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1 Introduction
Multi-physics problems occur in various disciplines. One example is fluid-structure
interaction (FSI), which refers to the coupling between a fluid flow and a moving or
deforming structure. This kind of problems can be found in heart valves, flapping
flags, flutter of electricity cables, etc. Also problems with more than two fields exist,
such as fluid-structure-thermal interaction in sintering processes and gas turbine
blades. Mathematically these can be written as the a non-linear system of equations:

f1(x1,x2, . . . ,xn) = 0
f2(x1,x2, . . . ,xn) = 0

...
fn(x1,x2, . . . ,xn) = 0

(1)

where fi : DF ⊂Rm→Rki , x j ∈Rm j (i, j ∈ {1,2, . . . ,n}), ∑
n
i=1 ki = m, ∑

n
j=1 m j = m.

Each equation describes (the discretized equations of) a physical problem that is
spatially or mathematically decomposed. E.g. f1(x1,x2) = 0 could give the pressure
x1 on the wall of a flexible tube for a given geometry x2, while f2(x1,x2) = 0, could
give the deformed geometry of the wall due to the pressure exerted on it by the fluid.
We will assume the problem has the following characteristics [11, 21]:

1. Good solvers exist for each equation of the system. For this reason, we will use
a partitioned solution method.

2. The analytic form of fi (i = 1,2, . . . ,n) is unknown.
3. The problem has a large dimensionality.
4. Evaluating fi (i = 1,2, . . . ,n) is computationally costly.

2 Fixed-point formulation and quasi-Newton accelaration
A typical solution method for (1) is the fixed-point iteration [22].

Fixed-point iteration

1. Startup: Take initial values x1
2, x1

3, . . . x1
n. Set s = 1.

2. Loop until convergence:
2.1. Solve f1(x1,xs

2, . . . ,x
s
n) = 0 for x1, resulting in xs+1

1 .
2.2. Solve f2(xs+1

1 ,x2, . . . ,xs
n) = 0 for x2, resulting in xs+1

2 .
. . .
2.n. Solve fn(xs+1

1 ,xs+1
2 , . . . ,xn) = 0 for xn, resulting in xs+1

n .
2.n+1. Set s = s+1.

If F ′ (the Jacobian of F = ( f1, . . . , fn)) satisfies the condition

∀i < j < n : [F ′]i j = 0 (2)

then we can write the whole process 2.1. to 2.n, as xs+1
n = H(xs

n) [20]. The problem
can now be considered as finding the fixed point of H, or alternatively as finding
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the zero of K(xn) = H(xn)−xn, where we assume that K has continuous first partial
derivatives and a nonsingular Jacobian in a neighborhood of its single zero. It is on
this root-finding problem that we apply quasi-Newton (QN) acceleration.

Quasi-Newton acceleration

1. Startup: Take initial values x1
2, x1

3, . . . x1
n. Set s = 1.

2. Loop until convergence:
2.1. Solve f1(x1,xs

2, . . . ,x
s
n) = 0 for x1, resulting in xs+1

1 .
2.2. Solve f2(xs+1

1 ,x2, . . . ,xs
n) = 0 for x2, resulting in xs+1

2 .
. . .
2.n. Solve fn(xs+1

1 ,xs+1
2 , . . . ,xn) = 0 for xn, resulting in H(xs

n).
2.n+1. Compute an approximate Jacobian K̂′s of K (see below)
2.n+2. xs+1

n = xs
n− (K̂′s)

−1K(xs
n)

2.n+3. Set s = s+1.

Alternatively a slightly different quasi-Newton step xs+1
n = xs

n− M̂′sK(xs
n) can be

used. Here M′s serves as an approximation to the inverse of the Jacobian at step s,
whereas K̂′s is an approximation of the Jacobian itself. We will designate methods
that approximate the Jacobian as Type I methods, and methods that approximate the
inverse Jacobian as Type II methods [11].

3 Different choices of quasi-Newton methods
We define δxs = xs+1

n − xs
n, δKs = K(xs+1

n )−K(xs
n) and {ı j; j = 1, . . . ,mn} as the

canonical basis for Rmn and 〈·, ·〉 as the standard Euclidean scalar product.

