
No Evidence for Extensions to the Standard Cosmological Model

Alan Heavens,1,* Yabebal Fantaye,2,3 Elena Sellentin,1,4 Hans Eggers,5,6 Zafiirah Hosenie,7,2,8

Steve Kroon,9 and Arrykrishna Mootoovaloo10,2,8
1Imperial Centre for Inference and Cosmology (ICIC), Imperial College,

Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
2African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945, South Africa
3Department of Mathematics, Stellenbosch University, P/Bag X1, 7602 Matieland, South Africa

4Département de Physique Théorique, Université de Genève, Quai Ernest-Ansermet 24 CH-1211 Genève, Switzerland
5Department of Physics, Stellenbosch University, P/Bag X1, 7602 Matieland, South Africa

6National Institute for Theoretical Physics, Stellenbosch University, P/Bag X1, 7602 Matieland, South Africa
7Centre for Space Research, North-West University, Potchefstroom 2520, South Africa

8South African Astronomical Observatory, Observatory Road, Observatory, Cape Town 7935, South Africa
9CSIR-SU Centre for AI Research, Computer Science Division, Stellenbosch University, P/Bag X1, 7602 Matieland, South Africa
10Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town 7700, South Africa

(Received 11 April 2017; revised manuscript received 11 July 2017; published 7 September 2017)

We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic
microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space,
we reuse the Monte Carlo Markov chains already produced for parameter inference to compute
Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold
dark matter model with a cosmological constant (ΛCDM) is favored over all other models considered, with
curvature being mildly favored only when cosmic microwave background lensing is not included. Many
alternative models are strongly disfavored by the data, including primordial correlated isocurvature models
(lnB ¼ −7.8), nonzero scalar-to-tensor ratio (lnB ¼ −4.3), running of the spectral index (lnB ¼ −4.7),
curvature (lnB ¼ −3.6), nonstandard numbers of neutrinos (lnB ¼ −3.1), nonstandard neutrino masses
(lnB ¼ −3.2), nonstandard lensing potential (lnB ¼ −4.6), evolving dark energy (lnB ¼ −3.2), sterile
neutrinos (lnB ¼ −6.9), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (lnB ¼ −10.8).
Other models are less strongly disfavored with respect to flat ΛCDM. As with all analyses based on
Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors
used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that
extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer
Hubble constant measurements are included does ΛCDM become disfavored, and only mildly, compared
with a dynamical dark energy model (lnB ∼þ2).
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Introduction.—The standard cosmological model of a
flat universe containing additional cold dark matter and a
cosmological constant (ΛCDM) is a remarkably simple and
successful description of the Universe. Based on CDM
and a cosmological constant Λ, this flat model has six free
parameters, which the Planck satellite has measured with
very high precision. Extensions of the standard model have
also been introduced, to relieve tensions with other data sets
that have arisen with the standard model, or to probe for
new physics, and in this respect model comparison is of
more fundamental interest than parameter inference.
Bayesian evidence (or marginal likelihood) is the
Bayesian tool to address such questions, and it can be
challenging to compute as it requires integration of the
likelihood over the multidimensional parameter space. In a
companion paper [1] we show how Monte Carlo Markov
chains (MCMCs), produced for parameter inference, can be
used to perform model comparison. In this Letter, we report

an analysis of all the main published Planck chains.
Bayesian evidence has been computed for a small number
of models, e.g., by [2,3] for curvaton models, [4] for
holographic models, [5] for a comprehensive study of
inflation models, and [6] for inflationary features, [7–9],
which focused on neutrino extensions. However this is the
first comprehensive study of the models and data sets
considered by Planck.
Bayesian evidence.—The goal of parameter inference is

to determine the posterior probability of model parameters
θ, given a data set x, any prior information, and a modelM.
Using Bayes theorem, this is

