

service-selection system is not able to differentiate similar

services based on their features and QoS parameters. The QoS

description can be either semantic or syntactic. Semantic QoS

is more concerned with the meaning and description of the

service. The semantic approach makes the process of selection

difficult for composite service (service composed of other

services) while the syntactic approach is more concerned with

the language. The language used for search engines that uses

key words to match the request with requested information is

based on the QoS syntactic approach. The system should be

able to select a service that best satisfies the user as a candidate

for IoT service composition [28]. Other challenge associated

with the QoS-based approach is that QoS is most used during

trial-and-error tests. The QoS-based approach does not address

selection adequately for open environments like model-based

or trust environments. QoS is based on requirements from the

server and needs from the client that does not exhibit

autonomic characteristics. QoS does not have enough support

to help users define their QoS requirements.Finding services

that are relevant to a service request is the core function of

service discovery. The way the results are presented to the

client is also a matter of great importance. Presenting search

results in a ranked order simplifies service selection work for a

client [29]. There have been work done on web-service ranking

[30]. Wang et al. [31] used the process of hybrid matchmaking

that works on the set of returned services. This process aims to

find the most relevant way to query and rank services in order.

Other challenge is that QoS has no consistent way for the

consumer to select services because consumers perceive

quality through the prism of their own experience, and evaluate

those service maps to the specific quality parameters offered

by a provider [18]. Therefore, it is not effective enough to do

selection based on QoS only. There is a need to support it with

the functional approach in order to balance both the system’s

nature and selection criteria that distinguishes web services

using a set of well-defined QoS criteria [32].

D. Service selection based on functional requirements

The functional-based approach provides information on

how the system selects services. The functionalities lead to

selection criteria that formulate the algorithm to be used during

the service-selection process. A service-level agreement (SLA)

is used, but most of the functional approaches are based on

artificial intelligence [19]. There is an increase in agreement

on the implementation and management of the functional

aspects of services but the interest is shifting towards non-

functional attributes that describe the QoS [33].

E. Service selection based on user-centred QoS

The approach based on user-centred QoS is proposed by

Mobedpour & Ding [20], whereby experienced users are not

the focal point. Instead, the proposal is more expressive and

flexible for non-expert users to define their own QoS

requirements. The QoS-based approach in this context is

designed to help users to find their best matching services

using their quality requirements. The system design guides the

user through the selection process with sufficient information.

The user-centred QoS-based approach is based on artificial

intelligence and it gives a user an interface to browse to check

the available service(s) in order to gain ideas and make a

choice. This approach targets non-expert users and supports

ranked, relaxed, preference and fuzzy results. Two challenges

have been identified in this approach. First, the challenge

associated with this approach is that it assumes that a user is

capable of formulating queries for the service-selection

process. There may be no service that matches the requested

service from those that are available. Lastly, is to get a user to

request in whatever an acceptable form and break it down into

required user task and preferences, which can then be easily

mapped to the services existing on the cloud.

The selection criteria in the literature are based on description,

semantics, quality, rating, effectiveness, scalability of the

service and other aspects. According to the study conducted by

Yu and Marganeic [1], it is not easy to evaluate each approach

based on the universal defined approach. Hence, this paper

proposes aspects that should be considered when selecting an

approach that will yield effective results.

IV. PROPOSED EVALUATION METHOD

The system should support the following considerations:

User preference-based - users may have their opinions and

reasons when choosing services. For that, there is a need for

the well-defined interface for the user profile to capture the

user preferences. There is a need for a system that will define

both functional and non-functional properties. User preference

is one component that integrates human interaction with the

system. In this work, context is defined as location, time and

duration. It helps to provide well-defined and standardised

interfaces offering all functionalities for interacting with

entities and related processes (Barnaghi et al., 2013). IoT

services are less functional than web services; however, one

may want to know about the nature and the state of a “Thing”

in order to continue with querying the service. Domain-

specification- specifies the scope of data and gives awareness

in order to visualise a dataset. Smart environments are based

on ubiquitous computing, where environments interact with

their inhabitants on a device layer [21]. The data have to be

stored intelligently and used for smart monitoring and

actuation. This suggestion leaves one with the question as to

whether the use of an artificial intelligence algorithm will

satisfy users or will it give the users interfaces with which they

can express themselves when submitting the job requested. In

order to answer this question, there is a need to invoke the user

profiling component that captures user preference on a well-

defined interface. According to Silva et al. [21], the other

challenge faced by smart-environment technologies is to

improve decision making, sense making, user experience, and

cater for the convenient situations, saving energy, and other

concerns that may arise as needs increase and technology

improves. Based smart-environment technologies, it is hoped

that it will improve the quality of life and reduce the ecological

impact of humankind, since it eliminates human involvement.