3.1 Non-Linear Gauss-Seidel (GS)
This method (also called, among others, “Iterative Substructuring Method” or “Pi-
card iteration”) is nothing else than the fixed-point iteration described at the begin-
ning of §2. It is seldom considered to be a quasi-Newton method, but can take this
form if we set (K̂′s+1)

−1 =−I [22].

3.2 Aitken’s δ 2 method (Aδ 2)
Aitken’s δ 2 method [1] is a relaxation method and as such is again seldom seen as a
quasi-Newton method, but it can take its form if we define (K̂′s+1)

−1 =− 1
ωs+1

I with

ωs+1 =−ωs
〈K(xs

n),K(xs+1
n )−K(xs

n)〉
〈K(xs+1

n )−K(xs
n),K(xs+1

n )−K(xs
n)〉

. (3)
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3.3 Broyden’s Good Method (BG), Bad Method (BB) and the
Switched Broyden method (SB)

1. Broyden’s first (or “good”) method is a quasi-Newton method that is part of
the family of Least Change Secant Update (LCSU) methods [4, 5, 8, 9, 12],
where the approximate Jacobian K̂′s+1 is chosen as the solution of min{‖K̂′−
K̂′s‖Fr}, s.t. K̂′δxs = δKs, which leads to the following rank-one update:

K̂′s+1 = K̂′s +
(δKs− K̂′sδxs)δxT

s

〈δxs,δxs〉
or (4)

(K̂′s+1)
−1 = (K̂′s)

−1 +
(δxs− (K̂′s)

−1δKs)δxT
s (K̂

′
s)
−1

〈δxs,(K̂′s)−1δKs〉
. (5)

(K̂′1)
−1 is typically set to be −I, i.e. the first iteration is a GS iteration.

2. Broyden’s second (or “bad”) method is a quasi-Newton method that uses an ap-
proximation M̂′ of the inverse Jacobian. It is also part of the family of LCSU
methods [4, 9, 12], where M̂′s+1 is chosen as the solution of min{‖M̂′− M̂′s‖Fr},
s.t. M̂′δKs = δxs,, which leads to the following rank- one update:

M̂′s+1 = M̂′s +
(δxs− M̂′sδKs)δKT

s

〈δKs,δKs〉
or (6)

(
M̂′s+1

)−1
=
(
M̂′s
)−1

+

(
δKs−

(
M̂′s
)−1

δxs

)
δKT

s
(
M̂′s
)−1

〈δKs,
(
M̂′s
)−1

δxs〉
. (7)

Again, typically M̂′1 =−I is chosen.
3. Broyden himself [4] admitted that the “bad” formulation of his algorithm didn’t

function properly. The reasons for the “good” or “bad” behavior are not well
understood, and in some instances the bad method actually outperforms the good
method. For this reason we follow an idea suggested in [24] that avoids the need
to choose between the two methods and create a switched version of BG/BB
(called “SB”) based on the following reasoning: as both BG and BB are secant
methods we have K̂′sδxs−1 = δKs−1 and

(
M̂′s
)−1

δxs−1 = δKs−1. Using (4) and
(7), we get

K̂′s+1δxs−1−δKs−1 =
(δKs− K̂′sδxs)δxT

s

〈δxs,δxs〉
δxs−1 (8)

(
M̂′s+1

)−1
δxs−1−δKs−1 =

(
δKs−

(
M̂′s
)−1

δxs

)
δKT

s
(
M̂′s
)−1

〈δKs,
(
M̂′s
)−1

δxs〉
δxs−1. (9)

Equations (8) and (9) can be considered to be a secant error at the next approx-
imation with respect to the previous iterates. Thus, BG has a smaller error than
BB when ∣∣δxT

s δxs−1
∣∣

〈δxs,δxs〉
<

∣∣δKT
s δKs−1

∣∣∣∣∣〈δKs,
(
M̂′s
)−1

δxs〉
∣∣∣ . (10)
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The same reasoning can be built-up starting from (5) and (7). We then obtain for
the switching condition:

|δxT
s δxs−1|

|〈δxs,(K̂′s)−1δKs〉|
<
|δKT

s δKs−1|
〈δKs,δKs〉

. (11)

To avoid situations where (10) and (11) contradict, we will only use the latter. If
(11) is met then the BG-update will be applied, otherwise the BB-update.