pðθjx;MÞ ¼ pðxjθ;MÞπðθjMÞ
pðxjMÞ ; ð1Þ

where π is the prior and pðxjθ;MÞ is the likelihood,
which is regarded as a function of θ. The Bayesian
evidence pðxjMÞ is used for model comparison,
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and is the integral over the un-normalized posterior
~pðθjx;MÞ≡ pðxjθ;MÞπðθjMÞ. It trades the typically
higher likelihood of the more complex model against the
increased prior volume,

pðxjMÞ ¼
Z

dθpðxjθ;MÞπðθjMÞ: ð2Þ
The posterior probability of competing models is then given
by the product of the ratio of the model priors and the ratio of
evidences (the latter being known as the Bayes factor),

pðM1jxÞ
pðM2jxÞ

¼ πðM1Þ
πðM2Þ

pðxjM1Þ
pðxjM2Þ

: ð3Þ

The evidence may be expensive to compute if the dimen-
sionality of the parameter space is large. Also we typically
do not know ~p, but have only samples of it obtained by
MCMC techniques. Many such chains exist for the Planck
data, for various data set-model combinations. In this
application the standard model is a special case of the
extended models, so the maximum likelihood of the
extended model is at least as high as the standard model,
so it is of limited use, whereas the Bayesian evidence,
which includes an element of Occam’s razor, quantifies
whether the increase of likelihood throughout the parameter
space warrants support for the more complex model.
Conventional wisdom is that MCMC chains are not good

for computing the evidence, as it is claimed that they do not
explore the tails of the distributions well; i.e., marginalizing
over all parameters is thought not to be possible. However, it
is common tomarginalize over all but one or twoparameters,
to obtain marginal posteriors for parameters individually or
in pairs, and the tails do not seem to be a concern in those
cases. The real issue with Bayesian evidence is the nor-
malization of the integral. TheMCMC samples from the un-
normalized posterior; i.e., the chain is a sample from a
number densitynðθÞ that is proportional to the un-normalized
posterior, ~p ¼ an but with an unknown constant of propor-
tionality a. If this constant can be determined, then the
evidence is readily computed, since, replacing n by the
sample density (a sum of Dirac delta functions),

E ¼
Z

dθanðθÞ ¼ a
Z

dθ
XN
α¼1

δðθ − θαÞ ¼ aN; ð4Þ

where N is the length of the chain. Alternatively, since
n ¼ Npðθjx;MÞ ¼ N ~p=E, E ¼ N ~p=n≡ aN.
We use the MCEvidence algorithm presented in [1], where

the nearest-neighbor distances D, in an m-dimensional
MCMC chain, are used in a Bayesian analysis to infer a.
The chain is prewhitened such that the covariance matrix of
the points is the identity, and a Euclidean distance measure
then employed. This is equivalent to using the Mahalanobis
distance, where the inverse covariance matrix defines the
metric. The resulting posterior for the Bayesian evidence E

(assuming a 1=E prior) is given by a sum over the MCMC
points α, each weighted by wα,

lnpðEjfDαgÞ ¼ const − ðN þ 1Þ lnE −
W
E

XN
α¼1

VmðDαÞ ~pα

wα
;

ð5Þ

where VmðDÞ ¼ πm=2Dm=Γð1þm=2Þ is the volume of an
m ball of radius D and W ≡P

αwα. We assume that the
MCMC algorithm produces independent distances, but we
test this later. See [1] for more details.
The maximum a posteriori value of E is

