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Abstract 

Background:  Malaria is seasonal and this may influence the number of children being treated as outpatients in 
hospitals. The objective of this study was to investigate the degree of seasonality in malaria in lakeshore and highland 
areas of Zomba district Malawi, and influence of climatic factors on incidence of malaria.

Methods:  Secondary data on malaria surveillance numbers and dates of treatment of children <5 years of age 
(n = 374,246) were extracted from the Zomba health information system for the period 2012–2016, while data on 
climatic variables from 2012 to 2015 were obtained from meteorological department. STATA version 13 was used 
to analyse data using non-linear time series correlation test to suggest a predictor model of malaria epidemic over 
explanatory variable (rainfall, temperature and humidity).

Results:  Malaria cases of children <5 years of age in Zomba district accounts for 45% of general morbidity. There was 
no difference in seasonality of malaria in highland compared to lakeshore in Zomba district. This study also found 
that an increase in average temperature and relative humidity was associated of malaria incidence in children <5 year 
of age in Zomba district. On the other hand, the difference of maximum and minimum temperature (diurnal tem-
perature range), had a strong negative association (correlation coefficients of R2 = 0.563 [All Zomba] β = −1295.57 
95% CI −1683.38 to −907.75 p value <0.001, R2 = 0.395 [Zomba Highlands] β = −137.74 95% CI −195.00 to −80.47 
p value <0.001 and R2 = 0.470 [Zomba Lakeshores] β = −263.05 95% CI −357.47 to −168.63 p value <0.001) with 
malaria incidence of children <5 year in Zomba district, Malawi.

Conclusion:  The diminishing of malaria seasonality, regardless of strong rainfall seasonality, and marginal drop of 
malaria incidence in Zomba can be explained by weather variation. Implementation of seasonal chemoprevention of 
malaria in Zomba could be questionable due to reduced seasonality of malaria. The lower diurnal temperature range 
contributed to high malaria incidence and this must be further investigated.
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Background
Malaria has afflicted people of all ages in the entire 
past decade and still is one of the major global health 

problems [1]. Malaria contributes to a significant bur-
den in widespread populations with premature deaths, 
infirmity from sickness and it inhibits on economic and 
social development [2]. World Malaria Report 2015, 
stipulated that, globally, malaria incidence was estimated 
to be at 214,000,000 infected cases and 438,000 deaths 
[3]. Malaria was estimated to have contributed to about 
82,685 disability-adjusted life years (DALYs), in the year 
2010, which accounted to almost 19.6% of all causes of 
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diseases [4]. The disease has remained a major cause of 
morbidity and mortality in Malawi [5, 6]. Malaria was 
estimated at 34% of outpatient visitation to hospital in 
Malawi in 2011. Further in 2015, malaria incidence was 
estimated at 200 cases per 1000 population.

Malaria is influenced by a lot of environmental factors, 
which affects its seasonality, distribution, and transmis-
sion intensity [7]. It is well known that climate is the sig-
nificant contributing factor of the spatial and temporal 
distribution of malaria vectors and pathogens [8, 9]. The 
major climatic factors influencing malaria transmission 
are rainfall, temperature and humidity [10, 11].

Temperature and humidity determines the length of 
mosquito cycle and the sporogonic cycle of the parasite 
in the mosquito. Parasite transmission and development 
are regarded to be influenced by climatic conditions 
especially within the temperature range of 25–30  °C. 
Parasite development is believed to decrease significantly 
in the life cycle of mosquito stage when temperature is 
below 16  °C. Above 32  °C, parasite development slows 
down considerably hence survival of the vector becomes 
uncertain. One study assessed the relationship between 
climate changes and malaria cases in 25 African countries 
[12]. Reports from this study indicate that as temperature 
increases above 25 °C and, decreases below 20 °C, malaria 
cases start to decrease but malaria cases are very stable 
within 20–25 °C [12]. A similar study also reported that 
temperature increase can shorten the life cycle of mos-
quito, hence increases chance of high malaria epidemic 
[13]. Another study reported that diurnal temperature 
range variation could also affect development of malaria 
parasite [14].

Relative humidity of more than 60% is regarded a suit-
able condition for survival of mosquito [15]. In addition, 
there is a direct influence of temperature and rainfall 
on the number and productivity of breeding sites, ulti-
mately the vector density [16]. Monthly rainfall of 80 mm 
is considered suitable for mosquito life cycle in surface 
water whereby eggs and larval stages are favorably done. 
Numerous studies have demonstrated the association 
between Anopheles gambiae complex abundance and 
rainfall [17]. Malaria sensitivity to climate was demon-
strated in 25 African countries, where marginal change 
in rainfall and temperature, were found to be critical 
parameters for malaria transmission [12]. High malaria 
transmission in the tropical highlands in future following 
climate change effect was predicted to increase [18, 19]. 
Climate-related epidemics were also reported in Malawi, 
this was assumed to have been attributed to heavy rain-
fall following a drought [20].

Under-5-year children are the most susceptible to 
malaria infections [21]. Malaria was estimated to claim 
7.4% lives of between the ages of 6  months and 5  years 

globally in 2010 [22]. During pregnancy, malaria is esti-
mated to cause different complications ranging from low 
birth weight to death [23]. Study done by Walldorf et al. 
[21] reported that school going age children are reser-
voirs for malaria in Malawi. Additionally, it was reported 
that malaria accounted for 40% of all hospitalized chil-
dren of <5 years old. Furthermore, malaria was estimated 
to cause 40% of deaths in hospitalized people, of which, 
50% were <5 years old children in Malawi [2]. Although 
Malawi is in line with Sustainable Development Goal 
(SDG) indicator 4.1; (reducing mortality rate of under-
5-year children), it has not yet reached the target [24]. 
According to Malawi SDG end-line survey in 2014, mor-
tality rate for children under-5-years old was at 85 per 
1000 live births, which is still high [25].