3.4 Column-Updating Method (CU), Inverse Column-Updating
Method (ICU) and Switched Column-Updating Method (SCU)

1. The Column-Updating method is a quasi-Newton method that was introduced by
Martinez [25, 27, 28]. The rank-one update of this method is such that the column
of the approximate Jacobian corresponding to the largest coordinate of the latest
increment δxs is replaced in order to satisfy the secant equation K̂′δxs = δKs at
each iteration. This results in:

(K̂′s+1)
−1 = (K̂′s)

−1 +
(δxs− (K̂′s)

−1δKs)ıTjK,s
(K̂′s)

−1

〈ı jK,s ,(K̂′s)−1δKs〉
(12)

where ı jK,s is chosen such that jK,s = Argmax{|〈ı j,δxs〉|; j = 1, . . . ,mn}.
(K̂′1)

−1 is typically set to be −I,
2. The Inverse Column-Updating method (ICU) is a quasi-Newton method that was

introduced by Martinez and Zambaldi [23, 26]. It uses a rank-one update such
that the column of the approximation of the inverse of the Jacobian corresponding
to the largest coordinate of δKs is replaced in order to satisfy the secant equation
M̂′δKs = δxs at each iteration. This results in:

M̂′s+1 = M̂′s +
(δxs− M̂′sδKs)ıTjM,s

〈ı jM,s ,δKs〉
, (13)

where ı jM,s is chosen such that jM,s = Argmax{|〈ı j,δKs〉|; j = 1, . . . ,mn}. Again,
typically M̂′1 =−I is chosen.

3. As far as the authors are aware, the idea behind SB has not yet been applied to
CU and ICU, despite being straightforward. A similar reasoning as for SB gives
the following switching condition:

|ıTjK,s
δxs−1|

|〈ı jK,s ,(K̂′s)−1δKs〉|
<
|ıTjM,s

δKs−1|∣∣〈ı jM,s ,δKs〉
∣∣ . (14)

If this condition is satisfied, then the CU-update is used, otherwise the ICU-
update.
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3.5 Quasi-Newton Least Squares (QN-LS) and Quasi-Newton
Inverse Least Squares (QN-ILS)

1. In the Quasi-Newton Least Squares Method (QN-LS) [14, 16, 17, 18, 30, 31] the
approximate Jacobian K̂′s+1 is chosen as the solution of min{‖K̂′− K̂′s‖Fr} s.t.
K̂′δxi = δKi, ∀i ∈ {1, . . . ,s}, which leads to the following rank-one update:

(K̂′s+1)
−1 = (K̂′s)

−1 +
(δxs− (K̂′s)

−1δKs)
(
(I−LsL T

s )δxs
)T

(K̂′s)
−1〈

(I−LsL T
s )δxs,(K̂′s)−1δKs

〉 , (15)

with Ls = [L̄1| . . . |L̄s], where L̄k is the kth left singular vector of Vs = [vs
1 . . .v

s
s−1],

with vs
i = xs

n−xi
n (i= 1, . . . ,s−1). (K̂′1)

−1 is typically set to be−I. As L1 doesn’t
exist we replace it by the zero matrix.

2. The Quasi-Newton Inverse Least Squares Method (QN-ILS) [7, 15] is similar
to QN-LS but constructs an approximation to the inverse Jacobian. The approxi-
mate Jacobian M̂′s+1 is chosen as the solution of min{‖M̂′−M̂′s‖Fr}, s.t. M̂′δKi =
δxi, ∀i ∈ {1, . . . ,s}, which leads to the following rank-one update:

M̂′s+1 = M̂′s +
(δxs− M̂′sδKs)

(
(I− L̃s(L̃s)

T )δKs
)T

〈(I− L̃s(L̃s)T )δKs,δKs〉
, (16)

with L̃s = [ ˜̄L1| ˜̄L2| . . . | ˜̄Ls], where ˜̄Lk is the kth left singular vector of Ṽs =
[ṽs

1 . . . ṽ
s
s−1], with ṽs

i = K(xs
n)−K(xi

n) (i = 1, . . . ,s− 1). M̂′1 is typically set to be
−I. As L̃1 does not exist we replace it by the zero matrix.