This discussion shows that a domain has its own expectations,

requirements and challenges.

Storage - enables businesses to publish and discover service

listings and define how the services or software applications

interact over the Internet. Universal Description, Discovery,

and Integration (UDDI) is the commonly used storage

mechanism in SOA and web services. A smart campus has the

distributed resources and services. However, according to

Manikrao & Prabhakar [23], there is a need to get a storage

mechanism that will be able to integrate services logically to

make the concept. Cloud storage serves as a centralised

database where data is stored in virtualised pools of storage

which are generally hosted by third parties [22]. Physically, the

resource may span multiple servers and multiple locations. The

security of the services depends upon the hosting units, and on

the applications that leverage the cloud storage. Scalability -

refers to the ability of a system, network, or process to handle

a growing amount of services in a capable manner, or its ability

to be expanded to accommodate that growth [24]. Distributed

systems have a limited memory and have sharing restrictions.

Cloud service is capable of providing online object storage for

files and functionalities, then deliver them globally or locally

depending on the domain specification. IoT is a global network

infrastructure linking the physical and the virtual objects

through the exploitation of data capture and its communication

capabilities [24]. Such an environment demands large data-

storage facilities and the sharing of resources and services.

Algorithm- the importance of the algorithm is to support

recommendation, since the selection of services will be done

based on user preference for a specific need. Singh & Hunhs

[25] indicated that users save time by using the recommender

system that helps them to choose from a variety of options. The

purpose of recommender systems is to pre-select information a

user might be interested in Singh & Hunhs [25]. The heuristic

algorithm should support recommendation and dynamic

environments. Evaluation- the evaluation provides proof of the

concepts that whether an architectural or algorithm proposed

as the solution works better than other solutions reported in the

literature, it is worthwhile to check the relationship that exists

between the architectural components and how they perform

ogether. Evaluation should be carried out using metrics such as

recall, precision and response time. Recall is the ratio of the

number of relevant records retrieved to the total number of

relevant records in the database. Precision is the ratio of the

number of relevant records retrieved to the total number of

irrelevant and relevant records retrieved. Precision and recall

are usually presented as a percentage or decimal. Response

time is the total time interval when a service is invoked until

the service is recommended. QoS - is a non-functional property

of a system. According to Yu & Lin [26], non-functional

properties include service tracking. Service tracking is a broker

that has a service repository to record all feasible web services.

V. APPLICATION SCENARIO

A. Scenario

The user is looking for a service that can do function Z (check

if the blinds are closed or opened). The user may request for

this service within or outside the premises of the smart campus.

The user expects the application to be able to recommend the

relevant service(s) to the user.

Based on the scenario, in order to select a mechanism that can

be used to select the IoT services, the desired mechanism

should support the following environmental considerations:

Integration- in order to select services, there is a need to find a

storage mechanism that will enable the integration of services

from different departments of the smart campus. Scalability-

the mechanism adopted should be able to support a large

number of services integrated into a database. User preference-

the service-selection system should be flexible to allow users

to define the service that corresponds to their profile.

Algorithm - the mechanism should support user preference and

personalisation. Domain - the mechanism to be proposed

should be able to support the smart-campus environment.

B. Findings:

The application was implemented on Android Studio

version 0.8.2.The application was installed and tested on

android device Galaxy S4 GT-19500 that utilizes. SQLite to

store user’s authentication information. The performance of

the application was measured by the response time.

Figure 3: Response time comparison
The total time taken by the application from request to the

recommendation, figure 3 shows that content-based was more

effective than the collaborative filtering. Preference recall

measures how good the algorithm developed in making sure

that there is no missing relevant recommendations as indicated

in figure 4. Preference precision measures how good the

algorithm is in reducing irrelevant recommendations. A good

preference model is expected to optimise these two parameters.