This study compared how seasonality of malaria and 
climatic factors reward the number of children <5 years 
of age from Zomba district, particularly those originating 
from the lakeshore and highlands.

Theoretical considerations
Apart from performing correlational analysis between 
the data types which is important for the determina-
tion of how variables (including weather parameters of 
humidity, rainfall, temperature) may or may not influence 
other variables in the data (such as malaria cases in lake-
shore and highlands), it is also equally useful to perform 
a time series analysis on data which are collected and 
recorded in time. The latter analysis helps to understand 
the history, the present status as well as help to possi-
bly predict future trends. In this work, data on malaria 
incidence were recorded in time (monthly) between the 
years of 2012 and 2016 and in many local clinics spread-
out geographically within the Zomba district of Malawi. 
Other data collected in the same time but limited up to 
2015 and geographical spaces are the weather conditions.

Of the many models, the Fourier transform has been 
ubiquitous in the time series analysis for centuries. Its 
weakness is that it only works with periodic data, i.e. data 
that have a constant frequency vis-à-vis regarded as sta-
tionary time series. Over the years, other methods, such 
as the wavelet analysis method described by Huang et al. 
were discovered [26]

In which ψ*(.) is the basic wavelet function that satis-
fies certain very general conditions for instance our pre-
sent malaria infection data collected from patients who 
attended OPD diagnosis. Patients who have been malaria 
infected but never reported to OPD are not considered in 
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this case; a is the dilation factor and b is the translation 
from the origin. 1/a gives the frequency scale and b, the 
temporal location of the event. The physical explanation 
of Eq.  1 is very simple—that W(a,b;X,ψ) is the “energy” 
of X of scale a at time t = b. So this equation can be used 
to predict the malaria infections at any time t, given the 
parameters a and b obtained from the data trend. Mor-
let wavelet [27] is a subset of Eq.  1 and, in the last two 
decades, has become popular since it works for data that 
have gradual frequency changes. The Wigner-Ville distri-
bution, a type of Eq.  1, or sometimes referred to as the 
Heisenberg wavelet being the Fourier transform popu-
lar with electrical engineers [28], but suffers from being 
similar to the Fourier transform. The evolutionary spec-
tral analysis has been popular in earthquake communi-
ties [29] but difficulty in its application lies in the lack of 
a method to define the basis which is why it is difficult to 
predict earthquakes up to date.

Other methods, such as the least square estimation 
of the trend, smoothing by moving averages and differ-
encing to generate stationary data, have been described 
[30]. Smoothing the data may not be employed in the 
forecasting the future incidents from the data trends but 
is useful in making the data less noisy so that forecast-
ing can be plausible. Moving averages and fast Fourier 
transforms are some of the major smoothing algorithms. 
Moving averages can be simple (SMA), cumulative 
(CMA) or exponential (EMA). Simple moving average 
(SMA) is the unweighted mean of the previous n data. 
However, here, the mean is normally taken from an equal 
number of data on either side of the central value [31]. 
This ensures that the variations in the mean are aligned 
with the variations in the data rather than being shifted 
in time. In this case if mM, mM − 1, . . . , mM − (n − 1) are 
the simple equally weighted mean malaria cases for an n 
day sample, then

Similarly, fast Fourier transform filter, which is credited 
to Cooley and Tukey [32], involves Fourier transform-
ing, for instance the malaria-cases-time data, m(t), into 
frequency domain, M(f ), smoothing M(f ) into M’(f ) by 
moving averages and then transforming M’(f ) into a new 
smoothed m’(t) back in time domain. Thus, if m(t) has 
to be transformed in M(f ), we have the forward Fourier 
transform thus

(2)

SMA =
mM +mM − 1 + · · · +mM− (n − 1)
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m(t) [cos 2π ft − j sin 2π ft]dt

And the reverse Fourier transform thus

The process of fast Fourier transform (FFT) filter is 
thus illustrated in Eq. 4

In this paper, smoothing of the time domain malaria 
cases data is performed by both simple moving average 
as in Eq.  2 as well as the FFT process as in Eqs.  3 to 5 
and then the forecasting of malaria cases by Eq. 1 will be 
attempted.

It is also worth noting that malaria cases statistics 
can be heavily dependent on vector populations which 
in turn are dependent on prevailing weather or envi-
ronmental conditions and changes. The malaria cases 
statistics therefore can be modelled as a sensor of the 
presence or absence of mosquitoes. Dry seasons, when 
mosquito populations are low, are marked by reduced 
populations of malaria cases whereas wet seasons show 
high incidence of the same. For this reason, the popula-
tion of malaria cases, m(t), can be modelled by the expo-
nential growth during wet season onset and exponential 
decay in the onset of the dry season. The exponential 
growth and decay may be simple but may also contain 
more than two terms due to multivariate nature of the 
data as follows:

where mw0 is lowest number of malaria cases, A1 and 
Aw2 are the maximum increment in the malaria cases 
due to change of season, tw1 and tw2 are the characteristic 
response times during the wet seasons whereas md0, Ad1, 
Ad2, td1 and td2 have usual meaning for the dry seasons.

Response, S, of the malaria cases statistics to environ-
mental changes and hence to the malaria vector popula-
tions is defined as in sensor science [33] to be:

Methods
Existing grouped data on patient numbers and dates of 
treatment of children <5 years of age (n = 374,246) was 
extracted from the Zomba health information system for 
the period 2012–2016. Data on climatic variables were 
obtained from meteorological department from 2012 up 
to 2015.