3. A similar reasoning as for SB gives the following switching condition:

|〈
(
(I−LsL T

s )δxs
)T

δxs−1|
|〈(I−LsL T

s )δxs,(K̂′s)−1δKs〉|
<
|
(
(I− L̃s(L̃s)

T )δKs
)T

δKs−1|∣∣〈(I− L̃s(L̃s)T )δKs,δKs〉
∣∣ (17)

In this expression we observe that
(
(I−LsL T

s )δxs
)
⊥Vs and δxs−1 ∈R(Vs).

Consequently
(
(I−LsL T

s )δxs
)T

δxs−1 = 0.

Similarly
(
(I− L̃s(L̃s)

T )δKs
)T

δKs−1 = 0. This switch will thus never be trig-
gered and for that reason this Switched Quasi-Newton Least Squares method is
rejected.

3.6 Non-linear Eirola-Nevanlinna Type I Method (EN1), Type II
Method (EN2) and Switched Eirola-Nevanlinna Method (SEN)

1. It is clear from the different update formulas for the approximate (inverse) Jaco-
bian of all the previous methods that they can only be applied starting with K̂′2.
In other words, K̂′1 needs to be chosen. Conventionally, this is set to be equal to
−I. Likewise, for Aδ 2, ω1 needs to be chosen and is set to 1. As a result all of
the methods given above will have an identical first iteration, i.e. x2

n = H(x1
n).

The nonlinear Eirola-Nevanlinna (EN) was proposed by [33] as the nonlinear
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counterpart to the linear EN algorithm [10] and is different as it computes K̂′1
based on a virtual choice of K̂′0, set to be equal to −I (which can also be inter-
preted as setting the initial approximation of the Jacobian of H as zero), which is
used to create a first approximation K̂′1. The method is given by

(K̂′s+1)
−1 =(K̂′s)

−1+ (ps−(K̂′s)−1qs)pT
s (K̂

′
s)
−1

〈ps,(K̂′s−1)
−1qs〉

, (18)

where ps =−(K̂′s)−1K(xs+1
n ) and qs = K(xs+1

n + ps)−K(xs+1
n ). Note that the EN

algorithm requires two calls of K (or H) per iteration.
2. Eirola and Nevanlinna did not propose a Type II method, but by generalisation

this can be written as [11]:

M̂′s+1 = M̂′s +
(ps−(K̂′s)−1qs)qT

s
〈qs,qs〉 , (19)

where ps and qs are defined as in the EN1 method.
3. As far as the authors are aware, the idea behind SB has not been applied to EN1

and EN2. The switching condition now becomes∣∣pT
s δxs−1

∣∣∣∣〈ps,(K̂′s−1)
−1qs〉

∣∣ <
∣∣qT

s δKs−1
∣∣

〈qs,qs〉
. (20)

When this condition is satisfied, then EN1 (equation (18)) is used, otherwise EN2
(equation (19)).

4 Re-use of previous information
When the problem is time-dependent, and assuming that the changes over one time-
step are relatively small, then the approximate (inverse) Jacobian of the previous
time-step might be a relatively good initial guess for the approximate (inverse) Ja-
cobian at the next time-step.
One of the primary aims of this investigation is to compare the performance of
the various QN methods when the Jacobian, at the start of each new time step,
k + 1, is either reset to −I, such that

(
K̂′1
)−1

k+1 = −I, (which we will call “Jaco-
bian reset”) or set equal to the final approximation from the previous time step,
i.e.
(
K̂′1
)−1

k+1 =
(
K̂′s
)−1

k , where k indicates the time step counter (which we will call
“Jacobian re-use”). A similar procedure is used for quasi-Newton methods using M̂′1
and for Aitken’s method.

5 Fluid structure interaction test-cases
Quasi-Newton methods have received significant attention in recent years within
the field of partitioned fluid-structure interactions (FSI). In this section we aim to
investigate the various QN methods when applied to a number of incompressible,
transient, FSI benchmark problems by coupling OpenFOAM for the fluid flow so-
lution and Calculix for the structural deformation. A relaxation factor of ω = 0.001
is used for the first iteration of the first time step, or for the first iteration in every
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time step whenever the Jacobian is reset such that

x2
n = x1

n +ωδx1. (21)

This is done to avoid the possibility of an excessively large first displacement guess,
which can lead to divergence for strongly coupled problems. x1

n at the start of each
new time step is set equal to the final converged solution from the previous time
step.