EMAP ¼
W

N þ 1

XN
α¼1

VmðDαÞ ~pα

wα
; ð6Þ

with a statistical variance in lnE of 1=ðN þ 1Þ. We
marginalize over nuisance parameters, and run a nearest-
neighbor distance algorithm to determineDα, then compute
the posterior for the evidence. Marginalizing over nuisance
parameters adds scatter to ~p, which increases the statistical
error on E. We have checked the effect of including some
nuisance parameters and most lnB values change by <0.1.
Larger changes (up to about unity) occur only when j lnBj
is itself very large.
Data and models.—The Planck chains use a variety of

data sets, which are detailed in [10].
The models are the “base” flat ΛCDM model, with

parameters ωb ¼ Ωbh2, θMC, ωc ¼ Ωch2, τ, lnð1010AsÞ and
ns, representing baryon density, CDM density, angle of the
first peak, optical depth, amplitude of primordial fluctua-
tions, and scalar spectral index. h is the Hubble parameter
H0=100 km s−1 Mpc−1. The other models consist of the
base model with one to three extensions. Extensions and
prior ranges are listed in Table I. It takes about 15 minutes
on a laptop to analyze all the chains with MCEvidence.
Results.—Table II shows Bayes factors with respect to

the favored model for selected data sets. Bayes factors for
other Planck data sets are available online. Internal analysis
indicates a typical statistical error of ∼0.02. The scatter in
the mean of the MAP estimates from individual chains is
typically 0.02–0.1. In the revision [11] of the Jeffreys scale,
j lnBj > 3 is regarded as strong evidence (relative proba-
bility >20), and j lnBj > 5 as very strong (relative prob-
ability>150). As is always the case, the Bayesian evidence
depends on the priors chosen. Here we have used uniform
box priors (in addition, cosmoMCexcludes some physically
impossible subregions) based on the 2015 Planck analysis
(Antony Lewis), and these are listed in Table I. For
parameter inference these are not important if the data are
informative, and some are set towide uniform priors. In high
dimensions the evidence is very prior dependent, but Bayes
factors depend only on the width of the prior of the (usually
one) additional parameter(s). lnB values can be adjusted to a
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new prior range Δθ (assuming it is larger than the extent of
the chain), by adding lnðΔθTable I=ΔθÞ to the table values. A
narrower prior range increases the relative probability of the
extended model. Some models are not excluded with high
probability, and one should be cautious of these, given the
prior uncertainty. However, we see that Planck data provide
very strong evidence against some models (note that in the
text we discuss Bayes factors compared with flatΛCDM. In
Table II the numbers quoted are with respect to the highest
evidence model, which for a few data sets is not the base
model): e.g., correlated isocurvature models are disfavored
with lnB ¼ −7.8 by Planck alone, using polarization;
running of the spectral index is disfavored (−4.7); and
the evidence is against nonstandard neutrino masses and
number (−6.5). The evidence against nonzero r0.05 is strong
compared with the base model (−4.3).
At a weaker level, we find that a nonflat universe is

marginally preferred over the standard model by Planck
data until cosmic microwave background (CMB) lensing is
included, after which there is strong evidence in favor of
the flat standard model (−3.6). There is no evidence for
nonstandard lensing (−4.6), or for varying the number of
neutrino species (−3.1) or masses (−3.2). A model includ-
ing massive extra neutrinos, which was introduced to
alleviate tension with direct Hubble constant measurements
(e.g., [12]) and low-amplitude cosmic shear (e.g., [13–16])
has a very low probability from Planck data alone
(lnB ¼ −6.9 with respect to base), and a model that also

has nonzero tensor-to-scalar ratio r has exceptionally
strong evidence against (−10.8). The results are shown in
Fig. 1.
These results are understood when compared with the

marginal distributions of parameters from the Planck
chains. For example, in the absence of CMB lensing the
posterior for Ωm and ΩΛ follows the geometric degeneracy
line (Fig. 26 of [17]), with most of the probability lying
away from the flat line in this plane. When CMB lensing is
included, the posterior is concentrated close to the inter-
section of the lines, and the Bayesian evidence favors the
flat model. Correlated isocurvature modes are similarly
constrained to be very close to zero amplitude (Fig. 24 of
[17]), when the temperature-E mode cross-power (TE) and
E-mode power spectrum (EE) are included. Similar obser-
vations can be made for other parameters. Note that naive
interpretations of credible intervals may not be supported
by the evidence. One example of this is the lensing power
amplitude, for which AL ¼ 1 is in the tails of the distri-
bution for some data sets (see Fig. 12 of [17]), but for which
the evidence favors the standard model. See Fig. 3 of [18]
for illustration of this general point.
Robustness tests.—MCEvidence assumes that the points in