The Zomba district, consist of Lake Chirwa, Shire 
River and Zomba Mountain as shown in Fig. 1. The study 
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area was divided into five regions as follows: (1) Shire 
river bank region, (2) Buffer region between Shire river-
bank region and the Highlands region, (3) the Highlands 
region (4) Buffer region between Highlands region and 
Lakeshore and (5) Lakeshore region. Additionally, Zomba 
district has one central hospital, and one rural hospital, 
recently upgraded. All the patients admitted to these two 
hospitals come from either health centres or clinics. All 
the surveillances for all patients are reported in the out-
patient department first, before any admission. Due to 
this, all patients are first regarded and reported as out-
patients before recorded as admissions for those that end 
up being admitted. Zomba district health surveillance is 
solely dependent on 17 health centres and 3 public clin-
ics. Furthermore, Zomba district gets its data from 10 
Christian Health Association of Malawi (CHAM) hospi-
tals and 3 clinics, one for Malawi Army and 2 for Malawi 
Police. According to demarcation of regions in this study, 
Zomba district accounted for 7 health facilities in lake-
shore region and 6 health facilities in the highlands. The 
rest of health facilities were neither part of highland or 
lakeshore, but are in the buffer region. Data for the total 
population of under-5-year children in the respective 
catchment areas of each health facility were extracted 
from Zomba district health information system.

The study only used confirmed malaria cases data by 
microscopy and largely with malaria Rapid Diagnostic 
Test (RDTs), though it is also reported that RDTs can also 
fail to detect low density parasitaemia (<200 parasites/
µl) [34]. Monthly total for general out patient department 
(OPD) visits, monthly total malaria cases, monthly total 
malaria deaths, monthly total general deaths, and total 
population of under-5-year children in respective health 
facility catchment areas for Zomba district were collected 
from the HMIS. Data were extracted electronically from 
the Health Management Information System (HMIS). For 
incomplete electronic data, manual verification with the 
register at the health facility was done. The manual veri-
fication was initiated when the electronic data showed 
a drastic drop or increase of the malaria cases, e.g. the 
following month drops from 1000 cases to 0 cases. In 
case there was a difference between register records 
and electronic data, register data were regarded as cor-
rect. Monthly totals of humidity, temperature and rainfall 
were extracted from the meteorological department.

Apart from correlating weather data to malaria cases 
data and also apart from time series analysis of the time-
domain malaria cases data, this study adopted an idea 
on how to calculate seasonality from sensors science 
by Mwakikunga et  al. [33]. The study considered two 

Lakeshore
Region

Highlands
Region

Shire River 
Bank Region

Buffer
Region

Buffer
Region

Malawi

a

b

c

Fig. 1  Maps of study area. a Zomba district divided into five regions as shown: Shire river bank region, Buffer region, Highlands region, Buffer region 
and Lakeshore region. b Malawi map showing the location of Zomba district and c Africa showing the position of Malawi as a country
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seasons of malaria epidemic in Malawi. November to 
April was deemed rainy season while May to October dry 
season. Rainy season was represented as season (a), dry 
season as (b). To calculate seasonality the formula below 
(similar to Eq. 7) was used.

where Swd is the seasonality between wet and dry sea-
sons, Mwet and Mdry are the malaria infected population 
during the wet and dry season respectively. This implies 
that the bigger the percentage the higher the seasonality.

The study calculated the cumulative incidence and mor-
bidity rate per 100 of children aged  <5  years in Zomba 
for the period of 2012–2015. Incidence, I, was defined as 
I =  m/PT where m is the number of malaria cases in a 
given area and PT is the total population in a given area. 
Morbidity rate, Mr, was defined as Mr = im/PT where im 
is number of malaria infected children in a given area. 
The study then compared the malaria incidence rate and 
morbidity rate between the highland region and lake-
shore region and came up with the cumulative trend of 
monthly malaria cases [35].

Two variables were generated from weather param-
eters of mean, maximum and minimum temperature and 
relative humidity readings for a given area. One called 
diurnal temp range defined as Tmax − Tmin, and the other 
named diurnal humidity range [RHmax − RHmin] [36].

Lastly, the incidence rate and percentage of peak 
malaria in 4 consecutive months were calculated as the 
total incidence for the 4 peak consecutive months over 
the total population for under-five children in the area; 
and the total incidence for the 4 peak consecutive months 
over the total malaria incidence for the whole year, 

(8)Swd =
mwet −mdry

mdry
× 100%

respectively. These calculations were stratified according 
to geographical location, i.e. the whole district, lakeshore 
and the highland.

Results
Each variable used in the study is presented in the sta-
tistical summary in Table 1. The period of time of obser-
vation for each variable in this table was 57 calendar 
months. The variables included are malaria cases accord-
ing to geographical locations, general infections includ-
ing malaria cases and climatic conditions.

Malaria can be correlated to mean temperature (Fig. 2a) 
and diurnal temperature changes (Fig. 2b) as well as mean 
relative humidity (Fig. 3a) and changes in relative humid-
ity (Fig. 3b). In Fig. 2a, the rising trend of malaria cases 
as mean temperature increases is clearly observed. The 
malaria cases reach their peak at a critical temperature of 
24 °C beyond which numbers reported start to diminish. 
It must be noted that no malaria cases are observed at 
temperature lower than 16 °C and greater than 27 °C. In 
Fig. 2b, it is observed that diurnal variations in the tem-
perature affect malaria cases negatively (r  =  −1295.57 
95% CI −1683.38 to −907.75 p value  <0.001). Large 
diurnal temperatures lead to lower infections. This sug-
gests that large temperature variations lead to less vector 
breeding rates and hence less vector populations.