5.1 Dynamic piston-channel problem
The piston-channel test problem layout is shown in Figure 1(a), and consists of
a 10m long fluid domain which is forced out of the channle by an accelerating
unit by unit moving block. The problem is a surprisingly difficult problem to solve
when using partitioned solution schemes, and has been investigated in a number of
publications (see for example [2, 6]). The coupling strength is sufficiently strong
that simple fixed-point iterations, such as Gauss-Seidel iterations, are insufficient to
guarantee convergence.
While the test case is intrinsically a one dimensional problem, it is modelled here
in three dimensions, with a fluid domain discretised using 10 linear elements and
a single linear structural element. The fluid density and viscosity are 1kg/m3 and
1.0kg/(m s), respectively, where the solid is described by a linear elastic material
with a Young’s modulus of E = 10.0Pa with a zero density and Poisson’s ratio.
A slip boundary condition is applied to the fluid wall boundaries and the velocity
is prescribed as u(t) = 0.2t on the left side of the block (see Figure 1(a)). The
simulation is solved here using time step sizes of ∆ t = 0.02s for a convergence
tolerance of ε =

||K(xs
n)||√

mn
= 10−8. The interface displacement and velocity, along

with a 1D-solution is shown in Figure 1(b). The 1D-model is found by simplifying
the problem to a 1D mass-spring system, where the solid piston represents a linear
spring and the fluid domain a variable mass (see [2] for more information on the
simplified 1D-model). The accuracy of the FSI simulation can naturally be improved
by increasing the mesh resolution or decreasing the time step size.
The average number of iterations required to reach convergence for each of the QN
methods is summarised in Table 1. The results highlight the surprising complexity
of the test problem, with both GS and Aitken failing to provide convergent results.
The performance of all the other QN methods is virtually identical, with a significant
improvement offered by retaining the Jacobian at the start of each new time step.

5.2 Dam break with an elastic obstacle
The dam break problem consists of a collapsing column of water striking an elastic
baffle, which has previously been analysed in [3, 32]. The problem layout is shown
in Figure 2(a) with a plot of the beam tip displacement shown in Figure 2(b). The
FSI simulation is performed using a time step size of ∆ t = 0.001s, 3670 linear
fluid elements, and 14 quadratic, full integration finite-elements. The mean number
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(a) (b)

Fig. 1: (a) Piston-channel test problem layout. (b) The interface displacement and velocity for a
time step size of ∆ t = 0.02s, compared to the simplified 1D mass-spring system.

Table 1: The mean number of iterations required to reach convergence for the piston-channel test
problem. Failure to converge is indicated by div() where the time step at which failure occurred is
indicated in brackets; top performing method highlighted in bold.

Jacobian re-use Jacobian reset
GS N/A div(1)
Aδ 2 div(1) div(1)
BG 3.98 4.73
BB 3.98 4.72
SB 3.97 4.73
CU 3.98 div(75)
ICU 3.98 4.73
SCU 3.98 4.73

QN-LS 4.01 div(52)
QN-ILS 4.01 div(438)

EN1 3.91 div(108)
EN2 3.90 div(108)
SEN 3.89 div(108)

of iterations to reach convergence for each of the QN methods is summarised in
Table 2. The QN-LS family of methods is the top performing family of methods,
with significant benefit seen in retaining the Jacobian from the previous time steps.

5.3 Wave propagation in a three dimensional elastic tube
The 3D flexible tube problem was originally proposed in [13], inspired by the type
of flow encountered in haemodynamics. The density ratios of the fluid and solid
are near unity, which in conjunction with internal incompressible flow results in a
very strongly coupled FSI problem that has received much attention in literature
[2, 7, 13].
The problem consists of a flexible tube of length l = 5cm, with an inner and outer
radius of ri = 0.5cm and r0 = 0.6cm, respectively. The flexible tube is modelled
using a St. Venant-Kirchoff material model, with a Young’s modulus of E = 3×106

dynes/cm2, density ρ = 1.2 g/cm3 and Poisson’s ratio of 0.3, where the fluid flow
has a density of ρ = 1.0 g/cm3 and a viscosity of µ = 0.03 poise. The problem
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(a) (b)

Fig. 2: (a) Dam break with elastic obstacle problem description. (b) Beam tip displacement results
for the dam break test problem, compared to the results reproduced from [32].