the chain are independent, and this is not strictly the case.
To test the effect of this we have computed the correlations
to find that they are generally small, but we have also
aggressively thinned the chains. Thinning by a factor of 10
makes little difference to the results, with the vast majority

TABLE I. Cosmological parameters (adapted from [10]), their prior range in square brackets, the baseline values assumed, the
nomenclature used in the model extensions in Table II, and a summary definition (see the text for details). The flat ΛCDM base model is
parametrized by the parameters above the horizontal line. For completeness priors are given for all relevant extensions, even if the
models are not discussed in this Letter.

Parameter Prior range Baseline Nomenclature Definition

ωb ≡ Ωbh2 [0.005, 0.1] … Baryon density today
ωc ≡ Ωch2 [0.001, 0.99] … Cold dark matter density today
100θMC [0.5, 10] … 100× approximation to r�=DA (CosmoMC)
τ [0.01, 0.8] … Thomson scattering optical depth due to reionization
lnð1010AsÞ [2, 4] … Log power of the primordial curvature

perturbations (k0 ¼ 0.05 Mpc−1)
ns [0.8, 1.2] … Scalar spectrum power-law index (k0 ¼ 0.05 Mpc−1)
ΩK ½−0.3; 0.3� 0 omegak Curvature parameter today with Ωtot ¼ 1 − ΩKP

mν [0, 5] 0.06 mnu The sum of neutrino masses in eV
meff

ν;sterile [0, 3] 0 meffsterile Effective mass of sterile neutrino in eV
w0 ½−3; 1� −1 w Dark energy equation of state, wðaÞ ¼ w0 þ ð1 − aÞwa
wa ½−3; 2� 0 w_wa As above (perturbations modeled using PPF)
Neff [0.05, 10] 3.046 nnu Effective number of neutrinolike relativistic degrees of freedom
YP [0.1, 0.5] BBN yhe Fraction of baryonic mass in helium
α−1 ½−1; 1� 0 alpha1 Correlated isocurvature parameter
AL [0, 10] 1 Alens Amplitude of the lensing power relative to the physical value
Aϕϕ
L

[0,10] 1 Aphiphi Amplitude of the lensing power from the four-point
function relative to the physical value

dns=d ln k ½−1; 1� 0 nrun Running of the spectral index
r0.05 [0, 3] 0 r Ratio of tensor primordial power to curvature

power at k0 ¼ 0.05 Mpc−1
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of lnB values changing by <0.2, with very few over 0.5.
A few heavily disfavored models change by more, up to 0.7,
so the conclusions are robust. We also note that if weights
are set to unity in Planck chains the same conclusions are
reached.
Since the Bayes factors depend on the width of the prior

for the additional parameter(s), we can ask by how much
they have to be changed for the models to be preferred
over the standard model. The most competitive models are
disfavored with lnB≃ −3, which requires the prior range
to be reduced by a factor 20 for them to be more probable
than flat ΛCDM. For example, w would need to be
restricted to a prior range <0.2, YP to 0.02, and r0.05 to
0.03, within the current credible region. The neutrino mass
conclusion is least secure, as a prior range less than 0.2 eV
would favor nonstandard masses.
Discussion.—The main aim of this paper is to compute

Bayesian evidence values for the many models and data
sets produced in the primary Planck analysis, where we find
that the 6-parameter flat ΛCDMmodel is preferred, with no
evidence in favor of extensions. As is usual with evidence
calculations, the results sometimes favor simpler models