In Fig.  3a, increasing relative humidity also propor-
tionately leads to increased number of under-five malaria 
cases reported. No malaria cases are reported at rela-
tive humidity levels of lower than 42% and any above 
78%. Similar to diurnal temperatures, in Fig.  3b, one 
observes that increasing diurnal humidity reduces the 
reported under-five malaria cases (correlation coefficient, 
R2 = 0.176 [All Zomba], r = −224.45 95% CI −381.10 to 

Table 1  Statistical summary table for malaria and climatic variables from Zomba district within 2012–2016

Variable Definition of variable Observation 
in calendar 
months

Mean # 
of cases

Std. dev Min # 
of cases

Max # 
of cases

Malaria <5 Zomba Total malaria case for Zomba district 57 13,131.44 48,771.69 2285 374,246

Zomba highlands <5 
malaria

Total malaria case for highlands in Zomba 57 1661.68 6179.78 250 47,358

Zomba lakeshore <5 
malaria

Total malaria case for lakeshore in Zomba 57 2752.84 10,228.22 38 78,456

Zomba total morbidity 
for <5

General morbidity for <5 in Zomba 36 14,149.74 1094.74 8384 25,043

Rainfall Rainfall readings for Zomba 36 3.66 5.35 0 20.3

Mean temp Average temperature for Zomba 36 22.33 2.45 17.75 26.85

Diurnal temp range Minimum and maximum difference of tem-
perature for Zomba

36 10.26 1.70 6.3 12.5

Mean humid Average humidity for Zomba 36 61.28 9.83 45.1 77.9

Diurnal humid range Minimum and maximum difference of 
humidity for Zomba

36 17.35 5.77 7 27.8
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−67.79 p value  <0.006, R2  =  0.130 [Zomba highlands] 
r = −24.85 95% CI −45.06 to −4.65 p value <0.017 and 
R2  =  0.119 [Zomba Lakeshores]) (r  =  −42.13 95% CI 
−77.95 to −6.30 p value  <0.023). Again this could be 
attributed to harsh conditions imposed to vector breed-
ing when there are large variations in humidity.

The effect of malaria cases on the total morbidity of 
the population can be measured by plotting the mor-
bidity data against malaria cases data. This kind of plot 
is illustrated in Fig.  4a and this paper presents a linear 
scatter plot to show the correlation of general morbidity 

versus malaria morbidity for children aged  <5  year in 
Zomba district. Simple linear regression was fitted in 
order to determine the relationship of general morbid-
ity for children aged <5 years and malaria morbidity for 
children aged  <5  years in the Zomba district (β =  0.67 
95% CI 0.595 to 0.750 p value <0.001). It can be observed 
in Fig.  4a that there is a strong positive and linear cor-
relation (R2  =  0.89899) between total morbidity and 
total malaria infected under-five children. The linear fit 
reveals an intercept of (5728 ± 522). This means that, in 
the absence of malaria cases, there were between 5126 

a b

Fig. 2  Correlation between mean temperature (a) diurnal temperature ranges to malaria (b) and general under-five morbidity in Zomba district, 
Malawi. a There is a general increase in malaria and morbidity cases as mean temperature increases. This increase reaches a peak at 24 °C where the 
number of malaria and morbidity cases drastically drop. A Gaussian fit which is indicated by a solid trend line confirms this critical mean temperature 
of 24 °C. b Suggests that rapid and large changes in diurnal temperatures lead to lower reported malaria cases, a finding which leads to the suspi-
cion that vector breeding is curtailed by these temperature variations

a b

Fig. 3  Malaria cases among under-5-year of age children plotted against (a) relative humidity prevailing in that particular month and (b) average 
diurnal humidity range. The data suggest that humidity level below 40% and above 80% lead to reduced, if not zero malaria cases. Also the rapid 
changes in humidity lead to less infections possibly owing to vector population reduction under large fluctuations in humidity
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and 6260 infections among under-five children from 
2012 to 2015 owing to other diseases such as HIV-AIDS, 
tuberculosis, diarrhea, upper respiratory tract infections 
and malnutrition. This means an average of about 1000 
sicknesses per year owing to other diseases apart from 
malaria. At a slope of 1.43 ±  0.08, the graph in Fig.  4a 
suggests that for every 143 (between 135 and 151) under-
five children infections, 100 (between 95 and 109) infec-
tions are attributed to malaria. This shows how important 
malaria cases are to the total morbidity burden in Zomba 
district. This finding could be generalized to other parts 
of Malawi, Africa and other parts of tropics around the 
world.

Figure 4b shows the trend of the seasonality of rainfall 
and malaria cases with seasons. This graph shows that 

each time rainfall seasonality reach a minimum, malaria 
cases reach a peak and vice versa. This conclusion is only 
half of the truth as is shown in Fig.  4c where incidence 
of malaria in all areas in Zomba has been plotted against 
rainfall. The latter figure shows that malaria incidence 
is about 30 out of 100 when there is no rainfall, but it 
rises sharply up to some critical rainfall value of about 
8–15 mm beyond which the malaria incidence decrease 
at a slower rate than the rate at which it had risen before. 
The rainfall-dependent decline in malaria incidence 
could be attributed to the decrease in vector (mosquito) 
population during heavy rain conditions which is further 
attributed to poor mosquito breeding conditions when 
there are fast-moving waters and less still waters, pools 
and puddles.

a b

c d

Fig. 4  Are presented charts on general morbidity compared to malaria cases (a), seasonality of rainfall and that of malaria plotted versus seasonal 
year on the same chart (b), incidence of malaria in a given area against rainfall (c), and incidence of malaria against season from 2012 to 2016 (d). 
a A positive linear correlation (R2 = 0.89899) between the total morbidity plotted against total malaria infected cases, b malaria cases seasonality 
regardless of location scales inversely as rainfall seasonality, c incidence of malaria in different locations of Zomba district plotted versus rainfall lev-
els showing a critical level of about 8 mm of rainfall that leads to maximum malaria incidence of more than 60 out of 100 children and d incidence 
of malaria in different areas plotted against season from 2012 to 2016 showing a general decline in malaria prevalence in this period
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Figure 4d is a plot of malaria incidence data for high-
lands, lakeshore and the whole Zomba district. Malaria 
incidence in children aged  <5  years in Zomba district 
accounts for 56.46%. The incidence of malaria in all loca-
tions shows a decreasing trend in time (season) from 
2012/13 to the end of the data collection season in 2016. 
The lowest incidence of 22 out 100 children was recorded 
in the lakeshores in the season between May 2015 and 
October 2015.