Table 2: Mean number of iterations required by the QN methods for the dam break test problem.
Failure to converge is indicated by div() where the time step at which failure occurred is indicated
in brackets; top performing method highlighted in bold.

Jacobian re-use Jacobian reset
GS N/A 23.42
Aδ 2 div(279) 11.45
BG 4.17 7.09
BB 4.32 7.10
SB 4.14 7.07
CU 5.62 7.10
ICU 5.84 div(279)
SCU 5.80 7.29

QN-LS 3.90 6.52
QN-ILS div(279) 6.49

EN1 4.37 8.05
EN2 4.58 8.05
SEN 4.58 8.04

is modelled using 600 twenty-noded quadratic solid elements coupled with 6000
linear fluid flow elements resulting in an interface Jacobian size of mn = 1880. The
tube walls are fixed on both ends, and a smoothly varying pressure in the form
of p(t) = 1.3332× 104 (sin(2πt/0.003+1.5π)+1)/2 is applied at the inlet over
the first 0.003 seconds. The time step size for the simulation is ∆ t = 0.0001s with a
convergence tolerance ε =

||K(xs
n)||√

mn
= 10−8. The resulting pressure pulse propagation

is illustratively shown for different time steps in Figure 3.
The mean number of iterations to reach convergence is summarised in Table 3 for
the various QN methods, and the number of coupling iterations required per time
step, for each of the family of methods, is shown in Figure 4. The QN-LS method
was once again the top performing method.
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Fig. 3: Pressure pulse propagation at 0.003s, 0.005s and 0.008s (where the wall displacement is
magnified by a factor 10).

Table 3: Comparison of the mean number of iterations required to reach convergence for the 3D
flexible tube problem. Failure to converge is indicated by div() with the time step at which failure
occurred in brackets; top performing method highlighted in bold.

Jacobian re-use Jacobian reset
GS N/A div(1)
Aδ 2 div(1) div(1)
BG 6.51 18.02
BB 7.68 div(47)
SB 6.75 18.02
CU 15.63 div(7)
ICU div(14) div(12)
SCU 13.89 div(10)

QN-LS 5.64 15.94
QN-ILS 5.95 14.47

EN1 6.91 div(52)
EN2 10.56 div(11)
SEN 7.37 div(2)

5.4 2D flexible beam
The selected test case is a fluid-structure interaction problem consisting of flow
around a fixed cylinder with an attached flexible beam. The beam undergoes large
deformations induced by oscillating vortices formed by flow around the circular
bluff body. The problem was first proposed by Turek et al. [29], and has received
substantial numerical verification. The problem layout and material properties are
provided in Figure 5(a).
A parabolic inlet boundary condition, with mean flow velocity of Ū = 1m/s is slowly
ramped up for t < 0.5s. A snapshot of the beam tip displacement is illustratively
shown in Figure 5(b). The convergence behavior for the various QN methods is
summarized in Table 4.
Once again the QN-LS method is the top performing method. Besides for Broyden’s
method, the switching strategies provided no benefit for any of the other families of
QN methods.
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(a) (b)

(c) (d)

Fig. 4: A comparison of the number of coupling iterations required to reach convergence for the
3D flexible tube test problem.

(a) (b)

Fig. 5: (a) Flexible beam problem description and (b) snapshot of beam displacement and pressure
contours at 8.7 seconds.

6 Other application: Simplified model of plasma heating by RF
waves in a plasma

Quasi-Newton acceleration can also be applied to problems outside the field of fluid-
structure interaction. The model that we present here is a simplified version of the
set of codes commonly used to describe the steady state of plasma heating by radio
frequency waves in a tokamak plasma, but still retains all the characteristics needed
to validate our ideas as explained in §1. In an abstract form the governing equations
can be written as:
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Table 4: Comparison of the mean number of iterations required to reach convergence for the 2D
flexible beam problem. Failure to converge is indicated by div() with the time step at which failure
occurred in brackets; top performing method highlighted in bold.