TABLE II. Bayes factors with respect to the model favored by each data set (flat ΛCDM except for Planck only without lensing). For
full description of data sets, see the Planck descriptions, where names should be preceded by base_plikHM_; in short
BAO ¼ baryon acoustic oscillations, lensing ¼ CMB lensing, JLA ¼ supernovae, H070p6 ¼ Hubble constant prior centred on
70.6, and zre6p5 ¼ recombination at z ¼ 6.5. For model nomenclature, see Table I. Bayes factors in bold are referred to in the
text, adjusted where necessary if the ΛCDM evidence is not the highest in the column (designated by italics). This is a subset of the
model or data set combinations considered in this analysis.
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1 base −0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 0.0 0.0 0.0 0.0 0.0
2 omegak 0.0 −1.7 −1.5 −3.6 0.0 −3.6
3 Alens −1.7 −0.9 −0.3 −0.5 −0.8 −4.2 −4.1 −2.5 −2.1 −1.5 −1.5 −1.5 −1.8 −4.6
4 nnu −3.4 −1.7 −2.5 −2.5 −2.5 0.0 0.0 −2.2 −3.3 −1.7 −3.0 −2.9 −2.9
5 mnu −3.7 −3.2 −3.2 −2.8 −0.5 −2.6 0.0 −3.4 −3.2 −3.2 −3.0 −2.9
6 nrun −5.1 −4.1 −3.8 −4.0 −4.0 −4.1 −4.4 −4.9 −4.5 −3.8 −4.5 −4.5 −4.5
7 r −4.9 −4.0 −4.0 −4.0 −4.0 −4.0 −3.9 −4.5 −4.1 −4.1 −4.1 −4.1 −4.1
8 w −1.2 0.0 −1.7 −3.2 −0.2 −0.3 −0.2 −0.7 0.0 −1.9 −0.3
9 alpha1 −6.4 −5.6 −5.1 −5.5 −5.5 −5.4 −8.0 −7.6 −6.2 −7.5 −7.6 −7.6
10 Aphiphi −3.9 −3.8
11 yhe −2.9 −2.0 −1.1 −1.8 −1.9 −1.9 −2.9 −2.5 −1.5 −2.5 −2.5 −2.5
12 mnu_Alens −3.6
13 mnu_omegak −4.9
14 mnu_w −3.1
15 nnu_mnu −6.6 −6.1 −5.7 −5.4 −6.0 −6.6 −6.5 −6.3 −6.0
16 nnu_yhe −5.2 −4.4 −3.4 −4.2 −5.1 −4.6 −3.3 −4.8
17 w_wa −0.1 −0.3
18 nnu_meffsterile −6.5 −3.2 −5.7 −2.4 −7.1 −6.6
19 nnu_meffsterile_r −9.9 −10.8

FIG. 1. Bayes factors lnB with respect to the highest evidence
model (base: flat ΛCDM). The most constraining data set is
indicated by the symbol; see the legend for details. Horizontal lines
mark the boundaries corresponding to strong (lnB < −3) and very
strong (<− 5) evidence in the Kass and Raftery [11] scale.
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even when naive inspection of credible intervals suggests
otherwise. We agree with the conclusions of [7,8] but not
[19] in disfavoring adding extra massive neutrino compo-
nents to the base model, but our conclusions are far more
wide ranging. We also complement the analysis of [20] that
shows a model-independent lack of evidence for deviations
from standard physical parameters. The inclusion of recent
Hubble constant measurements [12,21] (the latter with or
without outliers) favors wCDM over ΛCDM, but only with
modest odds (lnB ¼ 2.2, 2.0, 1.5), respectively, from chains
that allow all parameters to vary. We do not include strong
lensing constraints on H0 (e.g., [22]) as the constraints are
model dependent so are not straightforward to add.

MCEvidence is written in PYTHON and is freely available
following the link in Ref. [23]. The full table of evidence
results is linked from [24].
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