This study further calculated cumulative malaria inci-
dence and malaria morbidity rate in Zomba district, for a 
4 year time period (2012–2015 morbidity rate and 2012–
2016 for incidence rate). The incidence for the entire 
Zomba district, was 57 per 100 children aged  <5  years. 
The highland incidence was 79 per 100 while, Zom-
ba’s lakeshore was 57 per 100. Malaria morbidity rate, 
for Zomba district was estimated at 44.33%, lakeshore 
55.14% and highlands 58.7%. During this period, Zomba 
district had high incidence of malaria throughout the 
year in all seasons at all locations (see Fig. 4d). Seasonal-
ity of malaria in Zomba district was similar in highland 
and lakeshore areas.

In Figs. 4d and 5, it can be noted that, in both highlands 
and lakeshore, the number of malaria cases rose during 
the wet seasons and decreased during the dry seasons 
until in the years between 2013 and 2014 when this pat-
tern became distorted. Also regardless of whether rainfall 
went down to zero or not, the number of malaria cases 
in both lakeshores and highlands was non-zero. Also 
note that the lakeshore areas accounted for consistently 
more under-five malaria infections all the time than the 
highlands. In all the panels of Fig. 5, the general trend is 
that the under-five malaria infected populations are oscil-
lating but at a decreasing rate from 2012 up to 2015 and 
started slightly rising again in 2016. This decreasing trend 
in the reported malaria cases could be due to increas-
ing use of mosquito nets, general improvement in the 
malaria awareness by the population of Zomba, owing to 
the massive campaigns in malaria education by several 
organizations. This could also be attributed to changes of 
climatic conditions.

The fitting of the moving average and FFT filter equa-
tions (Fig. 5c, d) reveals a frequency in the data pattern of 
malaria cases rising or falling at a rate of 0.125 per month 
(or a periodicity of 8 days). The fitting of the exponential 
growth and decay also leads to response times as low as 
4.5  months (about 135  days) per malaria season, A, B, 
C, D, E, F, G, H, I and J as indicated in (d). The param-
eters of A1, A2, t1, t2 and y0 are summarized in Table 2. It 
can be noted from Table 2 that the response times range 
from a few days (about 12 days) to as high as 6 months 
as the years progress from 2012 to 2016. In contrast the 
values A1 and A2, which signify changes in the number of 

malaria cases reported above the minimum A0, initially 
increased from 2012 up to 2014 after which these maxi-
mum changes dropped as the years wore onto 2015.

Figure 6 presents the calculated percentages and inci-
dence rate over the years from 2012 to 2016 for 4 con-
secutive months of peak malaria. This was to ascertain 
whether Zomba qualifies for seasonal malaria chemopre-
vention. From the figure, in terms of the incidence rate 
limit of 10% minimum, the results suggest that Zomba 
qualifies to implement SMC but because the percentage 
of malaria cases does not exceed 60% in all the years then 
Zomba does not qualify. Since for an area to qualify for 
SMC, it needs to satisfy both criteria, therefore the study 
may conclude that Zomba does not qualify for SMC.

Discussion
There is a number of studies supporting the findings that 
mean temperature and humidity is largely associated 
with malaria spread. In agreement to this, a study done by 
Kazembe et al. in northern of Malawi, found that temper-
ature and humidity affects mosquito breeding and sur-
vival [37]. This study found that, malaria spread is at peak 
when temperature is at 24 °C according to Fig. 2a results 
and, in disagreement to this, a study done by Kazembe 
et al. where they reported that in Malawi, the favourable 
temperature for malaria transmission ranges 27–32  °C 
[38]. This could be the behaviour shifting of mosquitoes 
in regards to breeding and favorite condition for malaria 
parasite transmission. These findings correspond to the 
finding of this study which reported that there was lin-
ear correlation between malaria transmission to average 
temperature in Fig. 2a and relative humidity in Fig. 3a in 
Zomba district. A small difference between minimum 
and maximum temperature in Zomba, for the 4 years of 
the data collected for the study in Fig. 2b, had led to high 
malaria incidence.

At the same time this study finds that if the difference 
is lower than 6  °C and, greater than 13  °C there was no 
malaria present. In 4  years of data collection, mini-
mum and maximum temperature fluctuation has been 
in converging manner in Zomba district, hence malaria 
transmission decreased. Although it is well known that 
mosquito transmit malaria, this does not explain why 
malaria is negatively affected by diurnal temperature 
range? This needs further investigation in order to pin 
down this type of correlation.

This study finds that 67% of variation in general mor-
bidity could be explained by malaria cases in Zomba 
district according to Fig. 4a. This indicates that, malaria 
still plays a bigger role on the disease burden in Malawi. 
These findings are also in agreement with another study 
that reported why there is no decline in malaria in 
Malawi [5]. Understanding this variability, could make a 
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bigger difference in terms of resources management for 
health services in Malawi.

Generally, the seasonality of malaria trend decreased 
in 2012 through 2015 hence, malaria transmission was 
observed all year round. In all locations, including high-
land and lakeshore, seasonality of malaria, increased in 
every alternate year and decreased in the same manner.

Figure  4b shows that when the percentage of malaria 
seasonality increased in 1  year the following year the 
percentage decreased. Although rainfall had similar 
trend pattern, with malaria transmission, throughout the 
years of study in all the locations, this study showed that 

rainfall seasonality was very high compared to malaria 
transmission. The seasonality of rainfall started to 
decrease after 2014 which agrees with the general declin-
ing trend in malaria cases from these years in Fig. 4c. The 
general decline in malaria incidence could be due to the 
falling rainfall but could be also due to increasing aware-
ness by the Zomba population on the use of mosquito 
nets and malaria control. Additionally, there was no sig-
nificant drop in malaria transmission during the dry sea-
son compared to the wet season. Malaria epidemics were 
oppositely linked to seasonality of rainfall hence support-
ing the hypothesis that, malaria transmission occurs all 