Jacobian re-use Jacobian reset
GS N/A div(1)
Aδ 2 10.31 14.00
BG 4.02 7.48
BB 4.25 7.42
SB 3.98 7.48
CU 5.26 7.99
ICU 5.39 7.94
SCU 6.34 8.05

QN-LS 3.86 6.69
QN-ILS 3.93 6.63

EN1 4.61 8.47
EN2 4.54 8.46
SEN 4.54 8.47


f1(y1,y2,y3,y4,y5,y6,y7) = 0

f2(y1,y2,y3,y4,y6,y8,y9,y10) = 0

f3(y1,y2,y3,y5,y6,y7,y8,y9,y10) = 0,

(22)

where f1 represents a simplified 1-component wave equation, f2 a simplified Fokker-
Planck equation and f3 a simplified 1D diffusion equation. y1, y2 and y3 are the
temperature profile of the species (majority ions, minority ions and electrons); y4
the effective temperature of the minority ions; y5, y6 and y7 are the power density
profiles of the wave damping onto the species; y8, y9 and y10 are the collisionally
redistributed minority power density fraction profiles onto the species. More de-
tails can be found in [19]. As the system in (22) does not satisfy condition (2),
(y1,y2,y3,y4) need to be grouped as x3, as explained in [20]. A convergence cri-

terium of ‖x
s+1
n −xs

n‖
‖xs

n‖
≤ 10−7 is used. The results are shown in table 5 for different

values of launched power P and diffusion coefficient κ . The QN methods clearly
outperform G-S and Aitken’s method. Of all the QN methods, the Least Squares
methods most often give the best results (with a slight edge for QN-ILS over QN-
LS), followed by the Broyden methods. While not equivocally so, the switching
strategy often (slightly) improves the convergence speed of the underlying methods.

7 Conclusion
We have tested a wide variety of acceleration techniques on different multi-physics
problems that are written as a fixed-point problem. While the choice of the best
method remains problem dependent, it is clear that the best choice is the class of
quasi-Newton methods, of which, more often than not, the Least Squares methods
come out on top. Re-using the Jacobian of all the QN methods at the beginning of
the iterations of the next time step results in important reductions in the required
number of iterations. With a few exceptions, a switching strategy, that hasn’t drawn
much attention in the past, is shown to offer only a slight boost of performance in



14 Rob Haelterman, Alfred Bogaers, Joris Degroote

Table 5: Simplified tokamak model. Number of function calls (of H) needed to reach convergence
for various values of κ . P=2MW (left) and P=5MW (right). “div” = divergence or no convergence
after 100 iterations. The top performing method is highlighted in bold.

P=2MW.

κ(·10−2) 3.5 4.0 4.5 5.0 7.5 10 25 50 75 100

G-S div div 95 88 67 55 30 19 14 14

Aδ 2 63 52 52 49 48 33 24 17 14 15

BG div 33 30 29 28 23 18 14 13 12

BB 30 30 29 30 28 23 18 14 13 12

SB 31 div 28 25 26 21 18 14 13 12

CU 37 div div 37 32 22 17 12 13 12

ICU 34 36 33 32 30 24 18 14 14 12

SCU 33 38 28 29 30 23 18 14 13 12

QN-LS div 24 24 23 21 20 16 14 13 12

QN-ILS 25 25 23 22 21 19 16 14 13 12

EN1 36 34 40 30 30 24 22 16 16 16

EN2 34 36 34 34 32 26 22 16 16 16

SEN 35 37 34 34 30 24 22 16 16 16

P=5MW.

κ(·10−2) 7.5 10 25 50 75 100

G-S 67 52 28 19 16 15

Aδ 2 39 36 23 19 16 16

BG 26 24 19 17 14 13

BB 25 24 20 17 14 13

SB 24 23 19 17 15 13

CU 36 div 21 17 14 12

ICU 27 30 21 18 15 14

SCU 26 27 21 17 14 14

QN-LS 22 23 18 16 14 13

QN-ILS 21 22 18 16 14 13

EN1 28 28 24 20 16 16

EN2 28 28 24 20 16 16

SEN 28 28 25 19 16 16

exchange for a negligeable penalty in complexity. The class of Eirola-Nevanlinna
methods, which are among the lesser known QN methods, have not shown their
worth, and in the authors’ opinion do not seem to warrant the complexity that they
entail.
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8. J.E. Dennis, J.J. Moré, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89
(1977)



A Comparison of Quasi-Newton Acceleration Methods 15

9. J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi-Newton methods. SIAM
Rev. 21, pp. 443–459 (1979)

10. T. Eirola, O. Nevanlinna, Accelerating with rank-one updates. Linear Algebra Appl. 121, pp.
511–520 (1989)

11. H.-R. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration. Numeri-
cal Linear Algebra with Applications, 16/3, pp. 197–221 (2009).