0

2

4

6

0 2 4 6

R
es

p
o

n
se

 T
im

e
(m

s)

Number of preference/request

Response Time graph

Content-
based

Collaborative
Filtering

The results show that content-based is more effective than

collaborative filtering technique.

Figure 4: Recall vs precision evaluation

VI. CONCLUSION

 The existing service selection approaches identified were

multi-agent based, ontology-based, QoS-based, user-centred

QoS-based and functional based approaches. Each approach

serves its own purpose in various infrastructures and

environments. Most of the approaches studied were based on

QoS. The findings indicate that it is important to consider other

aspects such as domain, storage, scalability, algorithm, QoS,

and evaluation metrics to improve the effectiveness and

performance. The findings were tested on IoT services

provided on a smart campus. The results indicated that content-

based performed better than collaborative filtering algorithm

having considered all the aspects discovered on this paper.

REFERENCES

[1] Yu, H.Q. and Reiff-Marganiec, S. (2008). Non-functional Property

based service selection. A survey and classification of approaches. In:
Non Functional Properties and Service Level Agreement in Service

Oriented Computing Workshop co-located with The 6th IEEE European

Conference on Web services, 12 - 14 Nov 2008, Ireland, Dublin.
[2] INTERNET SOCIETY, 2015. The Internet of Things: An Overview.

[3] Chung, Lawrence, et al. Non-functional requirements in software
engineering. Vol. 5. Springer Science & Business Media, 2012.

[4] Chouiref Z., Belkhir A., Benouaret K., Hadjali A., A fuzzy framework

for efficient user-centric Web service selection, Applied Soft
Computing, Volume 41, April 2016, Pages 51-65, ISSN 1568-4946.

[5] Maximilien E.M. and Singh M.P., 2004. A Framework and Ontology

for Dynamic Web Services Selection. Publisher: IEEE Computer Society.
[6] Chen Z., Chia L., and Lee B. "Service discovery and measurement

based on DAML-QoS ontology." Special interest tracks and posters of

the 14th international conference on World Wide Web. ACM, 2005.
[7] Deora, V. (2007). Quality of Service Support for Service Discovery

and Selection in Service Oriented Computing Environment (Doctoral

dissertation, Cardiff University).
[8] Kuropka, D., Laures, G. and Tröger, P., 2008. Core concepts and use

case scenario. In Semantic Service Provisioning (pp. 5-18). Springer

Berlin Heidelberg.
[9] Barnaghi, P., Wang, W., Henson, C. and Taylor, K., 2012. Semantics

for the Internet of Things: early progress and back to the future.

International Journal on Semantic Web and Information Systems
(IJSWIS), 8(1), pp.1-21.

[10] Wang, W., De, S., Cassar, G. and Moessner, K., 2013. Knowledge

representation in the internet of things: semantic modelling and its
applications. automatika, 54(4), pp.388-400.

[11] Botta, A., De Donato, W., Persico, V. and Pescapé, A., 2014, August.
On the integration of cloud computing and internet of things. In Future

Internet of Things and Cloud (FiCloud), 2014 International Conference

on (pp. 23-30). IEEE.
[12] Tran, V.X., Tsuji, H. and Masuda, R., 2009. A new QoS ontology and

its QoS-based ranking algorithm for Web services. Simulation

Modelling Practice and Theory, 17(8), pp.1378-1398.
[13] Kritikos, K. and Plexousakis, D., 2007, November. OWL-Q for

semantic QoS-based web service description and discovery. In

Proceedings of the 2007 International Conference on Service

Matchmaking and Resource Retrieval in the Semantic Web-Volume

243 (pp. 114-128). CEUR-WS. org.

[14] F, S.M., 2006. A framework for QoS computation in web service and

technology selection. Computer Standards & Interfaces, 28(6), pp.714

[15] Sathya, M., Swarnamugi, M., Dhavachelvan, P. and Sureshkumar, G.,

2010. Evaluation of qos based web-service selection techniques for
service composition. International Journal of Software Engineering,

1(5), pp.73-90.

