comparison of ANSYS Fluent and STAR-CCM+ simulations for a tangent ogive slender body with a structured mesh at incompressible flow conditions

Janine Schoombie

CSIR

Background

- First round of simulations in 2013 in ANSYS Fluent v15.0
- Validated experimentally
- Three Missile configurations with very low aspect ratio wings
- GAMBIT structured mesh
- Mesh convergence at 22million cells
- y+ ≈ 1

Span-to-body diameter ratio (s/D)	Aspect Ratio
1.25	0.011
1.5	0.022
1.75	0.033

Solver Settings

Solver Settings

Fluent settings

- Pressure-Based Coupled Algorithm
- RANS
 - Spalart-Allmaras
- Velocity range
 - 0.1<Mach<0.3
 - Mach independence shown for all three configurations
- Angle of attack (α) range
 - $-0^{\circ} \le \alpha \le 25^{\circ}$
- Solutions converged after
 ≈ 10 000 iterations

STAR-CCM+ Simulated Geometry

Import Fluent case files into STAR-CCM+ (1)

- Why STAR-CCM+?
 - In 2017 only a STAR-CCM+ v11.06 commercial licence was available
 - Didn't want to start from scratch
 - Test solver with identical mesh

STEP 1:

- Import Fluent .cas files
 - Imported as a volume mesh
 - No mesh continuum is created

Import Fluent case files into STAR-CCM+ (2)

STEP 2:

Select physics models

STEP 3:

- Set up boundary conditions
 - Boundary conditions recognised by volume import action

Import Fluent case files into STAR-CCM+ (3)

STEP 4:

Enter reference pressure

🗎 Reference Values

Minimum ∆llowable Wall Distance

STEP 5:

- Enter initial conditions
 - Simulation stared at 0° angle of attack increased angle of attack and used previous solution as initial condition

Results (1)

Results (2)

Vortex positions at 6 degrees angle of attack

Results (3)

Vortex positions at 25 degrees angle of attack

Segregated vs Coupled

Summary

- The segregated solver results in STAR-CCM+ correlated well with the Fluent pressure-based coupled algorithm results for normal force, pitching moment and centre-of-pressure position.
- Reasonable correlation was observed between the predicted wing vortex locations with some minor discrepancies at higher angles of attack.
- A comparison of the axial force results shows significant discrepancies between the two CFD codes, particularly at angles of attack of 6 degrees and higher, where flow separation is expected.
- Further study is required to determine the possible differences turbulence modelling and in predicting boundary layer flow, which may affect the axial force and lee-side flow features.
- The difficulties experienced in implement the coupled solver and other configurations in the STAR-CCM+ simulations also require additional investigation.

Additional comments

• The ability of STAR-CCM+ to import fluent case files is useful, .

BUT.

No mesh continuum means no mesh modifications

Acknowledgements

Danie de Kock & Dawie Marais

Johan Heyns

Jan-Hendrik Grobler