12. A. Friedlander, M.A. Gomes-Ruggiero, D.N. Kozakevich, J.M. Martinez, S.A. dos Santos,
Solving nonlinear systems of equations by means of quasi-Newton methods with a nonmono-
tone strategy. Optim. Methods Softw. 8, pp. 25–51 (1997)

13. J.-F. Gerbeau, M. Vidrascu et al., A Quasi-Newton Algorithm Based on a Reduced Model
for Fluid-Structure Interaction Problems in Blood Flows ESAIM: Mathematical Modelling and
Numerical Analysis 37/4, pp. 631–647 (2003)

14. R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, The Quasi-Newton Least Squares
Method: A New and Fast Secant Method Analyzed for Linear Systems, SIAM J. Numer. Anal.,
47(3), pp. 2347-2368 (2009)

15. R. Haelterman, J. Degroote, D. Van Heule, J. Vierendeels, On the Similarities Between the
Quasi-Newton Inverse Least Squares Method and GMRes, SIAM J. Numer. Anal., 47(6), pp.
4660–4679 (2010)

16. R. Haelterman, J. Petit, H. Bruyninckx, J. Vierendeels, On the non-singularity of the quasi-
Newton-least squares method, Journal of Computational and Applied Mathematics, 257, pp.
129-131 (2014)

17. R. Haelterman, B. Lauwens, F. Van Utterbeeck, H. Bruyninckx, J. Vierendeels, On the simi-
larities between the quasi-Newton least squares method and GMRes, Journal of Computational
and Applied Mathematics 273, pp. 25–28 (2015)

18. R. Haelterman, B. Lauwens, H. Bruyninckx, J. Petit, Equivalence of QNLS and BQNLS for
affine problems, Journal of Computational and Applied Mathematics 278, pp 48–51 (2015)

19. R. Haelterman, D. Van Eester, D. Verleyen, Accelerating the solution of a physics model
inside a Tokamak using the (Inverse) Column Updating Method, Journal of Computational and
Applied Mathematics 279, pp. 133–144 (2015)

20. R. Haelterman, D. Van Eester, S. Cracana, Does Anderson Always Accelerate Picard ?, 14th
Copper Mountain Conference on Iterative Methods, Copper Mountain, USA (2016).

21. R. Haelterman, A. Bogaers, J. Degroote, S. Cracana, Coupling of Partitioned Physics Codes
with Quasi-Newton Methods, Lecture Notes in Engineering and Computer Science: Proceed-
ings of The International MultiConference of Engineers and Computer Scientists 2017, 15-17
March, 2017, Hong Kong, pp. 750–755 (2017)

22. C.T. Kelley, Iterative methods for linear and nonlinear equations. Frontiers Appl. Math.,
SIAM, Philadelphia (1995)

23. V.L.R. Lopes, J.M. Martinez, Convergence properties of the Inverse Column-Updating
Method. Optim. Methods Softw. 6, pp. 127–144 (1995)

24. J.M. Martinez, L.S. Ochi, Sobre Dois Metodos de Broyden. Mat. Apl. Comput. 1/2, pp. 135–
143 (1982)

25. J.M. Martinez, A quasi-Newton method with modification of one column per iteration. Com-
puting 33, pp. 353–362 (1984)

26. J.M. Martinez, M.C. Zambaldi, An Inverse Column-Updating Method for solving large-scale
nonlinear systems of equations. Optim. Methods Softw. 1, pp. 129–140 (1992)

27. J.M. Martinez, On the convergence of the column-updating method. Comp. Appl. Math. 12/2,
pp. 83–94 (1993)

28. J.M. Martinez, Practical quasi-Newton method for solving nonlinear systems. J. Comput.
Appl. Math. 124, pp. 97–122 (2000)

29. S. Turek, J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction be-
tween an Elastic Object and Laminar Incompressible Flow, In: Fluid-Structure Interaction, Ed.
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