a b

c
d

Fig. 5  a Time series plot between the years 2012–2016 of under-five malaria cases in the highlands and lakeshores and the total number in 
Zomba, b a magnified time plot of the under-five malaria cases in the highlands and lakeshore areas only, c under-five malaria cases data fitted with 
smoothing moving average and low pass FFT filter and d the same data fitted with exponential growth and exponential decay curves. Note that 
in both highlands and lakeshore, the number of malaria case rises during the wet seasons and decrease during the dry until in the year 2014 when 
this pattern becomes distorted. Also regardless of whether rainfall goes down to zero or not, the number of malaria cases in both lakeshores and 
highlands is non-zero. Also note that the lakeshore areas account for consistently more under-five malaria infections all the time than the highlands. 
The fitting of the moving average and FFT filter equations reveals a frequency in the data pattern of malaria cases rising or falling at a rate of 0.125 
per month (or a periodicity of 8 days). The fitting of the exponential growth and decay also leads to response times as low as 4.5 months (about 
135 days) per malaria season, A, B, C, D, E, F, G, H, I and J as indicated in d
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year round and is largely associated with temperature 
and humidity in Zomba district of Malawi.

Malaria was still a major disease burden in Zomba 
district of Malawi within 5 years (2012–2016). The inci-
dence for children  <5  year of age for the whole district 
was 56.46% while the highest incidence was observed 
in highlands about 78.93 and 56.68% in the lakeshore 
areas. These findings, contradicts findings from other 
studies, which indicated that malaria burden is higher in 
lakeshore areas compared to highlands areas. This could 
be because of weather change within the study period. 
Zomba district was hotter in these periods, which could 

suggest that even in the highlands, provided conducive 
environment for mosquito breeding hence increases 
malaria transmission.

It can be further noted in Fig.  4d that between May 
2012 and April 2013, also from November 2013 to April 
2014, malaria incidence in the lakeshores was higher than 
in the highlands. The opposite is true for the rest of the 
periods until 2016. One could suggest several factors 
including, economic status of the households or malaria 
prevention campaigns which were being rolled out in 
the district during these periods. Additional to that, this 
could be because Zomba has two CHAM health facilities 
in the highland areas, where patients pay for the services. 
Therefore, it can be assumed that other people who are 
not critically ill may choose not to go to hospital instead 
decide to take over the counter drugs. It is possible that 
patients may prefer to go a long distance to the public 
hospital outside their study demarcated region hence 
their surveillance details be recorded in different study 
region which could bring bias. This might lead to most 
public health facilities reporting more malaria cases than 
private health facilities.

This study noted also that the time series analysis of the 
malaria in highlands and lakeshores suggest that, malaria 
cases are sympathetic to rainfall. However, this trend gets 
distorted from 2014. This study suspects that there could 
be weather changes that disturb the mosquito breeding 
trends. In all the panels of Fig. 5, the general trend is that 
the under-five malaria infected populations are oscillat-
ing but at a decreasing rate as can be seen from 2012 up 

Table 2  Summary of  parameters of  A1, A2, t1, t2 
and  y0 from  Eq.  6 fitted onto  data for  under-five chil-
dren reported to  be infected with  malaria in  Zomba 
between 2012 and 2016

Season y0 A1 t1 A2 t2

A 10536.23 −1510.54 −4.5414 −1510.54 −4.5414

B 5159.53 1.74 1.06 5159.53 −0.57

C −2643.81 1.32E+19 0.25 39507.41 7.4865

D −7491.52 3214.893 14.17922 6.40E−16 0.47869

E −185,430 117265.1 128.1759 117265.1 128.1773

F −194,118 6.17E−24 0.592 184550.1 404.3063

G 7128.465 −4.72E−11 −0.93846 4.72E−11 −0.93846

H 5817.121 9.36E−11 1.49484 9.46E−11 1.49482

I 1828.639 3.40E+08 4.29071 3.40E+08 4.29042

J 22300.28 −337.493 −12.1242 −337.493 −12.1242

a

b

c

Fig. 6  a Four consecutive months of peak malaria percentage and incidence rate of all Zomba, Zomba Lakeshore b and Zomba highlands c for the 
period from 2012 to 2016
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to 2016. This decreasing trend in the reported malaria 
cases could be due to increasing use of mosquito nets, 
general improvement in the malaria awareness by the 
population of Zomba owing to the massive campaigns 
in malaria education by several organizations. This could 
also be attributed to changes on climatic conditions.

With the parameter obtained from time series analysis 
in Fig. 5, it is possible to predict by way of the inverse of 
the wavelet analysis in Eq. 1 that the under-five malaria 
infections in Zomba will decline in the coming years after 
2016 and that this decline will keep oscillating at a period 
between 8 days (or rate of 0.125 per month) to 6 months 
(or rate of 0.167 per month) depending on the prevailing 
climatic and social economic conditions. The changes in 
infected population will increase and decrease at the rate 
of about 150,000 infections per month on average in the 
coming years.

Conclusion
This study concludes that, climate and weather fluc-
tuations are associated with the diminishing of malaria 
seasonality regardless of strong seasonality of rainfall, 
in Zomba district. Referring to Fig. 6, the percentage of 
malaria in the consecutive 4 months of peak malaria in 
all location does not qualify for seasonal malaria chem-
oprevention therapy which is constantly below 60%, 
almost in all the years. Though on other hand, the inci-
dence rate of malaria in 4 consecutive months of peak 
malaria cases was always higher than 10%, which quali-
fies Zomba for SMC. Nevertheless, this study failed to 
show enough evidence that Zomba district qualifies 
for SMC, hence do not recommend implementation of 
seasonal malaria chemoprevention therapy in Zomba 
district. The time series analysis of the data for under-
five malaria infected cases show that the numbers in 
highlands are consistently lower than in the lakeshores, 
that all data fluctuate with season—increasing during 
wet seasons and decreasing during dry season—and 
that there is a general decreasing trend of numbers of 
infected under-fives from 2012 to 2016. The lower dif-
ferent ranges in diurnal temperatures contributed 
to high malaria prevalence, but this must be further 
investigated.