[16] Zhao, L., Ren, Y., Li, M. and Sakurai, K., 2012. Flexible service
selection with user-specific QoS support in service-oriented

architecture. Journal of Network and Computer Applications, 35(3),

pp.962-973.
[17] Yau, S.S. and Yin, Y., 2011, July. Qos-based service ranking and

selection for service-based systems. In Services Computing (SCC), 2011

IEEE International Conference on (pp. 56-63).
[18] Maabed, U.M., El-Fatatry, A.M. and El-Zoghabi, A.A., 2013. Towards

Enhanced Service Oriented Architecture to Improve E-Services

Applications. International Journal of Computer Science &
Communication Networks, 3(1), p.1.

[19] Moghaddam, M., 2015. Combinatorial Auction-based Mechanisms for

Composite Web Service Selection.
[20] Mobedpour, D. and Ding, C., 2013. User-centered design of a QoS-

based web service selection system. Service Oriented Computing and

Applications, 7(2), pp.117-127.
[21] Guerra, C.A.N. and da Silva, F.S.C., 2008, April. A middleware for

smart environments. In AISB 2008 Convention Communication,

Interaction and Social Intelligence (Vol. 1, p. 22).
[22] Sukhamrit, K., Kuljit, K. and Dilbag, S., 2012. Evaluating

Performance of Web Services in Cloud Computing Environment

withHigh Availability. Global Journal of Computer Science and
Technology: B Cloud & Distributed, 12(11), p.2.

[23] Manikrao, U.S. and Prabhakar, T.V., 2005, August. Dynamic selection

of web services with recommendation system. In Next Generation
Web Services Practices, 2005. NWeSP 2005. International Conference

on (pp. 5-pp). IEEE.

[24] Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M. and

Ochiai, O., 2015. Big data challenges in building the global earth

observation system of systems. Environmental Modelling & Software,

68, pp.1-26.
[25] Singh, M.P. and Huhns, M.N., 2006. Service-oriented computing:

semantics, processes, agents. John Wiley & Sons.
[26] Yu, X., Lin, J., Zack, D.J. and Qian, J., 2006. Computational analysis

of tissue-specific combinatorial gene regulation: predicting interaction

between transcription factors in human tissues. Nucleic acids research,
34(17), pp.4925-4936.

[27] Jembere, E., Xulu, S.S. and Adigun, M.O., A Grid Infrastructure for

Knowledge-based applications in Open and Dynamic Computing
Environments.

[28] Zhao, X., Huang, P., Liu, T. and Li, X., 2012. A hybrid clonal

selection algorithm for quality of service-aware web service selection
problem. Int J Innov Comput Inf Control, 8(12), pp.8527-8544.

[29] Maximilien, E.M. and Singh, M.P., 2004,. Toward autonomic web

services trust and selection. In Proceedings of the 2nd international

conference on Service oriented computing (pp. 212-221). ACM.

[30] Mirmotalebi, R., Ding, C. and Chi, C.H., 2012, November. Modeling

user’s non-functional preferences for personalized service ranking.
In International Conference on Service-Oriented Computing (pp. 359-

373). Springer Berlin Heidelberg.

[31] Wang, W., De, S., Cassar, G. and Moessner, K., 2013. Knowledge
representation in the internet of things: semantic modelling and its

applications. automatika, 54(4), pp.388-400.

[32] Cao, L., Li, M. and Cao, J., 2005,. Cost-driven web service selection
using genetic algorithm. In International Workshop on Internet and

Network Economics (pp. 906-915). Springer Berlin Heidelberg.

[33] Zemni, M.A., Benbernou, S. and Carro, M., 2010. A soft constraint-
based approach to qos-aware service selection. In International

Conference on Service-Oriented Computing (pp. 596-602). Springer

Berlin Heidelberg.
[34] De, S., Barnaghi, P., Bauer, M. and Meissner, S., 2011. Service

modelling for the Internet of Things. In Computer Science and

Information Systems (FedCSIS), 2011 Federated Conference on (pp.
949-955). IEEE.

[35] Lamparter, S., Ankolekar, A., Studer, R. and Grimm, S., 2007, May.

Preference-based selection of highly configurable web services.
In Proceedings of the 16th international conference on World Wide

Web (pp. 1013-1022). ACM.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

R
ec

al
l

Precision

Recall vs Precision graph

Content-
based

Collaborativ
e Filtering