Abbreviations
CHAM: Christian Health Association of Malawi; DALY: disability-adjusted life 
years; HMIS: health management information system; MDG: millennium 
development goal; MRDT: malaria rapid diagnostic test; OPD: out patient 
department.

Authors’ contributions
PLH conceptualized the study, and involved in study design, data collec-
tion, executed statistical analysis and manuscript draft. BWM participated in 

statistical analysis and interpretation of the study results, and finalizing the 
manuscript. DPM participated in study design, statistical analysis, and finalizing 
the manuscript. SAF helped to conceptualize the study, participated in study 
design, coordination, helped statistical analysis and interpretation, revised and 
edited the manuscript. All authors read and approved the final manuscript.

Authors’ information
PLH has B.Sc. in health system, and M.Sc. in Epidemiology, held a position as 
research manager over 6 years at Invest in Knowledge, currently is holding a 
position as site coordinator for EndTB clinical trial with Partners in Health-
Lesotho in corroboration with Harvard University. BWM has BEd(Sc), BEdHons 
from University of Malawi and M.Sc., Ph.D. from University of the Witwa-
tersrand, South Africa, has been a lecturer at University of Malawi, Polytechnic 
for 11 years and currently is a Principle Researcher at Council for Scientific and 
Industrial Research since 2007. DPM has MBBS, MPH, M.Sc., Ph.D. in Epidemi-
ology, currently is the director for malaria alert in Malawi and also Associate 
professor at College of medicine, University of Malawi. SF holds a Ph.D. in Epi-
demiology from the University of Michigan, and has worked at the University 
of Michigan as a post doctorate fellow, at the University of Nebraska Medical 
Center as an Assistant Professor, Indiana University as an Associate Professor 
Epidemiology and Biostatistics. SF is also a Contributing Faculty for Walden 
University since June 2010. Currently she has joined the University of Pretoria 
as an Associate Professor and the Track Head for Biostatistics and Epidemiol-
ogy, in November 2014. She is a member of the APHA, SER, SPER, and South 
African Public Health Association.

Author details
1 Invest in Knowledge, Epidemiology Research Unit, Zomba, Malawi. 2 School 
of Health Systems and Public Health, Epidemiology & Biostatistics Track, 
University of Pretoria, 5‑10 H.W. Snyman Building, Pretoria, South Africa. 3 DST/
CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured 
Materials, Council for Scientific and Industrial Research, Pretoria, South Africa. 
4 Malaria Alert Centre & Department of Community Health, College of Medi-
cine, University of Malawi, Blantyre, Malawi. 

Acknowledgements
Many thanks to Mr. Jeffrey Ligomeka and Yohane Hajison for helping in HMIS 
data extraction and Mr. Makwenda Namoto of Chancellor College, for climatic 
data extraction. Mr. James Mkandawire for helping in Ethical review submis-
sion process in Malawi.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The dataset used for analysis during the current study is available from the 
corresponding author on reasonable request.

Ethical approval and consent to participate
Ethical approval was granted by University of Pretoria Ethical Committee, 
South Africa and National Commission for Research in Social Sciences and 
Health (NCRSH) review board, Malawi under references 485/2015 and NCST/
RTT/2/6 respectively. Data collection permission was granted by the Zomba 
District Health Office in Malawi.

Funding
Data collection was funded by African Association Universities (AAU) and 
Invest in Knowledge Malawi (IKI). AAU mainly helped in activities regarding 
to data collection. Invest in Knowledge facilitated the ethic clearance process 
and other data collection activities.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 19 January 2017   Accepted: 26 June 2017



Page 12 of 12Hajison et al. Malar J  (2017) 16:264 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

References
	1.	 WHO. World health statistics 2010. Geneva: World Health Organization; 

2010.
	2.	 WHO. Country cooperation strategy at a glance: belize. Geneva: World 

Health Organization; 2013.
	3.	 WHO. World Malaria Report 2015. Geneva: World Health Organization; 

2015.
	4.	 Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. 

Disability-adjusted life years (DALYs) for 291 diseases and injuries in 
21 regions, 1990–2010: a systematic analysis for the Global Burden of 
Disease Study 2010. Lancet. 2013;380:2197–223.

	5.	 Roca-Feltrer A, Kwizombe C, Sanjoaquin M, Sesay S, Faragher B, Harrison 
J, et al. Lack of decline in childhood malaria, Malawi, 2001–2010. Emerg 
Infect Dis. 2012;18:272–8.

	6.	 Mathanga DP, Walker ED, Wilson ML, Ali D, Taylor TE, Laufer MK. Malaria 
control in Malawi: current status and directions for the future. Acta Trop. 
2012;121:212–7.

	7.	 Yusuf SK. Spatial temporal impacts of climate variability on malaria distri-
bution in Gulu and Mpigi districts in Uganda using GIS. MSc thesis, Asian 
Institute of Technology, Thailand, 2013.

	8.	 Lowe R, Chirombo J, Tompkins AM. Relative importance of climatic, geo-
graphic and socio-economic determinants of malaria in Malawi. Malar J. 
2013;12:416.

	9.	 Amek N, Bayoh N, Hamel M, Lindblade KA, Gimnig JE, Odhiambo F, et al. 
Spatial and temporal dynamics of malaria transmission in rural Western 
Kenya. Parasit Vectors. 2012;5:86.

	10.	 Reid HL, Haque U, Roy S, Islam N, Clements A. Characterizing the spatial 
and temporal variation of malaria incidence in Bangladesh, 2007. Malar J. 
2012;11:170.

	11.	 Kalinga-Chirwa R, Ngongondo C, Kalanda-Joshua M, Kazembe L, Pemba 
D, Kululanga E. Linking rainfall and irrigation to clinically reported malaria 
cases in some villages in Chikhwawa District, Malawi. Phys Chem Earth 
Parts A/B/C. 2011;36:887–94.

	12.	 Egbendewe-Mondzozo A, Musumba M, McCarl BA, Wu X. Climate change 
and vector-borne diseases: an economic impact analysis of malaria in 
Africa. Int J Environ Res Public Health. 2011;8:913–30.

	13.	 Hay S, Omumbo J, Craig M, Snow R. Earth observation, geographic 
information systems and Plasmodium falciparum malaria in sub-Saharan 
Africa. Adv Parasitol. 2000;47:173–215.

	14.	 Zhao X, Chen F, Feng Z, Li X, Zhou XH. Characterizing the effect of 
temperature fluctuation on the incidence of malaria: an epidemiological 
study in southwest China using the varying coefficient distributed lag 
non-linear model. Malar J. 2014;13:192.

	15.	 Snow RW, Omumbo JA. Malaria. In: Jamison DT, Feachem RG, Makgoba 
MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO, editors. Disease and 
mortality in sub-Saharan Africa, 2nd ed. Washington: World Bank; 2006. p. 
195.

	16.	 Afrane YA, Lawson BW, Brenya R, Kruppa T, Yan G. The ecology of mos-
quitoes in an irrigated vegetable farm in Kumasi, Ghana: abundance, 
productivity and survivorship. Parasit Vectors. 2012;5:233.

	17.	 Krefis AC, Schwarz NG, Kruger A, Fobil J, Nkrumah B, Acquah S, et al. 
Modeling the relationship between precipitation and malaria incidence 
in children from a holoendemic area in Ghana. Am J Trop Med Hyg. 
2011;84:285–91.

	18.	 Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colon-Gonzalez 
FJ, et al. Impact of climate change on global malaria distribution. Proc 
Natl Acad Sci USA. 2014;111(9):3286–91.

	19.	 Ermert V, Fink AH, Morse AP, Paeth H. The impact of regional climate 
change on malaria risk due to greenhouse forcing and land-use changes 
in tropical Africa. Environ Health Perspect. 2012;120(1):77.

	20.	 Sevilla A. The Second National Communication of the Republic of Malawi 
to the Conference of Parties of the United Nations Framework Conven-
tion on Climate Change. Malawi: Ministry of Natural Resource; 2011.

	21.	 Walldorf JA, Cohee LM, Coalson JE, Bauleni A, Nkanaunena K, Kapito-
Tembo A, et al. School-age children are a reservoir of malaria infection in 
Malawi. PLoS ONE. 2015;10(7):e0134061.

	22.	 Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, 
regional, and national causes of child mortality: an updated sys-
tematic analysis for 2010 with time trends since 2000. Lancet. 
2012;379(9832):2151–61.

	23.	 Takem EN, D’Alessandro U. Malaria in pregnancy. Mediterr Hematol Infect 
Dis. 2013;5:2013010.

	24.	 WHO. Malawi: WHO statistical profile. Geneva: World Health Organization; 
2015. http://www.who.int/gho/countries/mwi.pdf?ua=1. Accessed 17 
Mar 2016.

	25.	 Zomba National Statistic Office [internet]. Malawi: MDG Endline Survey 
2014. 2014; Available at: http://www.unicef.org/malawi/MLW_resources_
mes2014.pdf. Accessed 18 Mar 2016.

	26.	 Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empiri-
cal mode decomposition and the Hilbert spectrum for nonlinear and 
non-stationary time series analysis. Proc R Soc Lond. 1998;454:903–95.

	27.	 Chan YT. Wavelet basics. Boston: Kluwer; 1995.
	28.	 Cohen L. Time-frequency analysis. Eaglewood Cliffs: Prentince-Hall; 1995.
	29.	 Lin YK, Cai CQ. Probabilistic structural dynamics: advanced theory and 

applications. New York: McGraw-Hill; 1995.
	30.	 Brockwell PJ, Davis RA. Time series: theory and methods. New York: 

Springer; 1991.
	31.	 Chou T-L. Statistical analysis, Holt International, 1975, ISBN 0-03-089422-0, 

section 17.9.
	32.	 Cooley JW, Tukey JW. An algorithm for the machine calculation of com-

plex fourier series. Math Comput. 1965;19:297–301.
	33.	 Mwakikunga BW, Motshekga S, Sikhwivhilu L, Moodley M, Scriba M, Mal-

gas G, et al. A classification and ranking system on the H 2 gas sensing 
capabilities of nanomaterials based on proposed coefficients of sensor 
performance and sensor efficiency equations. Sens Actuators Chem. 
2013;184:170–8.

	34.	 McMorrow M, Aidoo M, Kachur S. Malaria rapid diagnostic tests in elimi-
nation settings—can they find the last parasite? Clin Microbiol Infect. 
2011;17:1624–31.

	35.	 Aschengrau A, Seage GR. Essentials of epidemiology in public health. 
Burlington: Jones & Bartlett Publishers; 2013.

	36.	 Jhajharia D, Singh VP. Trends in temperature, diurnal temperature range 
and sunshine duration in Northeast India. Int J Climatol. 2011;31:1353–67.

	37.	 Kazembe LN. Spatial modelling and risk factors of malaria incidence in 
northern Malawi. Acta Trop. 2007;102:126–37.

	38.	 Kazembe LN, Kleinschmidt I, Holtz TH, Sharp BL. Spatial analysis and 
mapping of malaria risk in Malawi using point-referenced prevalence of 
infection data. Int J Health Geogr. 2006;5:41.

http://www.who.int/gho/countries/mwi.pdf?ua=1
http://www.unicef.org/malawi/MLW_resources_mes2014.pdf
http://www.unicef.org/malawi/MLW_resources_mes2014.pdf

	Seasonal variation of malaria cases in children aged less than 5 years old following weather change in Zomba district, Malawi
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Theoretical considerations
	Methods
	Results
	Discussion
	Conclusion
	Authors’ contributions
	References




